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MATHEMATICAL MODELS FOR MEMORY AND LEARNING
by
K. C. Atiinson and R. M, Shiffrin
Stanford University

In reéent vears a number of models have been proposed to account for
retention phenoﬁena, with the emphasils primarily on short-term memory ex-
periments, There hasg also been an active development of models for verbal
learning, with the focus on experiments dealing with serial and palred-
associabe learning. Except for a few notable exceptions, mest of these
theoretical developments have been.applicable elther to memocry or learning
experiments, and no atbempt has been made to bridge the gap. It.is our
feeling that theoretical and'experiméntal work in these two areas is suffi-
clently well advanced to warrant the development of a general theory that
encompasses both sgets of phenomena. This, then, is the goal of the paper,
We must.admiﬁ, however, that the term ”genefal theory" may not be entirely
appropriate, for many features of the gystem are still vague and undefined.
Nevertheless, the work has progressed to a point where it is poséible to

use the genersl conceptual framework to specify several mathematical models

) his paper was prepared for the "Third Conference on Learning,
Remembering, and Forgetting” sponsored by the New York Academy of Science
ot Princefonj New Jersey, October 3 to 6, 1965. Support for the research
was provided by the National Aeronautics and Space Administration, Grant
No; NGR-OB-O2C—OB6= The authors also wish to acknowledge their indebtedness
to Gordon Bower who, in discussicng contributed substantially to meny of the

ideas presented in this paper.



that can be applied to data in guantitative detail.

The theory that we shall outline posiulates a distinction between
short-term and long-term memory systems; this distincbion is based on the
coding format used to represent information in the two systems, and on the
conditions determining the length of stay. In addition, two process variables
are introduced: a transfer process and a retrieval process, The transfer
process characterizes the exchange of informatibn_between the ftwo memory
systems; the retrieval process describes how the subject recovers informa-
tion from memory when it is needed. As one mighit conjecture from this brief
description, many of the ldeas that we will examine have been proposad by
other thecrists. In particular we have been much influenced by the work of
Bower (1964}, Broadbent (1963), Eétes {1965), Feigenbaum and Simon (1962},
and Peterson (1963)n Howevei‘3 we hope we have added to this earlier work
'by applying some of the idess in guantitative fo;m to a wider range of phe~
norena.,

In presenting the theory we shall begin with an acgount of the wvarious
mechanism involved, making only cccasional references to experimental appli-
cations. Oniy later will models be developed for specific experimental
paradigms and applied %o data. Thus the initial description will he rather
abstract, and the reader may find it helpful to keep in mind the first study
to be analyzed, This experiment deals with short-term memory , and involves
a long series of discrete trials. On each trial a new display of stimuli
‘ig: presented to the subject. A digplay consistes of a random sequence of
playing cards; ©The cards vary ouly in the color of a small patch on ohe
side. The cards are presented at a fixgd rate, and the subject names the
color of each card as it is presented. Once the card has.been named it 1s
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turned face down so that the color is ﬂo longer vigitle, and the next card

iz presented. After presentation of the last card in a display the experi-
menter points to one of the cards, and the subject must try fto recall its
color. Over the series of trials, the length of the display and the tsgt BOS1-
ticn are gystematically varied. One goal of & theory in this case is to
predict the probability of a correct response as a function of both list

length and test position. With this experiment iﬁ mind we now turn to an

account of the theory,

GENERAL FORMULA$ION:9£ THE BUFFER MODEL

In this section the basicamsaéi-%ill be outlined for application
later to specific experiﬁental problems. Figure 1 shows the overall con-
ception. An incoming stimulus-itém4first enters the senscry buffer where
1t will reside for only = briefzperiod of time. and then 1s transferred to
the memory buffer. The sensory buffer characterizeg the initial inputrof
the stimulus item into the nervous system, and the amcunt of information
transmitted from the sensory buffer to the memory buffer is assumed to be
a function of the expoéure time of the stimulus and related variables.
Much work has been done on the eneoding of short-duration stimuli (e.g..
see Estes and Taylor, 1964; Mackworth, 1963; Sperling, 1960), but all of
the experiments considered in this paper are concerned with stimulus ex-
posures of fairly long duration (one second or more}. Hence we will assume
that all items pass successfully through the sensory buffer and into the
memory buffer; that is, all itemé are assumed tc beé attended fo and entersd
correctly into the mcmbry buffer,. Throughout thisg paper, then, iﬁ will be
understood thet the term buffer refers to the memor& buffer and not the

sensory bulfer. Furthermore, we will not become involved here In a
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detailed analysig of what 1s meant by an "item." If the word "horse" is
Presented visually, we will simply assume that whatever is stored in the
memory tuffer (be it the visual image of the word, the auditory sound, or
some vector of information about horses) is sufficient to permit the subject
to report back the word "horse" if we immediately ask for i%., This question
will be returned to later. Referring back to Fig. 1, we see that a dotted
line runs from the buffer to the "1ong—térm store" and a solid line from

the buffer to the "lost or forgotten" state. This is to emphasize that
items are copied into LTS without affecting in any way their status in the
buffer. Thus items can be simultaneously in the buffer and in LTS. The
.solid line indicates that eventually fthe item will leave the buffer and be
lost. ?he lost state is used here in a very special way: as goon &g an
item leaves the buffer it is sald to be lost, regardless of whether it is

in LTS or not. The buffer, it should be noted, is a close correlate of what
others have called a "short-term store" (Bower, 1964: Broadbent, 1963;
Brown, 1964; Peterson, 1963) and "primary memory' (Waugh and Norman, 1965).
We prefer the term buffer because.of the wide range of applications for
which the term short-term siore has been used. This buffer will.be assigned
very specific properties in the following section. Later on, the features of

LTS will be considered, but with less specificity than those of the buffer.

A, THE MEMORY BUFFER

Certein baslc properties of the buffer are disgrammed in Fig. 2. They'

are as follows:

#
The term long-term store will be used throughout the pasper and hence

abbreviated as LIS,
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1) Constant size. The buffer can contain exactly r items and no

2}

more. We start by supposing that items refers to whatever is pre-
sented in the experiment In gquestion, whether it be a paired-associate,
a 6-digit number, or a single letter. Thus, for cach experimental task
the buffer size must be estimated. Hopefully in future work it will
be possible to specify the parameter r in advance of the experiment
by_considering physical characteristics of the stimulus items. For

the present, no contradicticn arises in these two approaches if we
remember that stimulus items for any given experiment are usually
selected tTo be guite heomogeneous, and can be roughly assumed to

carry equal information. "It would be expected that the more com-
plicated the presented item, the smaller v would be. Similarly,

the greater the number of alternatives that each presented item

is chosen from, the smaller r should be.

Pushudown buffer: temporal ordering. These twc propertiles are
equivalent, As it is shown in the diagram the spaces in the buffer
(henceforth referred to as "slots") are numbered in such a way that
when an item first enters the buffer it occcuples the rth slot.
When the next item is presented it enters the rth slet and pushes
the preceding item down to the r- lSt slot. The process continues
in this mamer until the buffer is filled; affter this occurs sach
new item pushes an old one out on a basis te be described shortly.
The one that is pushed out is lost. Items stored in slots above

the one that is lost move down one slot each and the incoming ltem
is placed in the rﬁh slot. Hence items in the buffer at any point

in time are temporally ordered: the oldest is in slot mumber 1 and

the newest in slect r.




3)

4)

Buffer stays filled. Once the first r ditems have arrived the

buffer is filled. - Each item arriving after that knocks cut exsctly
one item already in the buffer; thus the buffer is always filled
thereafter. It is assumed that this siate of affairs continues ohly
as long as the subject ig paying attention and trying to remember
all that he can. At the end of a trial fer example, attention
ceases and the buffer gradually empiies of that trial's items.
Whether the items in the buffer simply fade out on their own or are
knocked out by miscellanecus succeeding material is a moot point.

