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AN APPROACH TO THE PSYCHOLOGY OF INSTRUCTION
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The relationship between a theory of learning and a theory of instruction is dis-
cussed. Examples are presented that illustrate how to proceed from a theoretical
description of the learning process to the specification of an optimal strategy for
carrying out instruction. The examples deal with fairly simple learning tasks and
are admittedly of limited generality. Nevertheless, they clearly define the steps
necessary for deriving and testing instructional strategies, thereby providing a
set of procedures for analyzing more complex problems. The parameter-dependent
optimization strategies are of particular importance because they take into account
individual differences among learners as well as differences in difficulty among
curriculum units. Experimental evaluations indicate that the parameter-dependent
strategies lead to major gains in learning, when compared with strategies that do
not take individual differences into account.

The task of relating the methods and findings
of research in the behavioral sciences to the
problems of education is a continuing concern
of both psychologists and educators. A few
years ago, when our faith in the ability of
money and science to cure social ills was at its
peak, an educational researcher could content
himself with trying to answer the same ques-
tions that were being studied by his psycho-
logist colleagues. The essential difference was
that his studies referred explicitly to educa-
tional settings, whereas those undertaken by
psychologists strived for greater theoretical
generality. There was implicit confidence that
as the body of behavioral research grew,
applications to education would occur in the
natural course of events. When these applica-
tions failed to materialize, confidence was
shaken. Clearly, something essential was miss-
ing from educational research.

A number of factors contributed to the
feeling that something was wrong with business
as usual. Substantial curriculum changes,
initiated on a national scale after the Soviet's
launching of Sputnik, had to be carried out
with only minimal guidance from behavioral
scientists. Developers of programmed learning
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and computer-assisted instruction faced similar
problems. Although the literature in learning
theory was perhaps more relevant to their
concerns, the questions it treated were still not
the critical ones from the viewpoint of instruc-
tion. This situation would not have been sur-
prising had the study of learning been in its
infancy. But far from that, the psychology of
learning had a long and impressive history. An
extensive body of experimental literature
existed, and many simple learning processes
were being described with surprising precision
using mathematical models. Whatever was
wrong, it did not seem to be a lack of scientific
sophistication.

These issues were on the minds of those who
contributed to the 1964 Yearbook of the National
Society for the Study of Education, edited by
Hilgard (1964). In that book Bruner (1964)
summarized the feelings of many of the con-
tributors when he called for a theory of in-
struction, which he sharply distinguished from
a theory of learning. He emphasized that where
the latter is essentially descriptive, the former
should be prescriptive, setting forth rules
specifying the most effective ways of achieving
knowledge or mastering skills. This distinction
served to highlight the difference in the goals
of experiments designed to advance the two
kinds of theory. In many instances variations
in instructional procedures affect several psy-
chological variables simultaneously. Experi-
ments that are appropriate for comparing
methods of instruction may be virtually
impossible to interpret in terms of learning
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theory because of this confounding of variables.
The importance of developing a theory of
instruction justifies experimental programs de-
signed to explore alternative instructional
procedures, even if the resulting experiments
are difficult to place in a learning-theoretic
framework.

The task of going from a description of the
learning process to a prescription for optimizing
learning must be clearly distinguished from the
task of finding the appropriate theoretical
description in the first place. However, there is
a danger that preoccupation with finding pre-
scriptions for instruction may cause us to
overlook the critical interplay between the two
enterprises. Developments in control theory
(Bellman, 1961) and statistical decision theory
(Raiffa & Schlaiffer, 1968) provide potentially-
powerful methods for discovering optimal
decision-making strategies in a wide variety of
contexts. In order to use these tools it is
necessary to have a reasonable model of the
process to be optimized. As noted earlier, some
learning processes can already be described
with the required degree of accuracy. This
article examines an approach to the psychology
of instruction which is appropriate when the
learning is governed by such a process.

STEPS IN THE DEVELOPMENT OF OPTIMAL
INSTRUCTIONAL STRATEGIES

The development of optimal strategies can
be broken down into a number of tasks that
involve both descriptive and normative analy-
ses. One task requires that the instructional
problem be stated in a form amenable to a
decision-theoretic analysis. While the detailed
formulations of decision problems vary widely
from field to field, the same formal elements
can be found in most of them. It will be a useful
starting point to identify these elements in the
context of an instructional situation.

The formal elements of a decision problem
that must be specified are:

1. The possible states of nature;
2. The actions that the decision maker can

take to transform the state of nature;
3. The transformation of the state of nature

that results from each action;
4. The cost of each action;

5. The return resulting from each state of
nature.

Statistical aspects occur in a decision problem
when uncertainty is associated with one or
more of these elements. For example, the state
of nature may be imperfectly observable or
the transformation of the state of nature which
a given action will cause may not be completely
predictable.