In any event the buffer is cleared of the old-itemg by the start

of the next trial. The important polin%, therefore, I1s the fccus

of attention. Though the buffer may be filled with other material
at the start of a trial, primecy effects are found because attention
is focused solely on the incoming ifems.

Each new item bumps ouf an old item. This occurs only when the

bufTer has been filled. The item to be bumped out is selected as

a function of the buffer position (which is directly related to the
length of time each item has spent in the buffer). Let

Kj = probability that an item dn slot J of a

full buffer is lost when a new item arrives.

Then of course Kyt Ky doeee F K= 1, since exactly one item is

lpast. Variocus schemes can be proposed for the generatlion of the

Kj's. The simplest scheme (which requires no additional parameters)

i to equalize the - k‘s;, l.e., let Kj = l/r for all j. A

useful one-parsmetber scheme will be described in some detall later
on, In general, we would expect the smaller the subscript j, the

larger kj; that is, the longer the item has been in the buffer
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the higher the probability of its being lost. The extent of this
effect would depend in each experiment upon such things asgs the ten-
dency toward serial rehearsing, whether or not the subject can antici-
pate the end of the lisgt, and so on. Once an iltem has been bumped
out of the buffer it cannot be recalled at a later time unless it
has previougly entered LTS,

5) Perfect repressntation of items in the buffer. Ivems are always en-

code@ correctly when initially placed in the buffer. This, of course,
-only holds true for experiments with slow enough inputs, such as those
consldered in this paper. This postulate would have to be modified
if items entered very quickly; the modification could be accomplished
by having an encoding process describing the transfer of information

from the sensory buffer to the memory buffer.

€) Perfect recovery of item from the buffer. Items still in the buffer
at the time of teét are recalled perfectly (suﬁ;ect te the "perfect.
representation"” assumption made above). This and the previous assump-
tion are supperted by certaln types of diglb-span experiments where
a subject will make nc mistakes on lists of digits whose lengths are
less than scme critical value.

. 7) Buffer 1s unchanged by the fransfer process. The contents of the

buffer are not disturbed or otherwise affected by the transfer of items
from the buffer to LTS. Thus an item transferred into LIS is still
represented in the buffer., The ftransfer process can be viewed as

one of copying an item in the buffer, and placing it in LIZ, leaving

Tthe contents of the buffer uncheanged.

This set of seven assumptions characterizesthe memory buffer. Next we shall

congider the transfer process which moves ltems out of the Wwffer into LTS,
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but before we do this let us examine a simple one-parameter séheme for
generating the Kj’s.

We want the probability Tthat the jth item in a full buffer is the
one lost when & new item enters. The following process lg used to defermine
waich item is dropped: the oldest item {in slot 1) is dropped with prob-
ability &. If that item is noi dropped, then the item in position 2 is
dropped with probability 8. If the processg reaches the rth slot and it
also is passed over, then the process recycles to the lSJG slot., This
" processg conbinues until an item is dropped. Hence

r+j-1 2r+j-1

=
]

a s

)3r+j-1 + .

5(1-8)97" + 8(1-8) + 5(1-8) + (1 -5

5(1 - a)j“l (1)
1. (L-8)F

If we expand the dencminator in the above equétion and divide top and
bobttom by & 1t iz easy to see that Kj approaches l/r for all J as
& approaches zero. Thus, this limiting case represents a‘bumpmout process
where all iftems in the buffer have the same likelihood ¢f being lost. When
® =1, on the other hand, «, = L and K, = Ky = eee =K, =03 i.e., the
oldest item is alwsys the one lost. Figure 3 illustrates what this process
1g like. What is graphed is a recency curve; .the probability that the
ith item from tﬁe end of the list is still in the buffer at the time of
test. The last item presented is the leftmost point and of course 1s always
1 since there are no additional items to bump 1t out. The line labeled
& = L represenis the case where the oldest item is lost each time. In

this case the last r items presented are all gtill in the buffer at the

time of test; no older item is present however. The line labeled & — 0
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shows the casge when the bump-out probabilities are all egual. This curve

is a simple geometric function, since the probtabllity that any item will
: _1.n

still be in the buffer when n items follow is (—1"—?}) . The shaded

region indicates the range in which the recency function must lie for

0 < B3< 1., Hence, depending upon the value of &, either S-shaped or

exponentlal curveg can be obtalned,

B. THE TRANSFER PROCESS TO LONG-TERM STORE

For now 1t will suffice to say thalt the tramsfer process involves
making copies ofhitems in the buffer and then placing them in LTS, Later
we will want to think of each item ag a mosaic of elements and to view a
copy as elther a complete or partial representation of the array. Thus
the transfer procegs can be thought.of ag all-or-ncne 1f the initisl copy
is complete, and incremental if each copy is incomplete and the item's
_accurate representation in LTS depends on an accumulation of partisl cdpies.

We shall let eij be the transfer parameter. In particular eij is

the probebility that an item in the ith plot of the buffer is copled
-into LTS between.one item presentation and the next 1f there sre J 1tems
in the buffer during this pericd. The parsmeter eij thus depends on the
number of items currently in the buffer and on the buffer slot. It also

Gepends on the buffer sgize, the rate at which items are input into the

buffer, and such things as the complexity end codabllity of the items.

C. THE LONG~TERM STORE

The question, "What is stored in long-term memory?" is basic to the
theory, and we shall be more flexible in considering it then we were in

laying down the postulates for the buffer. A number of different models



will; be develcped in the paper and several more proposed. The first view-
point, and the simplest, holds that:
1) Items are represented in an all-or-none fashion no more than once
S in LTS.
In this case the parameter eij represents the probability of placing a
copy of an item in LT8; once a copy has been placed in I78 no further
copies of that ifem are made. A wvariabtion of this verslon is:
2) Ttems are represented in LTS by as many coples as were made during
the time the item was in the buffer.
In this case eij is the same sg before except that the proéess does not
end when the firét copy ls made. (Looking ahead a bi%t, we note that a
simple retrieval schgme, such as perfect recall of all items In LTS will
not differentiate between 1L and 2, This is, of course, not the case for
more elaborate schemes.) Cases 1 and 2 will be called the "single-copy"
and"multiple-copy" schemes, respectively. If the all-or-nocne assumption is
now removed from the multiple-copy scheme we haves
3) Items are represented by partial cbpies, the number of partial
copies being a function of the time spent 1in the buffer. One
partial copy will allow recall with probability less than one,
If items are again viewed as information arrays, then each partial copy
can be viewed as a sample from the array characterizing that item, With a
partial copy the subject may be able to recognize an item previously pre-
gsented, even though he cannot recall it. Procegses of this ftype will be
considered in greater detall later in the paper. Case 3 leads to its

continuous counterpart (the strength postulate):
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L) Each item is represented by a strength measure in LTS, the sirength

being a function of the amount of time the item was in the buffer.

For both cases 3 and &, eij is best. considered as a rate parameter,

These various storage schemes naturally lead to the guestion of recall

or retrieval from LTS,

D. RETRIEVAL OF TTEMS FROM MEMORY

1)

2)

3)

Retrieval from the buffer. Any item in the buffer is recalled
perfectly {given that it was entered correctly in the buffer).

Retrieval from the lost state., No item can be recalled from this

‘sbtate. It must be noted, however, that an item can be in this

state and also in LTS, Thus an item that has been lost from the
buffer can be recalled only i1f 1t has been previousgsly entered in
ITs. If an item 1s in neither LTS nor the bhuffer, then the prob-
abllity of making a correct response ls at a guessging level,

Retrieval from LTS, Each storage process mentioned in the previous

sectlon would, of course, have its own retrieval scheme. Later we
will propose retrisval poétulates for each storage process., but for
now the topic will be considered more generally,

In crder %o place the problem in perspective, coﬁsidér the frae
verbal recall data of Murdock (1962) which is shown in Fig. L.
The experimental situation consists of reading a list of words to
a subject and immediately alfterward having him write down every word
he ¢ can remember. The graph shows the probabllity of recalling

the word presented in position 1 for lists of various lengths

.gnd input rates. The two numbers appended %o each curve demnote the

list length and the presentation Time in seconds for each word.
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In particular consider the data for lists of 30 and 40 items. The
first items in the list (the oldest items) are plobted to the left
and exhiblt a primacy effect; 1.e., the probability of recall is
higher for these than for the middle items. The last items are
piotted to %he right and exhibit the recency effect; 1.e., the
probability of recall is higher for these alsc. Most important for
present purposes 1s the response level for iltems in the middle of
each list; mnote particularly the drop in the probability of recall
for these items from the 30 to the %O list. Specifically, why

are the middle items in the 30 list fecalled more coften than ﬁhe
middle items in the 40 1ist? The effect itsélf seems reliablé
since 1t wlll be given corréborating suppor® in.similaf experiments
to bhe reported later. Iurthermore, the effect appears intuitiﬁely
to be what one would expect., For exampie,_imégiﬁe presenting:iists
of lengths 10, 20, 1000, ete. It is obvious that the probabiiity
of recalling iﬁems in the middle of a list is goinglto tend to the
guessing level as list length increases iIndefinitely, but what is
there in the theory to predict this occurrence?

Two different answers to this question suggést themselves“. The
higtorical answer is that of interference., Iach item placed in LTS
interferes somewhat with each succeeding item placed there (pfoactive
interference), and each item placed in LTS interferes somewhat with
each item4alreédy there (retroactive interference), The other
answer that suggests 1ltself is thal retrieval from LTS ig less
effective as the number of items in LTS increases. In particular

we can view the retrieval process zs a sgearch of LTS that occurs
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at the moment of test (we will assume that the search does not
take place if the item is In the buffer at the time of tesgt--in
that case the item is reported ocut quickly and perfectly). The
notion of a search process 1s nct new, For some time workers in
the area of perception and psychophysics have been employing such
schemes (e.g., Estes end Taylor, 1964; and Sperling, 1660). Stern-
berg has pregented z search theory based on memory reaction.time
studies {1963), and Yntema and Trask {1963) have proposed a search
scheme: for recall studies. In many experimental tasks it is intui-
tively clear that the subject engages in an active search process
and often cen verbalize his method (Brown and McNeill, 1966).
Without yet fixing on a specific scheme, two peagibilities can
be -considered under the heading of search processesﬁ. First, there
can be a destructive process in which each search inte LTS disrupts
the contents of the gtore, and second, there can be a stopping
rule so that the search may stop before an item actually in LTS is
found. Using either of these processeg or sgome combination, the
drop in recall probability asg 1ist length increases can be explained,
While not denying that an interference theory may be a viable
way of explaining certain data, we have decided for several reasons
to restrict ourselves to search theories in this paper, First, it
iz obvious thai some manner of search process must be present in
mest memory experiments., Second, an interference process seems to
regulre a more exact specification of Just what is stored than a
_search theory. Third, a search theory gives a nabtural interpretation

of reaction time data.
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Two representative retrieval gchemes may now be mroposed:

a, The subject makegs R searches in LIS and then stops. If
there are n I1tems in LTS, then 1t is assumed that on each
gegrch the subject has probability l/n of reftrieving the
item. Thus, the probability of correctly recalling an

item stored cnly in LTS is

L-(1-=) .
For greater gemeralify it could be assumed that the number
of searches made has a distribution with mean R.

b. On each search the subject samples randomly and with re-
placement from among the items in LIB., He continues to
search until the ltem i1s found. Each search, however, may
disrupt the locked-for item with probability R', and hence
whnen it 1s finally found the subject may be unable Lo
reproduce 1it.

It should be noted that these retrieval schemes are strictly appli-
cable only to a storage process where each item is stored once and
only once in an all-or-none fashion. The schemes would have to be
modified to be applied to a multiple-copy or a strength process.
The central conslderation in this regard ig the probability of a
hit, dencted hi9 which is the probability that the desired item
1. will be found in a single search, In the single-copy scheme

-1’1:.L = n_l if there are n items 1n the store. In the multiple-
copy scheme h, = ni/an where n, is the.number of copies of
item j. In the strength scheme if the 1" item has strenghn

ki than hi = Ki/ij, Thege mors complicated gchemes will be

treated in detail as they occur,
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APPLICATION OF MODEL TO SHORT-TERM MEMORY EXPERIMENT

Enough general features of the buffer model have been presented to
make 1t possible to apply certain special cases to data. Consequently, we
will now analyze a stuidy reported by Phillips and Atkinson (1965),

The experiment involved a long series of digcrete trials. On each
trial a display of items was presented. A displsy consisted of a series
of cards each containing & small colored paftch on one side. Four colors
were used: black, white, blue, and green, The cards were presented to the
subject at a rate of one card every two seconds. The subject named the color
of each card ag 1t was presented. Once the color of the card had been
named by the subject it was placed face down on a display board sc that the
color was no longer visible, and the next card was presented. After pre-
sentation of the last card in a display the cards were in a stralght row on
the display board: the card presented first was To the subject's left and
the most recently presented card to her right. The trial terminated when
the experimenter pointed to one of the cards on the display bosrd, and the
subject attempted to recall the color of that card. The subject was in-
structed to guess the cclor if uncertaiﬁ and te gualify her response with =
confidence rating, The confidence ratings were the numerals 1, 2, 3, and 4.
The gubjects were told to say 1 1f they were pogitive; 2 1f they were
choosing from two alternatives, one of which they were sure was correct;
3 if they were choosing from three alternatives, one of which they were
sure was correct; and 4 if they had no idea at all as to the correct response.

.Following the subject's confidence rating, the experimenter informed
the subject of the correct answer., The display size (list lengbth) will be

denoted as d. The values of & used in the experiment were 3, 4k, 5, 6,
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7, 8, 11, and 4, Each display, regardless of size, ended at the same place
on the display board, sc that the subject knew at the start of each display
“how long that particular display would be. Twénty gubjects, all femaies,
were run for a total of five sessions, approxihately 70 trials per session.
Figure 5 presents the proportion of cerrect responses as a function
of the test position in tﬁe display. There is a separate curve for each of
the display sizes used in the study. Points on the curves for d =8, 11,
and 14 are based on 120 observationg, whereas all other points are based
on 100 obgervallons. Serial position 1 designates a test on the most
recently pregented item. These data indicate that for a fixed display
gize, the probability of s correct response decreases to some minimum value and
then increases. Thus there ig a very powerful rescency effect as well as
a strong primacy effect over a wide range of display sizes; Note alsc that
the recency part of each curve ig S-shaped and could not be well described
by an exponential function. ZReference to Filg. 5 also indicates that the

-overall proportlon correct is a decreasing function of display size,

MODEL, T (PERFECT RETRIEVAL OF ITEMS IN LTS)

We shall begin our analysis of these déta using an extremely simple
form of the buffer model. The buffer will be specified in terms of postulates
A-1 through A-7, aleng with the time-dependent bump-out process of Eq. 1.
‘The LTS assumpbions are those indicated in C-1; di.e., each item in the
list is stdred possibly once and nc more than once in LTS, The Sransfer
- function also will be simplified by assuming that transfer of any item in
the buffer to LIS dependg only on the number of items currently in the buffer,

Thus the first sﬁbscript on the eij function defined earlier will be
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dropped, and Qj -wlll denote the probablility that any item in the buffer
will be copled into LTS between presentations of successive ltems, given
that fhere are J items in the buffer during that period. Further, we

will assume that

whnere & 1is an arbitrary parasmeter between O and 1. This assumption is
Juastified by the following considerations: if in each small unit of time
the subject attends to just one of the itemg in the buffer, and if over
many of these small units of time the subject’'s attention switches randomiy
among the J dtems currently in the buffer, then the amount of time spent
attending to any given item will be Iinearly proportlcnal to J. We use
this aﬁgument to Justify setting ‘Gj = e/j, but we recognize the arbitrariness
cf the assumption and later wiil examine other schemes.