In the context of the psychology of instruc-
tion, most of these elements divide naturally
into two groups, those having to do with the
description of the underlying learning process
and those specifying the cost-benefit dimen-
sions of the problem. The one element that
does not fit is the specification of the set of
actions from which the decision maker must
make his choice. The nature of this element can
be indicated by an example.

Suppose one wants to design a supplemental
program of exercises for an initial reading
program. Most reasonable programs of initial
reading instruction include both training in
sight-word identification and training in
phonics. Let us assume that on the basis of
experimentation two useful exercise formats
have been developed, one for training on sight
words, the other for phonics. Given these
formats, there are many ways to design an
overall program. A variety of optimization
problems can be generated by fixing some
features of the design and leaving the others to
be determined in a theoretically optimal
manner. For example, it may be desirable to
determine how the time available for instruc-
tion should be divided between phonics and
sight-word recognition, with all other features
of the design fixed. A more complicated ques-
tion would be to determine the optimal order-
ing of the two types of exercises in addition to
the optimal allocation of time. It would be
easy to continue generating different optimiza-
tion problems in this manner. The point is
that varying the set of actions from which the
decision maker is free to choose changes the
decision problem, even though the other
elements remain the same.

For the decision problems that arise in
instruction it is usually natural to identify
the states of nature with learning states of the
student. Specifying the transformation of the
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states of nature caused by the actions of the
decision maker is tantamount to constructing
a model of learning for the situation under
consideration.

The role of costs and returns is more formal
than substantive for the class of decision prob-
lems considered in this article. The specification
of costs and returns in instructional situations
tends to be straightforward when examined on
a short-time basis, but virtually intractable
over the long term. In the short term, one can
assign costs and returns for the mastery of,
say, certain basic reading skills, but sophisti-
cated determinations for the long-term value
of these skills to the individual and society are
difficult to make. There is an important role
for detailed economic analysis of the long-term
impact of education, but such studies deal with
issues at a more global level than we require.
In this article analysis is limited to those costs
and returns directly related to the specific
instructional task being considered.

After a problem has been formulated in a
way amenable to decision-theoretic analysis,
the next step is to derive the optimal strategy
for the learning model which best describes the
situation. If more than one learning model
seems reasonable a priori, then competing
candidates for the optimal strategy can be
deduced. When these steps have been accom-
plished, an experiment can be designed to
determine which strategy is best.

There are several possible directions in which
to proceed after the initial comparison of
strategies, depending on the results of the
experiment. If none of the supposedly optimal
strategies produces satisfactory results, then
further experimental analysis of the assump-
tions of the underlying learning models is
indicated. New issues may arise even if one of
the procedures is successful. In one case that
we discuss, the successful strategy produced
an usually high error rate during learning,
which is contrary to a widely accepted principle
of programmed instruction. When anomalies
such as this occur, they suggest new lines of
experimental inquiry, and often require a
reformulation of the axioms of the learning
model. The learning model may have provided
an excellent account of data for a range of
experimental conditions but can prove totally
inadequate in an optimization condition where

special features of the procedure magnify in-
accuracies of the model that had previously
gone undetected.

AN OPTIMIZATION PROBLEM THAT ARISES IN
COMPUTER-ASSISTED INSTRUCTION

One application of computer-assisted instruc-
tion that has proved to be very effective in the
primary grades involves a regular program of
practice and review specifically designed to
complement the efforts of the classroom
teacher (Atkinson, 1969). Some of the cur-
riculum materials in such programs take the
form of lists of instructional units or items.
The objective of the computer-assisted instruc-
tion programs is to teach students the correct
response to each item in a given list. Typically,
a sublist of items is presented each day in one
or more fixed exercise formats. The optimiza-
tion problem that arises concerns the selection
of items for presentation on a given day.

The Stanford Reading Project is an example
of such a program in initial reading instruction
(Atkinson & Fletcher, 1972). The vocabularies
of several of the commonly used basal readers
were compiled into one dictionary, and a
variety of exercises using these words were de-
veloped to teach reading skills. These exercises
were designed principally to strengthen the
student's decoding skills, with special emphasis
on letter identification, sight-word recognition,
phonics, spelling patterns, and word compre-
hension. The details of the teaching procedure
vary from one exercise to another, but most
include a sequence in which a curriculum item
is presented, eliciting a response from the
student, followed by a short period for study-
ing the correct response. For example, one
exercise in sight-word recognition has the
following format :

Teletype Display
NUT MEN RED

Audio Message
Type red.