The last feature to be specified is the retrieval scheme, In Model I
ﬁe will assume simply that any item in the LTS is retrieved correctly with
probability 1. Hence the probabllity of a correct resgponse for an item
stored in either the buffer or LIS is 1. The probability of a correct re-
sponse for an item in nelther the buffer nor LTS is the guessing probability,
wﬁich will be gset equal to l/h since there were four fesponse alternatives
in the experiment.

Mathematical Development of Model T

We begin by defining the following gquantities:

()

probability that item 1 in a display of size 4 is
neither in the buffer nor in LTS at the time of test.

(a)

i

[}
1l

rrobability that item 1 1n a display of size d 1is in
the buffer at the time of test..
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P

zgd)

= preobability that item 1 1n a display of size d . i1s
" in LTS and not in the buffer at the time of test.

fid) . zgd) + sgd) - 1.

Of course, It should be emphasized that in our
analysis of this experiment, position 1 denotes items counted from the
end of the list; i.e., the last item presented is number 1, the =econd to
last number 2, efc.

In order to facilitate the derivation of expressions for fhis model,
we define the guantity, mij' Given that fhere are J 1ltems yet to be
presented, @ij is the probability that an iltem cgrrently in glot 1,
which has not yet entered LIS, will be neither in LIS nor in the bulfer
at the time of test. We note that for the firsgt position of the regisﬁer

(i = 1) these expressicns are first-order difference equations of the form
o; « o=k, + (1-2)(1- k)0 .
I P 1 r 1"71,5~1

For 1 > 2 the expressions are somewhat more formidable:

g

P g = Ky ¥ (1- ;)[Kl@l’j_l + (K3 Ky oot Kr)@e,j-l]
=k, + {1-2)k tk c o+ (K K Heeet K .
P3,5 7 %3 (1 ‘r)[ 17 2)¢233-1 (K, + Ky r)@333—11
’ G
Dy g =Kyt (1- ;)[Kl Ky heeat Ki—l)mi_l,j—l + (Ki+l + Ky Feent Kr)@i
: o |
r1,j " Kooq * (1- ;)[(Kl + Ky Heeot Kr»2)®r-2,jnl + KTQr-lgj-l] (2)

]

°

K.+ {1- %)(1_ Kr)@

Py r,j-1

2d

The initial condition for each of these equations 1s o = 0.

i,0
The equations above can be derived by the following argument. We want

to specify @ij in terms of the ¢'s for Jj-1 succeeding items. Thus

23
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@ij equals Ki [the probability that the item in slot 1 is lost when

the next item is presented! plus 1- % [the probebility that the item does

not enter LTS] times the quantity

{(x ).

+ K, ot oeee ok Kiul)@ﬂ + K +oeeo Kr)$

175 i-1,5-1 " (K * Kppp i,j-1

But the quantity in brackets is simply K+ Ky homee K o [the proba-

bility that an item in a2 slot aumbered less than 1 1is lost which means

that the item in slot i will move down to slot i -1] times ‘wi 1,31
-1,

{since the item has moved to slot i-1 with J -1 items to be presented]

Plus Ky o o+ Kyo ke K [ the probability that an item in & slot num-

bered greater than i is lost] times [since the item is gtill in

_ 9 ,3-1
glot i with Jj-1 items to be presented].

(d)

The quantity fi may now be defined in terms of the ¢ij‘s. It is

clear that any item numbered less than d -r+ 1 will enter the buffer with
all the slots filled, Thus, for i <d-r+1, fgd) equals L-2 [the
probability of not entering LTS at cnce) times @rsi_l [eince after the
ith item there are i-1 still to comel. For i > d-r+1 we must con-

sider the probability that the item stays in the buffer until it is full

without entering ILTS. Bpecifically, this probability is

0 6 o i :
(1- (- 23) .- (1- ) j:dﬁi+3(_lm ij) S

at which time the item will be in slot d-1i+1 of the buffer. Furthermore,
there will now be d-r ditems to come, Hence, for 1 >d-r-+1, fgd) will
simply be the above product multiplisd by P it ] . oy Summarizing these

: : , = pOmX

results we have:

oh



TT 0 .
a) _ ._dJ,LH(_l“ 3) Pa-i+],d-r » for 1 >d-r+l
i J=tmt (3)
(1-%¢ . for i<d-r+l .
r/Tre,i-1 ? -

Now let Cid) denote the event of a correct response o item 1 in a list
of length d. Then

Pr[C(d)] =1 - f(d) + f(d)[%] R (4}

i i i
where 1/4 1is the guessing probability and l-dfgd) is the probability
that the item is either in the buffer, LTS, or both at the time of test.

‘The obvious next step would be to solve the variocus difference equations
and thereby obtain an explicit expression for Pr[ng)] as a function of
the parameters é,- r, and 8, This is a straightforward but extremely
tedious derivatioh. Rather than do this we have decided to use a computer
to ilteratively éalculate values of wij for each set of parameters &, r,
and & we wigh to consider.

For purposes of estimating parameters and evaluatiﬁg the goodriess-of-

it of data to theory, we now define the following chi-square functicon:

- d-17 - : \ 5
2 ‘ L L . (a (a
e - :_Zi NPr{c(d)} ' N - NPr[C(d)]f B )} "% | ?)
= i i

d .
where O§ ) is the cbserved number of correct responses for the ith item

in a display of size d, and N is the total number of cbservations at each
pogition of the display., (Recall that N was 120 for D = 8, 11, 14, ana
100 for d = 3, 4, 5, 6, 7.) The sum excludes the first item (item 4) be-
cause 1 - Pr[Cid)] ls predicted to be zero for all list lengths; this

prediction is supported by the data,
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Goodness-ci-Fit Results for Model I

It seemed reasgonable to estimate the parameter r on the bagis of data
from the short lists. The model predicts that no errors will be made until
the display size d exceeds the buffer size. Extremely few errors were made
for dis of 5 and less, and we will assume that these are attributable to
factors extraneous to the main concern of the experiment. On this basis
r would be 5; this estimate of r will be used in further discussions
of thig experiment.

The estimates of the parsmeters & and 6 were obtained by using a
minimum Xg procedure. Of course, the minimization cannot be done analyti-

‘cally for we have not derived an explicit expression for Pr[Cid)}, and
therefore we will resort to a numericsl routine using a computer. The

routine involves selecting tentative values of & and €, computing the

(d)]1

associated Pr[Ci s and the Xg(d)B repeating the procedure with another
get of valueg for € and B, and continuing thus until the space of possible
values on 8 and & [0 < g <1, 0<8< 1] has been systematically ex~
plored. Next the computer determined which pair of values of € and &
yielded the smallest XE, and theée are used ag the estimates. When enough
peints in the parémeter space are scanned, the method yields a close approxi-
metion to the analytic solutionu%

| The results of the minimization procedure are presented in Fig. 6,
which displays the fits, and glves the parameter estimates and Xg values,

As noted earlier, the prediction for list lengths less than 6 is perfect

recall at all positicns. A measure of the oversll £it of This meodel can

*
For a discussion of this procedure see Atkinson, Bower, and Crothers.
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be achieved by summing the Xg‘s for;each list Jength. The regult is a X2
of 31.8 which is Hc be evaluabed with 38 degrees of freedom. (There are
L& points to be fit and two parameters are estimatéd for each list length,)

© As we can see from an inspection of Fig. 6, the model provides a good
account of the dabta. Also, note:that the estimates of & are reaéonably
constant as list length varies, Indeed on theoretical grounds there is no
feason to believe that & should wvary with list length, Note also that
a & of about .40 gives a slight S-shape to the recency portion of the
curve; as indicated in Fig. 35 the higher 6 the greater the é-shape effect,.
Ag indicated earlier, the S-shape effect.depends directly upon the tendency
for-the oldest items in the buffer to be lost first. One might conjecture
fhat this tendency would depend on factors such as the serial nature of the
task, the mekeup of the stimulus material, the instruetionéB and the subject's
knowledge of when the display list will end. In the present experiment, the
subject knew when fhe ligt would end, and was faced with a memory btask of
& highly serial nature. IFor these reasons we would expect sn S-shaped
recency effect, I should be possible to change the S~ghape 10 an exponen-
tial by appropriate manipulation of these-experimental factors QAtkinsogg
Hansen, and Bernbach, 1964).

. A notable aspect of the fit is the rapid drop in the € parsmeter as
list length increases. Furthermore, itlis intuitively clear that as list
length increases, the‘probability of recall will necessarily tend to a
guessing level for all but the most recent items, Thus, to accouant for the
eff@ct with this model, it would be necessary to assume that the & parsm-
eter goes to zero as list lengths increase. However, because Model I is

minimized over two parameters, the drop in 5_ is undoubiedly confounded
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Fig. 6. Goodness~of=fit results for Model I (Z’Xa(d) = 31,8
on 36 degrees of freedom).
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with the varisbions in %w For thisg reason the XEV minimization was
carried out using a single value of & for all list lengths simultaneously,
and selecting an estimate of O for szach list length separately. The fit
was about the same as the one displayed in Fig. 6 so it will not be graphed.
The minimum XE summed over all list lengths was 39.1 based on 40 degrees

of freedom. The estimate of & was .38 and the variocus estimates of 6

were as follows:

List

Length 6
6 72
7 .61
8 .59
11 «35
1k 2k

MODEL IT {IMPERFECT RETRIEVAL OF ITEMS IN LTS)

From the azbove regults it 1s clear that 8 1is dropping with list
length. While atbtempts to explain this drop could bg made in Germs of
changing motivation or effort as the llsts get loanger, we dislike such
explanations for several reasons. First of all, experiments in which the
subject does not know when the displey list will end shOW'fhe seme effects
(this will be seen in a free recall experiment to be presented later).
Also, subjects report that they try as hard, if not harder; on the longer
lengths, Finally, the magnitude and orderliness of the effect belie efforts
to explain 1t in such an offhand faghion.

The approach we shall take is that retrieval from the LTS is not per-
Tect. In particular, if the subJect does not find the item in the buffer,

we assume he engages in a search procegs of LTS. The probablility that this
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search is successful decreases as the mumber of items in LTS increases.
The next model, Model II, is therefore identical with Model I except that
a retrieval function (fhat described in Postulate D-3-a) is appended to
determine the probability thét an item is recovered from LIS. With the
addition of a retrieval function it 1s now possgible to estimate a single
5 and a single 06 for all list lengths.

The assumptions are as follows: if st the time of test the sought-
after item is not found in the wuffer, then a search of LTS 1s made. The
search consists of meking exactly R picks with replacement from among
the items in LTS, and then stopping. 1If the item is found, it is reported
cut with probability 1; 1if not, the subject guesses.

Mathematical Development of Model IT

For Model IT it 1s necessary to determine sgd) and zéd) ags well
(d) : :
as fi . To do this, define

Bij = probability that an iftem currently in slot 1 of a

full buffer is still in the buffer J ifems later,
The difference equations defining Bij are straightforward, being functions

solely of the «.:

d
5153 = (1 —Kl)J
52,3 = Klﬁl,j—l + (K3 TRy et Kr)BE,j—l
B;,j = (g gy e K 0By g gy (K R et DBy
: (6)
Ppoy,g = gt Ky +""+_Kr-2)ﬁr—2,j-l tKPry, a1
ar,j = (Kl Ky et Kr-l)ar-l,j—l .
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The initlal conditions are B, = 1, Incidentally, Fig, 3 1s a graph of

1,0
'BS i for the 8 scheme deflined earlier,
’ I
d . .
The s; ) can now be defined in terms of the Bij; namely
B. . : if 1i>d-r+1
d-i+1,d-r $ ol
s\ ‘ o @
5r5i-l , if 1 <d-r+ 1.
We have already obtalned an expression for fgd)s therefcre ﬂgd) can
be recovered as follows:
Ja e ()
i 7 i i ’
Now define
(a) o th ., .
hi = probabllity of finding the 1 iftem in a single search

~of LTS, given that the ith item is in LTS8, and not in
the butfer.

rop = probability of retrieving the ith item as the result
. . th
of a search process in LTS, given that the 1t item

is in LTE, and not in the bulfer.
BPut the number of items in LTS and not in the buffer is the sum of the

@)
1

. Further, since we select randomly from this set it follows that

-1
I (®)
& d

i
where j ranges from 1 to d,% (An alternative conception is that the
search takes place among all the iltems in LIS, whether or not théy are in
the buffer. If this were the case then we would have a smaller hgd).

We have decided to present the above scheme, however, since the iwo schemes

give 1little different results in practice. This occurs because the smaller
*Hquation 8 is actually an approximation, but it greatly simblifies

calculations and the error introduced is negligible,
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d
hi ) of the second scheme can be compensated for by a higher estimate of R.)
We now define pgd) in terms of hgd); name 1y
IR
(d (a
pi) =1 - l"hi) 3 (9)
since, to miss an item entirely, it must be missed in R consecutive picks,
Hence
(a) (@) , (&) (a) , 1.(a) , ,(a) (a)
Pr[Ci]ﬁsi + b e A e A [l-pi] . (10)
We next define ’
2
A x2(6) + XE(T) + x-2(8) + Xg(ll) + Xg(lh) (11)

where Xg(d) was given in Eg. 5. To apply Model II %o our data, we miz-
imized the above X2 function over the parameters 0, 8, and R, Ag before,

r wag set egual to 5. The parameter estimales were as follows:

5= .39
6:.72
R = 3.15 .

The prédicted curves are given in Fig., 7. The £it of Model II is remarkably
good; simultaneously fitting five list lengths, the minimum XE is only
46.2 based on 43 degrees of freedom (i.e., there are L6 points to be fit,
but three parameters were estimated in minimizing XE). The fit is very
nearly as good as that of Model I where each list length was it separately
uging 10 parameter estimates. As pointed out earlier, however, fthere ére
many possible retrieval schemes which could be éuggesﬁed. Ts it éossible

on the bagis of a X2 criterion to distinguish among these? By way of
answering this question, we shéll consider a second, very different re-

trieval procedure, te be called Model ITI.
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MODEL III (IMPERFECT RETIRIEVAL OF ITEMS IN ILIS)

Thig medel ig idenftical t§ Modél 1T excepﬁ fofrthé retrieval process.

The proposal ig that mentioned in Postulate D-3-b. Searches in the LTS are
made randomly with replacement. Each unsuccegsful search disrupts the
locked-for item with probability R'. If the item is ever disrupted during
the search process, then when the item is finelly retrieved the stored in-
formation wlll be such that the subject will not be able to recall at better
than the chance level, Figure 8 shows the branching tree for this process,
A0

where is the probablility of finding the item on each search. TFor

this process

2
id) - héd) + 01 - hid)] (1 - R‘)hid) + {}l . hgd)}(l - R‘{} h§d) teus
N Z[l RO IR Y. (12)
35=0
Ll

1 -[1 - hid)](l - R")

The same method for estimating parametérs uged for Model IT was also
. . 2 '
used here. The obtained minimum X wag 55.0 (43 degreeg of freedom)g

and the parameter estimates were as follows:

5= .38
8 = .80
R o= o8,

The predicted curveg are shown in Fig, 9, The fit is not quite s good

as for Model I1I, but the differenfe is not great enough tq meaningfully
distinguish between the two medels., Notwithstanding this fact, we shall

go on and develop a somehat more sophisticated retrieval medel for use later

in-the paper.,
: 30,
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STRENGTH MODELS FOR LTS

Models I, IL, and III are all marked by the same assumption concerning
what 1s stored in LTS. In all these moaels, an ltem can be stored only
once in an all-or-none fashion. We now will develop some of the technigues
necessary to deal with more complicated models. There are several reasons
that motivate the development: first, the single-copy model gives no
reasonable method to deal with confidence ratings; second, there 1s no
particularly good way of dealing with the confusion errors found in certain
types of experiments (see Conrad, 1964); and third, the single-copy model
does not lend itself well to postulates concerning what happens when ltems
are repeatedly presented as in a paired-assoclate learning task.