Three words are printed on the teletype,
followed by an audio presentation of one of the
words. Control is then turned over to the
student; if he types the correct word a rein-
forcing message is given, and the computer
program then proceeds to the next presenta-
tion. If the student responds incorrectly or
exceeds the time, the teletype prints the
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correct word simultaneously with its audio
presentation and then moves to the next
presentation. Under an early version of the
program, items were presented in predeter-
mined sublists, with an exercise continuing on
a sublist until a specified criterion has been met.

Strategies can be found that will improve on
the fixed order of presentation. Two studies
described below are concerned with the devel-
opment of such strategies. One study examines
alternative presentation strategies for teaching
spelling words to elementary school children,
and the other examines strategies for teaching
Swahili vocabulary items to college-level
students. The optimization problems in both
studies were essentially the same. A list of N
items is to be learned, and a fixed number of
days, D, are allocated for its study. On each
day a sublist of items is presented for test and
study. The sublist always involves M items,
and each is presented only once for test
followed by a study period. The total set of
N items is extremely large with regard to any
sublist of M items. Once the experimenter has
specified a sublist for a given day, its order of
presentation is random. After the D days of
study are completed, a posttest is given over
all items. The parameters N, D, and M are
fixed, and so is the instructional format on each
day. Within these constraints the problem is
to maximize performance on a posttest by an
appropriate selection of sublists from day to
day. The strategy for selecting sublists from
day to day is dynamic (or response sensitive,
using the terminology of Groen & Atkinson,
1966) to the extent that it depends upon the
student's prior history of performance.

Three Models of the Learning Process

Two extremely simple learning models are
considered first. Then a third model, which
combines features of the first two, is described.

In the first model, the state of the learner
with respect to each item is completely deter-
mined by the number of times the item has
been studied. At the start of the experiment
an item has some initial probability of error;
each time the item is presented its error prob-
ability is reduced by a factor a, which is less
than one. Stated as a difference equation, the
probability of an error on the n + 1st presenta-
tion of an item is related to its probability on

the wth presentation as follows:

= aqn. [1]

Note that the error probability for a given item
depends on the number of times it has been
reduced by the factor a; that is, the number of
times it has been presented. Learning is the
gradual reduction in the probability of error by
repeated presentations of items. This model is
sometimes called the linear model because the
equation describing change in response prob-
ability is linear.

In the second model, mastery of an item is
not at all gradual. At any point in time a
student is in one of two states with respect to
each item: the learned state or the unlearned
state. If an item in the learned state is pre-
sented, the correct response is always given;
if an item is in the unlearned state, an incorrect
response is given unless the student makes a
correct response by guessing. When an un-
learned item is presented, it may move into
the learned state with probability c. Stated as
a difference equation,

_ f <?», with probability 1 — c ,- -.
1 { 0, with probability c.

Once an item is learned, it remains in the
learned state throughout the course of instruc-
tion. Some items are learned the first time they
are presented; others may be presented several
times before they are finally learned. There-
fore, the list as a whole is learned gradually.
But for any particular item, the transition from
the unlearned to the learned state occurs on a
single trial. The model is sometimes called the
all-or-none model because of this characteriza-
tion of the possible states of learning.

The third model to be considered is the
random-trial increments model and represents
a compromise between the linear and all-or-
none model (Norman, 1964). For this model:

_ ( qn, with probability 1 — c r -,
\aqn, with probability c.

If c = 1, the random-trial increments model
reduces to the linear model; if a = 0, it reduces
to the all-or-none model. However, for c < 1
and a > 0, the random-trial increments model
generates predictions that are quite distinct
from both the linear and the all-or-none models.
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For all three models the probability of an
error on the first trial is a parameter that may
need to be estimated in certain situations; to
emphasize this point the initial error prob-
ability is written as q' henceforth. It should be
noted that the all-or-none model and the
random-trial increments model are response
sensitive in that the learner's particular history
of correct and incorrect responses makes a
difference in predicting performance on the
next presentation of an item. In contrast, the
linear model is response insensitive; its predic-
tion depends only on the number of prior
presentations and is not improved by a know-
ledge of the learner's response history.