Consider for z moment the problem of confidence ratings. In the
Phillips and Atkingon experiment described earlier, subjects were asked
to give the confidence rating 1, 2, 3, or 4 depending on their estimate
of the number of alternativesrfrom_which they were choosing. Lf they could
actually follow these directions, theilr prcobabilities of being correct for
each confidence rating would be 1.0, 0.50, 0.33, and 0.25, respectively.
The results are shown in Fig. 10. What is graphed 1s the probabilitybof
a correct response, given that confidence rating 1 was made against‘the
inverse of the confidence rsting. Since the inverse of the confidence rating
ig the wvalue the subJects should approximate if they were able to obey the
ingtructions accurately, the points should all fall on é stralght line with
slope 1.

The fact that the cbserved response pfobabilities are quite cloge to
the values predicted on the basis of confidence ratings, indicates that =

useful alternative to the "signal detectabilifty theory" view of confidence
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ratings can be found-(De Finettli, 1965; Egan, 1958). In any case it is
not unreasonable to assume that the subject does actually choose from
among either 1, 2, 3, or 4 alternatives at different times, and that one
of the picked-from alternatives 1s the correct response. We will not try
in this paper to present a model capable of explaining these results.
Nevertheless it 1s clear that a model of greater sophistication than the
all-or-none, single-copy mcdel is needed. FYor these and related reasons
we would like to analyze some of the implications of buffer models postu-
lating a memory strength in LTS.

Two aspects of the earlier models, the transfer assumptions and the
long-term storage ssumptions, will now be re-examined. The baslc premise
to be considered is that whatever is stored in LTS (the number of copies,
a strength ﬁeasure, ete.) is a function of the time spent by an item in
the buffer. At thig stage, therefore, some statistics relevant to an
item's duratlon 1n the buffer are developed.

Def'ine

gij = probabllity that an item currently in slot 1 of a full
buffer is knocked out cf the buffer when the jth succeeding

item dis presented.

Then
- - J-1
1,5 " (1 - w)" 7Ky
. = K N + K. + K F+eoat KN .
C2,5 = 51,51 ( 3k I")C‘v2;.,j-l
. " e A Cew K
Gy g= (g by et i )8 gy * Ky * g Foet 16 5
: o | | - (13)
O T A R Y S T T Abro1, -1 |
= + K teeet K .
€y = Kyt 5 SR SRR,

39



The initizl conditions are Qj L7 Ki' An important function may now be
L, ]

defined in terms of the @ij's. Namely,

wig) = probability that the ith item in & list of length 4
gtays in the buffer exactly j units of time (where a

time unit is the presentation period per item).

Then
9 , 1f 1 < ]
j=i-1
g 1 -ziiw§§) = séd) , if 1 =]
SN )T |
1] <g , if 1> j and i<d-r+l (1)

gd—i+l jeitderil , If 1 >Jj,i>»d-r+1 and j>i-d+r-1
5

o , i i>j,1i>d-r+1 and j<i-d+r-1.

The conventlon is used here that if i1tem i 1is still in the buffer at the
time of test, the number of time units it 1s sald to have been present in
the buffer is 1.

Our assumptions for the present model go back to the suggestions made
in Postulates C and D. Congideratlion of each item as made up of a large
number of bits of information (used here in a locse sense--not necegsarily
binary bits) lends credence to the postulate that an item's strength in
LTS8 can bulld up in a gradual continuous fashion as a function of time
spent in the buffer, In particular, the assumption is made here that what

*
is stored in LIS is represented by a strength measure., For example, the

*
This assumption is actually quite gimilar to the multiple-copy
assumptions, and it would be exbremely difficult to differentiate the two

on the basis of data. More will be said about this later.

b



strength could represent the number of bits of information stored. This
strength measure will be defined for a list of length d as follows:
{a)

A

iy = strength of the ith item in LIS, given that it was

in the buffer exactly J units of time.

L

In order to define a transfer function to LIS, we use the notation
introduced earlier. However, the eij“s arc no longer a probability that
an item will be transferred. Instead they represent a weighting factor on
the time spent in the buffer. For example, an item is weighted more Tor
each time unit it spends in the buffer alone, than when 1t shares the
buffer with several other items. One way of locking at this is to thiﬁk
of the amount of "attention" received by an item in one unit of time; if
all items in the buffer are attended to for an equal share of the available
time, then an item alone in the buffer for one second would be attended
to for the full second, whereas an item sharing the buffer with four others
Would‘be attended for only 1/5 second,. In this cass, then, the item
alone would be welghted five times as heavily as the item which shares the
buffer with four others.

Ag Dbefeore we will make the simplifying assumption that the Gij’s do
notdepend on 1, the buffer position;  hence the first subscript is super=
fluous and will be dropped leaving Gj as the weighting function. Thus
ej represents how much each ltem is to be weightedg if there are currently
J items in the buffer. We c¢an now compute the strengih that_an item |
accumulates during its stay in the buffer. To do this simply consider the
number of time units an item is in the buffer; multiply each unit by the

appropriate ej ‘end also by the length of the time unit. To state this

(d)

mathematiecally, let “ij denote the weighted time that item i accumulates
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in the buffer, if it remaing in the buffer J time units. Then

Grjt ooy for 1 <d-~xr+1l
N r-1l 7
H(d) _ (15)
1i er(jmi+'d“r+1') + 2@1{; s for 1> d-ra+1 ,
i=d-i+1

where t denotes the length of a time unit (i.e., *he presentation time
per item),
The central assumption, now, 1s that the s trengih bullt up in LTS

is a linear function of the weighted time accumulated. Namely

?\ii) W%)
where ¥ 1s a dummy parameter. The introduction of ¥ permits us to
cqnvert ej te a rate measure; specifically the variabls of interest is
the rate at which strength accumulates, defined here as 79J.. Obvicusly
ej could have been defined directly as a rate parametfer; hcowever, we
preferred to have Q,j bounded betwesn 0 and 1 in ordsr to keep its usage

in line with earlier developments. What this means, of course, is that in

any application of the strength model the guantity 81 can be erbitrarily

set equal tc 1. To make this point entirely clear, note that_hég) can
be rewritten as follows:
(79r)jt » for 1 <d-r+l
G

SN

r-1
(79r)(3—i+d~r+l)+ Z(y@i)t,for >d-r+l .

i=d-r+1
The strength schema outlined sbove is somewhat analogous to what has been

labeled in the literature a "consclidation process.” One view of the
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consolidaticn hypothesls holds that a short-term decaying trace lays down
a permanent structural change in the nervous system; in turn, our model
postulates that a strength measure 1g laid down in permanent memcry during
the period that an item remains in the buffer. Whether or not there is
anything significant to this similarity, the analogy will nct be pursued
further in this paper.

Anriﬁportant prbperty of this model 1s now presented: fegardless of
any conditionalities, the total strength in LTS of all itémé in a display
of gize & 1s a constant. This total étrength will be denoted as s{d),

and is as follows:
r "t '
g{d) = |r(d- r}@r +-Z1(iei)J ty . (16)
i=

Thus for the retrieval schemes discussed earlier, the probabllity of finding
item 1 in a single search, given that the item had been in the buffer for

J. bime units is as follows:

(@)
() _ 2ig
ij =~ s(a)

which simply says that the probabilility of picking the itb item is its
relatlve strength.
In terms of ocur earlier anelyses, it seems reasonable to assume that

whatever the retrieval procedure, the probabilify of recall will be a
(a)
13

(a)

.pij = probability of fetrieving item 1 from LTS, given that

function of h,.’, Thus, if

it was iIn the buffer exactly J time units,

then pii) will be some as~-yeb-unspecified function of. h§§)“.-Taking the
next gtep yields an expression for Pr[ng)]; namely.
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i-1

+ 2 Ei (d) 3 (17)

Pr[ng)ﬂ = sgd) + [1 - sgd)]
1 _ 1 3

Fl=
=

where non-retrievals are interpreted as generating correct reéponses at
guessing probability of 1/k.

The stage has now been reached where it is necessary to specify a
retrieval process in order to complete the model and apply it to data.*
Many processes come to mind, and we have itried several oﬁ the Phillips and
© Atkinson data. However, as one might expect, the data from that experiment
do not permit us to distinguish amoﬁg them., Conseguently it will be nec-
essary to analyze other experiments; 1n particular certain especlally con-
trived studies involving free verbal recall. Before turning to the free
 verbal recall experiments, however, it will be heipful to examine a paired-.
assoclate learning experiment for indicabtlong of how to proceed. We do
this bécause a central question not yet considered is how to handle re-

peated pregsentations of the same item.

PATRED-ASSQCIATE LEARNING

Qur analysls of learning will be primarily within the framework of =
paired-associate model proposed by Atkingon and Crothers (1964) and Calfee

and Atkinson (1965). This model postulates a distinction between short-

N :
We still have not considéred the problem of confidence ratings, but

we have reached a point where suggesticns can be made for dealing with themn.

For exemple, cut-off points can be defined along the strength dimension,

and the retrieval process modified to handle this elaboration.
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term and long-term memory end has beeén labeled the trial-dependent-for-

getting (TDF) model because the recall process changes over bime. With
certain minor amendments the TDF model can be viewed as a special-case,of
the buffer model presented in this paper, Our approach in_this section will
bg to analyze some paired-assoclates data in terms of the TDF model, with
the goal of determining what modifications neéd to be made in the buffer
model to make it a viable theory of learning. To start, let us consider

the experimental task.

A Psired-Associate Experiment Msnipulating List Length

Three groups of 25 college students were uged zs subjects., Each |
subject learned a paired-asscciate 1ist in which the stimulus members .
consisted of two-dlgit numbers, and the response members were one of three
nongenge gyllables. For group 21 a set of 21 stimulus items was selected
on the basis of low inter-item assoclation value. For groups 9 and 15 the
experimental lists consisted of a selection of 9 or 15 iteﬁs, respectively,
from this set, a different subset being selected randomly for each subject.
Each of the three responses was agsigned as the correct alternative equally
often for each subject. After instructions and a short practice list,: the
experiment began. As each stimulus item was presented the subject was re-
quired to choose one of the three responses, foliowing which he was informed
of the correct response. In order to resduce primacy effects, the firgt
three stimulus-response pairs shown to the subject were two diglt numbers
that were nrot in the sgebt of 21 experimental items; these three items did
not reoccur on later trials, Then, without interruption, the experimental

list (arranged in a random order} was presented. After the entire list had

been presented, the second trial then proceeded without interruption in the

LS



same manner with The items arranged in a new random order., Thus, the pro-

cedure involved continuous presentation of items with no bresks between
*

trials.

Figure 1L presents the mean learning curves for the three experimental
groups. The curves are ordered on the list length variable, with the
longer liste producing a slower rate of learning. It should be clear that
this effect is a direct conseguence of the buffer model, since for the
longer lists a smaller proportion of the items 1ls retrieved via the buffer.

Figure 12 pregents the conditional error curves, Pr( Ten), which also

“n+l
are ordered asccording to list length. Note that the conditional probability
ls defihitely decreasing cver trials. Without going into details now, it

iz clear that a buffer model will also predict this effect because the

probability'of retrieval would increase with repeated presentations.

Trial-Dependent-Forgetting Model

As noted earlier the TDF model assumes that paired-sssociate learning
is a ltwo-stage process in which a given stimulus item may be viewed as
initially moving from an unconditioned state to an intermediate short-
term state. In the intermediate state an item may either move back to the
unconditioned state or move to sn gbsorbing state. This intermediate
state can be viewed as a counterpart of the buffer in our buffer modél, and
the absorbing state the counterpsrt of LIS.

To develop the TDF model mathematically, the following notions need
%o be introduced, Bach item in a list of paired-associates is assumed %o

‘be in one of three states: (a) state U is an unlearned state in which -
R . : . y
See Calfee and Atkinson (1965) for a detalled account of this experiment..
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Fig. 11. Average probability of a success on trial n for three groups with
different list lengths, - See text for description of theoretical curves,
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Fig. 12, Averége probability of an error on trial n+1, given an
error on trial n for three groups with different list lengths,
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the subject guesses at random from the set of response alternafivesa (o)
state 8 is a short-term-memory state, and (c) state L is a long-term state.
The subject will always give a correct response to an item if it ig in
elther state S or state L. However, it is possible for an item in shate
S to return te the unconditioned statbe (i.e.9 be forgotten); whereas, once
an item moves to.state L it is learned, in the sense that it wiil remain in
state I, for the remainder of the experiment.% The probability of a return
from state S tc state U is postulateﬁ to be a function of the number of
other items that remain to be learned con any given trizl, In terms of the
buffer model, thig is similar to the statement that the probability of
being knocked out of the buffer is related to the number of items still
to be prezented.

Two types of events are assumed to produce transitions from one state
to another in the TDF model: ({a) the occurrence of a reinforcement, i.e.,
the paired presentation of the stimulug item together with the correct
response alternative and (b) the presentation of an unlearned stimulus-
response pair (an item not in state L) between successive occurrences of

g particular item. The associative effect of & reinforcement is described

*In order to make the TDF model parallel the buffer medel, the reader
should assume that U refers to the state in the bulffer model where an
item is neither in the buffer nor in LTS; that S refers to the state
where an item ig solely in the buffer and not in LTS3 and Sthat L refers
to any item which has entered LTS, whether in the buffer or not. Furthermore
the recall assumptions imply that a very elementary retrieval scheme is

being put forth: any item in LTS is recalled with probability 1.
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by matrix A below:

L S U
L1 0 5

A= 8la  1ea 0 | (18)
ule 1 0|

Thus if.an item ig in gtate U and the correct response ls shown to the sub-
ject, then the item moves fto sfate L with probabilifty b, or to state 8 with
probakility 1-b. Starting in 5 1t moves to L with proﬁability & or
remains in S with probability 1-a., In either case, if the item were to
be presented sgain immediately following a reinforcement. this model, like
the buffer model, makes the plausible predictilon that a correct response
would be certain to occur.,

The effect of the presentation of a single unlearned stimulus-response

palr cn the state of a particular item is described by matrix F:

L S U
L 1 0

F = 8§ [0 1-f (19)
U o 0

If a given item is 1n state § and scme other unlearned stimulus~response
pair is presented. then the inferference produced by the unlearned pair
results in forgetting of the item (:“L.,eu9 transition to state U) with proba-
bility £, and otherwise there is nc change in state., Furthermore, it is
assumed that when a learned stimulus-response palr is presented there is

*
no change in state. Again drewing a parallel to the buffer model, we should

# :
See Brown and Batiig (1966) for experimental work in support of

this notion.
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note that the above %ransition matrices reguire that an item move to
LTS only when it is presented.' However, the parameters a and b can be
interpreted as a rough approximation of the average probability of transfer
during an item's stay in the buffer. Parameter a, of course, refers
to a process that has not heretofore been considered in the buffer model:
a repeated presentation of an item. Similarly, the assumptlon that the
presentation of a learned item will not effect a change in state has not
been previously consldered. It is clear, however, that assumptions of this
nature will have %c be proposed in extensglons of the buffer model. More
will be said about this shortly. |

Continuing, however, let Tn be the matrix of the fransition proba-
bilities between states for a particular item from its 1c1th to its (n+~l)8t
presentations, and suppose gn is the rumber of other unlearned items
that intervene between these tworpresentations of the given item. Then Tn
ig found by postmultiplying A Ty the gnth power of F; matrix A rep-
resents the nth reinforced presentation of the item, and the interference

matrix I 1g applied once for each of the intervening unlearned pairs.