Cost/Benefit Structure

At the present level of analysis, it will
expedite matters if some assumptions are made
to simplify the appraisal of costs and benefits
associated with various strategies. It is tacitly
assumed that the subject matter being taught
is sufficiently beneficial to justify allocating a
fixed amount of time to it for instruction. Since
the exercise formats and the time allocated to
instruction are the same for all strategies, it is
reasonable to assume that the costs of instruc-
tion are the same for all strategies as well. If
the costs of instruction are equal for all
strategies, then for purposes of comparison
they may be ignored and attention focused on
the comparative benefits of the various
strategies. This is an important simplification
because it affects the degree of precision neces-
sary in the assessment of costs and benefits. If
both costs and benefits are significantly vari-
able in a problem, then it is essential that both
quantities be estimated accurately. This is
often difficult to do. When one of these quan-
tities can be ignored, it suffices if the other can
be assessed accurately enough to order the
possible outcomes. This is usually fairly easy
to accomplish. In the present problem, for
example, it is reasonable to consider all the
items equally beneficial. This implies that
benefits depend only on the overall probability
of a correct response, not on the particular
items known. It turns out that this specification
of cost and benefit is sufficient for the learning
models to determine optimal strategies.

The above cost/benefit assumptions permit
us to concentrate on the main concern of this

article, the derivation of the educational
implications of learning models. Also, they are
approximately valid in many instructional
contexts. Nevertheless, it must be recognized
that in the majority of cases these assumptions
will not be satisfied. For instance, the assump-
tion that the alternative strategies cost the
same to Implement usually does not hold. It
only holds as a first approximation in the case
being considered here. In the present formula-
tion of the problem, a fixed amount of time is
allocated for study and the problem is to
maximize learning, subject to this time con-
straint. An alternative formulation that is
more appropriate in some situations fixes a
minimum criterion level for learning. In this
formulation, the problem is to find a strategy
for achieving this criterion level of performance
in the shortest time. As a rule, both costs and
benefits must be weighed in the analysis, and
frequently subtopics within a curriculum vary
significantly in their importance. Sometimes
there is a choice among several exercise
formats. In certain cases, whether or not a
certain topic should be taught at all is the
critical question. Smallwood (1971) has treated
a problem similar to the one considered in this
article in a way that includes some of these
factors in the structure of costs and benefits.

Deducing Strategies from the Learning
Models

Optimal strategies can be deduced for the
linear and all-or-none models under the as-
sumption that all items have the same learning
parameters and initial error probabilities. The
situation is more complicated in the case of
the random-trial increments model. An ap-
proximation to the optimal strategy for the
random-trial increments case will be discussed
later; in this case the strategy explicitly
allows for individual differences in parameter
values.

For the linear model, if an item has been
presented n times, the probability of an error
on the next presentation of the item is an~lq'\
when the item is presented, the error prob-
ability is reduced to anq'. The size of the
reduction is thus an^(i — a)q'. Observe that
the size of the decrement in error probability
gets smaller with each presentation of the item.
This observation can be used to deduce that
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the following procedure is optimal:

On a given day, form the sublist of M items by selecting
those items that have received the fewest presentations
up to that point. If more than M items satisfy this
criterion, then select items at random from the set
satisfying the criterion.

Upon examination, this strategy is seen to
be equivalent to the standard cyclic presenta-
tion procedure commonly employed in experi-
ments on paired-associate learning. It amounts
to presenting all items once, randomly reorder-
ing them, presenting them again, and repeating
the procedure until the number of days allo-
cated to instruction have been exhausted.

According to the all-or-none model, once an
item has been learned there is no further reason
to present it. Since all unlearned items are
equally likely to be learned if presented, it is
intuitively reasonable that the optimal pre-
sentation strategy selects the item least likely
to be in the learned state for presentation. In
order to discover a good index of the likelihood
of being in the learned state, consider a
student's response protocol for a single item.
If the last response was incorrect, the item was
certainly in the unlearned state at that time,
although it may then have been learned during
the study period that immediately followed.
If the last response was correct, then it is more
likely that the item is now in the learned state.
In general, the more correct responses there are
in the protocol since the last error on the item,
the more likely it is that the item is in the
learned state.

The preceding observations provide a heu-
ristic justification for an algorithm which
Karush and Dear (1966) have proved is in fact
the optimal strategy for the all-or-none model.
The optimal strategy requires that for each
student a bank of counters be set up, one for
each word in the list. To start, M different
items are presented each day until each item
has been presented once and a 0 has been
entered in its counter. On all subsequent days,
the strategy requires that we conform to the
following two rules:

1. Whenever an item is presented, increase its
counter by 1 if the subject's response is correct, but
reset it to 0 if the response is incorrect.

2. Present the M items whose counters are lowest
among all items. If more than M items arc eligible, then
select randomly as many items as are needed to com-
plete the sublist of size M from those having the same

highest counter reading, having selected all items with
lower counter values.

For example, suppose six items are presented
each da)', and after a given day a certain
student has four items whose counters are 0,
four whose counters are 1, and higher values
for the rest of the counters. His study list would
consist of the four items whose counters are 0,
and two items selected at random from the
four whose counters are 1.

It has been possible to find relatively simple
optimal strategies for the linear and all-or-none
models. It is noteworthy that neither strategy
depends on the values of the parameters of the
respective models (i.e., on a, c, or </'). Another
exceptional feature of these two models is that
it is possible to condense a student's response
protocol to one index per item without losing
any information relevant to presentation deci-
sions. Such condensations of response protocols
are referred to as sufficient histories (Groen &
Atkinson, 1966). Roughly speaking, an index
summarizing the information in a student's
response protocol is a sufficient history if any
additional information from the protocol would
be redundant in the determination of the
student's state of learning. The concept is
analogous to a sufficient statistic. If one takes a
sample of observations from a population with
an underlying normal distribution and wishes
to estimate the population mean, the sample
mean is a sufficient statistic. Other statistics
that can be calculated (such as the median,
the range, and the standard deviation) cannot
be used to improve on the sample mean as an
estimate of the population mean, though they
may be useful in assessing the precision of the
estimate. In statistics, whether or not data can
be summarized by a few simple sufficient
statistics is determined by the nature of the
underlying distribution. For educational ap-
plications, whether or not a given instructional
process can be adequately monitored by a
simple sufficient history is determined by the
model representing the underlying learning
process.

The random-trial increments model appears
to be an example of a process for which the
information in the subject's response protocol
cannot be condensed into a simple sufficient
history. It is also a model for which the optimal
strategy depends on the values of the model
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parameters. Consequently, it is not possible
to state a simple algorithm for the optimal
presentation strategy for this model. Suffice
it to say that there is an easily computable
formula for determining which item has the
best expected immediate gain, if presented.
The strategy that presents this item should be
a reasonable approximation to the optimal
strategy (Calfee, 1970). More is said later
regarding the problem of parameter estimation
and some of its ramifications.

If the three models under consideration are
to be ranked on the basis of their ability to
account for data from laboratory experiments
employing the standard presentation proce-
dure, the order of preference is clear. The
all-or-none model provides a better account of
the data than the linear model, and the
random-trial increments model is better than
either of them (Atkinson & Crothers, 1964).
This does not necessarily imply, however, that
the optimization strategies derived from these
models will receive the same ranking. The
standard cyclic presentation procedure used in
most learning experiments may mask certain
deficiencies in the all-or-none or random-trial
increments models which would manifest them-
selves when the optimal presentation strategy
specified by one or the other of these models
was employed.2

2 This type of result was obtained by Dear, Silberman,
Estavan, and Atkinson (1967). They used the all-or-
none model to generate optimal presentation schedules
where there were no constraints on the number of times
a given item could be presented for test and study
within an instructional period. Under these conditions
the model generates an optimal strategy that has a high
probability of repeating the same item over and over
again until a string of correct responses occurs. In
their experiment the all-or-none strategy proved quite
unsatisfactory when compared with the standard pre-
sentation schedule. The problem was that the all-or-
none model provides an accurate account of learning
when the items are well spaced, but fails badly under
highly massed conditions. Laboratory experiments prior
to the Dear et al. (1967) study had not employed a
massing procedure, and this particular deficiency of the
all-or-none model had not been made apparent. The
important remark here is that the analysis of instruc-
tional problems can provide important information in
the development of learning models. In certain cases
the set of laboratory tasks that the psychologist deals
with may be such that it fails to uncover that particular
condition which would cause the model to fail. By
analyzing optimal learning conditions we are imposing
a somewhat different test on a learning model, which
may provide a more sensitive measure of its adequacy.

EVALUATION OF THE ALL-OR-NONE STRATEGY

Lorton3 compared the all-or-none strategy
with the standard procedure in an experiment
in computer-assisted spelling instruction with
elementary school children. The former strat-
egy is optimal if the learning process is indeed
all-or-none, whereas the latter is optimal if
the process is linear. The experiment was one
phase of the Stanford Reading Project using
computer facilities at Stanford University
linked via telephone lines to student terminals
in the schools.

Individual lists of 48 words were compiled
in an extensive pretest program to guarantee
that each student would be studying words of
approximately equal difficulty, which he did
not already know how to spell. A within-sub-
jects design was used in an effort to make the
comparison of strategies as sensitive as possible.
Each student's individualized list of 48 words
was used to form two comparable lists of 24
words, one to be taught using the all-or-none
strategy and the other using the standard
procedure.

Each day a student was given training on 16
words, 8 from the list for standard presentation
and 8 from the list for presentation according
to the all-or-none strategy. There were 24
training sessions followed by 3 days for testing
all the words; approximately 2 weeks later 3
more days were spent on a delayed retention
test. Using this procedure, all words in the
standard presentation list received exactly one
presentation in successive 3-day blocks during
training. Words in the list presented according
to the all-or-none algorithm received from zero
to three presentations in successive 3-day
blocks during training, with one presentation
being the average. A flow chart of the daily
routine is given in Figure 1.

The results of the experiment are sum-
marized in Figure 2. The proportions of correct
responses are plotted for successive 3-day
blocks during training, followed by the first
overall test and then the 2-week delayed test.
Note that during training the proportion cor-
rect is always lower for the all-or-none pro-
cedure than for the standard procedure, but on

3 P. Lorton, Jr. Computer-based instruction in
spelling: An investigation of optimal strategies for
presenting instructional material. Unpublished doctoral
dissertation, Stanford University, 1972.
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FIG. 1. Daily list presentation routine.

both the final test and the retention test the
proportion correct is greater for the all-or-none
strategy. Analysis of variance tests verified
that these results are statistically significant.
The advantage of approximately 10 percentage
points on the posttests for the all-or-none
procedure is of practical significance as well.

The observed pattern of results is exactly
what would be predicted if the all-or-none
model does indeed describe the learning pro-
cess. As was shown earlier, final test per-
formance should be better when the all-or-none
optimization strategy is adopted as opposed
to the standard procedure. Also the greater
proportion of error for this strategy during
training is to be expected. The all-or-none
strategy presents the items least likely to be in

the learned state, so it is natural that more
errors would be made during training.

TEST OF A PARAMETER-DEPENDENT STRATEGY

As noted earlier, the strategy derived for the
all-or-none model in the case of homogeneous
items does not depend on the actual values of
the model parameters. In many situations
either the assumptions of the all-or-none model
or the assumption of homogeneous items or
both are seriously violated, so it is necessary to
consider strategies based on more general
models. Laubsch4 considered the optimization

4 J. H. Laubsch. An adaptive teaching system for
optimal item allocation. Unpublished doctoral disserta-
tion, Stanford University, 1969.
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FIG. 2. Probability of correct response in Lorton's experiment.

problem for cases where the random-trial
increments model is appropriate. He made
what is perhaps a more significant departure
from the assumptions of the all-or-none strat-
egy by allowing the parameters of the model to
vary with students and items. The following
discussion is based upon Laubsch's work, but
introduces a more satisfactory formulation of
individual differences. This change and the
estimation of initial condition parameters pro-
duce experimental measures of the effectiveness
of optimization procedures that are signifi-
cantly greater than those reported by Laubsch.

It is not difficult to derive an approximation
to the optimal strategy for the random-trial
increments model that can accommodate
student and item differences in parameter
values, if these parameters are known. Since
parameter values must be specified in order
to make the necessary calculations to deter-
mine the optimal study list, it makes little
difference whether these numbers are fixed or
vary with students and items. However,
making estimates of these parameter values
in the heterogeneous case presents some
difficulties.

When the parameters of a model are homo-
geneous, it is possible to pool data from

different subjects and items to obtain precise
estimates. Estimates based on a sample of
students and items can be used to predict the
performance of other students or the same
students on other items. When the parameters
are heterogeneous, these advantages no longer
exist unless variations in the parameter values
take some known form. For this reason it is
necessary to formulate a model stating the
composition of each parameter in terms of a
subject and item component.

Let T.-y be a generic symbol for a parameter
characterizing student i and item j. An
example of the kind of relationship desired is
a fixed-effects Subjects X Items analysis of
variance model:

E(itij) = m + a, + dj £41

where m is the mean, a,- is the ability of student
i, and dj is the difficulty of item j. Because the
learning model parameters we are interested
in are probabilities, the above assumption of
additivity is not met; that is, there is no
guarantee that Equation 4 would yield esti-
mates bounded between 0 and 1. But there is a
transformation of the parameter that circum-
vents this difficulty. In the present context,
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this transformation has an interesting intuitive
justification.

Instead of thinking directly in terms of the
parameter in,-, it is helpful to think in terms of
the odds ratio Try/1 — inj. Allow two assump-
tions: (a) the odds ratio is proportional to
student ability; (6) the odds ratio is inversely
proportional to item difficulty. This can be
expressed algebraically as

1-
<*»•

K^'(tj
[S]

where K is a proportionality constant. Taking
logarithms on both sides yields

log
1 Try

= log K + log a, — log dj. [6]

The logarithm of the odds ratio is usually
referred to as the "logit." Let log K = M,
log a,- = A i, and —log dj — Dj. Then Equation
6 becomes

logit Try = M + Ai + [7]

Thus, the two assumptions made above lead
to an additive model for the values of the
parameters transformed by the logit function.
Equation 7, by defining a subject-item param-
eter Try in terms of a subject parameter At
applying to all items and an item parameter
Dj applying to all subjects, significantly reduces
the number of parameters to be estimated. If
there are N items and S subjects, then the
model requires only N + 5 parameters to
specify the learning parameters for N X S
subject items. More importantly, it makes it
possible to predict a student's performance on
items he has not been exposed to from the
performance of other students on them. This
formulation of learning parameters is essen-
tially the same as the treatment of an analogous
problem in item analysis given by Rasch
(1966). Discussion of this and related models
for problems in mental test theory is given
by Birnbaum (1968).

Given data from an experiment, Equation 7
can be used to obtain reasonable parameter
estimates, even though the parameters vary
with students and items. The parameters ?ry
are first estimated for each student-item
protocol, yielding a set of initial estimates.

Next the logistic transformation is applied to
these initial estimates, and then using these
values subject and item effects (At and D3) are
estimated by standard analysis of variance
procedures. The estimates of student and item
effects are used to adjust the estimate of each
transformed student-item parameter, which in
turn is transformed back to obtain the final esti-
mate of the original student-item parameter.

The first students in an instructional pro-
gram that employs a parameter-dependent
optimization scheme like the one outlined
above do not benefit maximally from the
program's sensitivity to individual differences
in students and items; the reason is that the
initial parameter estimates must be based on
the data from these students. As more and
more students complete the program, estimates
of the DJ& becomes more precise until finally
they may be regarded as known constants of
the system. When this point has been reached,
the only task remaining is to estimate A{ for
each new student entering the program. Since
the Dft are known, the estimates of Try for a
new student are of the right order, although
they may be systematically high or low until
the student component can be accurately
assessed.

Parameter-dependent optimization programs
with the adaptive character just described are
potentially of great importance in long-term
instructional programs. Of interest here is the
random-trial increments model, but the method
of decomposing parameters into student and
item components would apply to other models
as well. We turn now to an experimental test
of the adaptive optimization program based on
the random-trial increments model. In this
case the parameters a, c, and q' of the random-
trial increments model were separated into
item and subject components following the
logic of Equation 7. That is, the parameters for
subject i working on item j were defined as
follows:

logit ctij = /*<«> + A

logit en = M ( C ) + A
logit q'n = M

(9 / ) +

+

[8]

Note that AiM, Ai(c\ andyl,-'9'' are measures
of the ability of subject i and hold for all
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items, whereas ZV°> DjM, and A''3'' are
measures of the difficulty of item j and hold
for all subjects.

The instructional program was designed to
teach 300 Swahili vocabulary items to college-
level students. Two presentation strategies
were employed: (a) the all-or-none procedure
and (b) the adaptive optimization procedure
based on the random-trial increments model.
As in the Lorton study, a within-subjects
design was employed in order to provide a
sensitive comparison of the strategies. For each
student two sublists of 150 items were formed
at random from the master list; instruction on
items from one sublist was governed by the
all-or-none strategy and by the adaptive
optimization strategy for the other sublist.
Each day a student was tested on and studied
100 items presented in a random order; 50
items were from the all-or-none sublist chosen
using the all-or-none strategy, and 50 from the
adaptive optimization list selected according
to that strategy. A Swahili word would be
displayed, and the student was required to
give its English translation. Reinforcement
consisted of a printout of the correct Swahili-
English pair. Twenty such training sessions
were involved, each lasting for approximately
1 hour. Two or three days after the last training
session an initial posttest was administered
over all 300 items; a delayed posttest was given
approximately 2 weeks later.

The lesson optimization program for the
random-trial increments model was more com-
plex than those described earlier. Each night
the response data for that day were entered
into the system and used to update parameter
estimates; in this case an exact record of the
complete presentation sequence and response
history had to be preserved. A computer-based
search algorithm was used to estimate param-
eters and thus the more accurate the previous
day's estimates, the more rapid was the search
for the updated parameter values. Once up-
dated estimates had been obtained, they were
entered into the optimization program to select
individual lists for each student to be run the
next day. Early in the experiment (before
estimates of DM, D(c), and D(q>) had stabi-
lized) the computation time was fairly lengthy,
but it rapidly decreased as more data accumu-

AL L - OR - NONE S TRA TEG Y

ADAPTIVE STRATEGY

INITIAL
POST-
TEST

DELAYED
POST-
TEST

FIG. 3. Posttest performance for the all-or-none
strategy and for the parameter-dependent strategy of
the random-trial increments model.

lated, and the system homed in on precise
estimates of item difficulty.

Figure 3 presents the final test results and
indicates that for both the initial and delayed
posttests the parameter-dependent strategy
of the random-trial increments model was
markedly superior to the all-or-none strategy;
on the initial posttest the relative improvement
was 41% and 67% on the delayed posttest. It
is apparent that the parameter-dependent
strategy was more sensitive than the all-or-
none strategy in identifying and presenting
those items that would benefit most from
additional study. Another feature of the experi-
ment was that students were run in successive
groups, each starting about one week after the
prior group. As the theory would predict, the
overall gains produced by the parameter-
dependent strategy increased from one group
to the next. The reason is that early in the
experiment estimates of item difficulty were
crude, but improved with each successive wave
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of students. Near the end of the experiment
estimates of item difficulty were quite exact,
and the only task that remained when a new
student came on the system was to estimate
his particular A M, A (c), and A («° values.

CONCLUDING REMARKS

The studies reported here illustrate one
approach that can contribute to the develop-
ment of a theory of instruction. This is not to
suggest that the strategies they tested represent
a complete solution to the problem of optimal
item selection. The models upon which these
strategies are based ignore several potentially
important factors, such as short-term memory
effects, interitem relationships, and motivation.
Undoubtedly, strategies based on learning
models that take some of these variables into
account would be superior to those analyzed
so far.

The task and learning models considered in
this article are extremely simple and of re-
stricted generality; nevertheless, there are at
least two reasons for studying them. First,
this type of task occurs in many fields of
instruction and needs to be understood in its
own right. No matter what the pedagogical
orientation, it is hard to conceive of an initial
reading program or foreign language course
that does not involve some form of list-learning
activity. In this respect it should be noted that
the parameter-dependent strategy of the
random-trial increments model has been incor-
porated into several parts of the Stanford
computer-assisted instruction program in initial
reading; although no formal evaluation has yet
been made, the strategy appears to be highly
effective.

There is a second reason for the type of
analysis reported here. By making a careful
study of a few cases that can be understood
in detail, it is possible to develop prototypical
procedures for analyzing more complex opti-
mization problems. At present, analyses com-
parable to those reported here cannot be made
for many problems of central interest to educa-
tion, but by having examples of the above sort
it is possible to specify with more clarity the
steps involved in devising optimal procedures.
Three aspects need to be emphasized: (a) the
development of an adequate description of the

learning process, (b) the assessment of costs
and benefits associated with possible instruc-
tional actions and states of learning, and (c)
the derivation of optimal strategies based on
the goals set for the student. The examples
considered here deal with each of these factors
and point out the issues that arise.

It has become fashionable in recent years to
criticize learning theorists for ignoring the
prescriptive aspects of instruction, and some
have argued that efforts devoted to the
laboratory analysis of learning should be
redirected to the study of learning as it occurs
in real-life situations. These criticisms are not
entirely unjustified for in practice psychologists
have too narrowly defined the field of learning,
but to focus all effort on the study of complex
instructional tasks would be a mistake. Some
successes might be achieved, but, in the long
run, understanding complex learning situations
must depend upon a detailed analysis of the
elementary perceptual and cognitive processes
that make up the human information handling
system. The trend to press for relevance of
learning theory is healthy, but if the surge in
this direction goes too far, we will end up with
a massive set of prescriptive rules and no
theory to integrate them.

It needs to be emphasized that the inter-
pretation of complex phenomena is prob-
lematical, even in the best of circumstances.
The case of hydrodynamics is a good example
for it is one of the most highly developed
branches of theoretical physics. Differential
equations expressing certain basic hydro-
dynamic relationships were formulated by
Euler in the eighteenth century. Special cases
of these equations sufficed to account for a
wide variety of experimental data. These
successes prompted Lagrange to assert that
the success would be universal were it not for
the difficulty in integrating Euler's equations
in particular cases. Lagrange's view is still
widely held, in spite of numerous experiments
yielding anomalous results. Euler's equations
have been integrated in many cases, and the re-
sults were found to disagree dramatically with
observation, thus contradicting Lagrange's
assertion. The problems involve more than
mere fine points, and raise serious paradoxes
when extrapolations are made from results
obtained in the laboratory to actual conditions.
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The following quotation from Birkhoff (1960)
should strike a sympathetic chord among those
trying to relate psychology and education:

These paradoxes have been the subject of many
witticisms. Thus, it has been said that in the nineteenth
century, fluid dynamicists were divided into hydraulic
engineers who observed what could not be explained,
and mathematicians who explained things that could
not be observed. It is my impression that many
survivors of both species are still with us [p. 26].

Research on learning appears to be in a
similar state. Educational researchers are con-
cerned with experiments that cannot be readily
interpreted in terms of learning theoretic
concepts, while psychologists continue to
develop theories that seem to be applicable
only to the phenomena of the laboratory.
Hopefully, work of the sort described here will
bridge this gap and help lay the foundations
for a theory of instruction.
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