Performing the multiplication yields:

Ln+l Sn+l Un+l
Lo|1 0 O
T =5_la (1-a)(1-F))  (1-a)¥_ (20)
7 - - wh VB
U, v {1-v) (1 Fn) (1 b)-n

where F_ =1 - {1- f)gno
Unfortunately there is no way of determining from the data the exact

value of gnn However, an approximation can he used. Let X denocte the-
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number of items in the paired-assoclate list and remember that a trial
consiste of & random ordering of these items. Between the nth' and - the
.(n%-l)St presentations of a given item (j +k) interpolated pairs .- (IP)
mzy intervene; j on trial n and k on trial n+ 1 (where 3j,k = 0,
-15 ee: X=1). The probability of J IP's on trial =n .is the probability
that the item is in position X- j, which is l/X; whereas the probability
of k- IP's on triel n+ 1 is the likelihood that the item is in position
k+ 1, which also is 1/X. Thus for each combination of J eand k, the
probabllity of the combination occurring is l/Xg, For each of these com-
binations the average value of gn will he j(1~‘£n) -+ k(ln-2n+l)9 where
ﬂn is the probability of being in state L on trial n. Using this average

as an approximaticn,
-1 X-1

_n —--Z Z(l N (1-2 )+x(1-2 .33

J=0 k=0

b
H]

[

(21)

1L (1-1) X (1~ zn)}{ (1- fg{(l i?,n+l)}

%2 _ (1- f)(l ) (1-£) (L-fpyq)
During the early trials of an experiment, En will be smail (all

items are assumed to be in state U initially, eand so £, 1is 0); hence

1
.an the prokabllity of forgetiing while in state 8, will be relatively

large. - Az 2  increases, ﬂn approaches 1 and so Fn goes to 0. As a
consequence of the decreage in Fn over trials, the model predicts a non-
etationary learning process. For example, consider the probability of an
error on the n+lst presentation of an item condificnal ocn an error on

its nth presentation. The error on trial n indicates that the item i1s

in state U, so the probability of an error on the next trial isthe joint
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probability of (a) nc learning, (b) forgetting, and (c) an incorrect
response by chance; namely

erle . le ) = (1-D)F (1-¢) ,

where g dencltes the probabllity of a correct respounse by guessing. In

other words, Pr( is predicted to decrease over trials, a finding

en+llen)

reported by several investigators.

Goodness-of -Fit Results

We are now in a position to analyze the paired-associate experiment
described earlier.

Parameter estimates for the [DF models were obtained by applying the chi-
square minimization method described by Atkinson, Bowen and Crothers (1965).
The data used in parameter estimation were the sequences of successes and
errors from trials 2 through. 5 and trials & through 9, The 16 péssible
combinations of correct responses (c) and errors {(e) for alfour-trial
block are listed in Table 1 together with the observed frequencies of
each combination for the three experimentsl groups. Thus, the sequence
“consisting of four errors (eeee) on trials 2 through 5 was observed in
6 of 225 item protocols in group 9, in 30 out of 375 protocols in group
15, and in 55 out of the 525 protocols in group 21. The sequences for
trials 6 to 9 are listed in Table 2. In all of the theoreticallanalyses
g was set eqgual to 1/3, the reciprocal of the number of response alterna-
tives.

The thecretical expressions for the probability of a four~trial
.Sequence was obtained. Follewing the notation of Atkineon. and Crothers

(1964), let 0, .6 be the ith four—tuple in Table 1 for groﬁp 3

22

53



TABLE 1

OBSERVED‘AND PREDICTED FREQUENCIES FOR RESPONSE SEQUENCES FRCOM TRTIALS 2 THROUGE 5

15

9 Ttems 15 Ttems 21 Ttems
ggi?l Obg. TDF Linear e12$Z;t Obs. TDF Linesar elg;:;t Obs. TDF Linear elgiz;t
ccee 83 77.2 59.0 88.4 98 0.7  39.9 103.7 97 107.5 L5.k 112.6
ccee 3 4.2 9.5 1.3 10 5.7 17.8 3.8 11 9.0 24,2 6.8
ceec 10 8.0 15.2 3.0 13 11.1 23.9 6.6 1 13.7  3L.5 10.3
ceee L 3.7 2.4 2.7 10 g.2  10.7 7.6 12 1h.5  16.8 13.5
cecc 18 17.2 25.7 10.4 25 22.7 33.1 17.3 35 27.3 lL2.2 £3.0
cece 2 bk 4.1 2.7 I 9.9 14.8 7.6 1k 15.1 22.5 13.5
ceec 10 8.5 6.6 6.1 7 16.5  19.8 13.3 17 23.3 29.3 20.7
ceee 3 3.9 1.1 5.3 12 13.6 8.9 15.2 20 24h.5  15.6 27.1
ecce 40  39.5 48.3 41.9 58 5h.6 8.7 57.3 78 67.6  59.4 67.6
ecce 3 L.9 7.8 2.7 6 10.5 21.8 7.6 15 5.6  3L.7 13.5
ecec 12 9.4 12.5 6.1 16 17.4  29.2 13.3 22 2h.0 L1z 20.7
ecee 2 kL 200 5.3 12 1k.3  13.0 15.2 30 95.3 22,0 27.1
eecc 1 20.2 21.1 20.8 31 35.4  40.5 34.6 L7 47.6  55.2 L6.0O
eece 2 5.1 3.h 5.3 11 15.5 18.1 15.2 16 26.5 29.5 27.1
eeec 13 9.9 5.k 12.2 32 25.7 24,2 26.5 L2 40.6  38.3 N
ecee 6 k.6 0.9 10.7 30 21.2 10.8 30.3 55 2.8  20.L 5h4.1
x2 11.0  73.5 ho.5 21.7 173.2 30.3 17.0 180.5 21.8
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(3 = 9, 15, 21) where the sequence begins at trial n. Let ﬁ(oi i n) be
. 2u D

the observed frequency of this four-tuple, and led Pr(Oi .

2

predicted provability for a particular choice of the parameters p of the

model. The expected fregquency may be obtained by taking the product of

Pr(oi i n;p) with T, the total number of item protocols in group j. We
EC
then define the function
b 2
(Mo, . _sp) - N(o., ., )
L. B SRkl R (22)
lﬁt].')n N(Oigjgn,pT

A measure of the discrepancy bebween z model and the data from group J
ig found by summing Eqg. 22 over the gixteen possgible sequences for both of

the four-trial blocks; 1i.e,,

16 16

o 2 2

AP U - 1,56 (23)
1=1 i=1 ’

Equation 23 was alsc used té obtain estimates of ¢ and 9 for the one-
element and linear models, respectively, for each of the three experimental
groups (these models are described in the book by Atkingon, Bower, and
Crothers).

The TDF fdrmulation takes lis£ length into account in the structure of
the medel, -and sd presumably the parameters a, b, and I should remain
“invariant over the three experimental groups. Thus, the estimation pro-
cedure: was carried out simultanebusly over all three groups, so that

parameters a, b, and £ were found that minimized the function

2 2 2 2

where The X? are defined in Eq. 23. The minimization wags carried out by

uging a digital computer to search a grid on the parameter space, ylelding
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parameter values accurate to three decimsl places.

The X2 value obtained by minimizing Eq. 24 does not have a chi-
square distribution, since the frequencies in the two L4-trial sets are
not independent. Howgver, if one interprets the value obtained from this
procedure as a true %29 it can be shown that in general the statistical
test.will be conservative; l.e.,, 1t will have a higher probability of
rejecting the model tﬁan is implied by the confidence level (for a dis-
cusglon of thisg problém, see Atkinson, Bowérﬂand Crothers, 1965). In
evaluating the minimum Xg, each get of 16 sequences yields 15 degrees of
freedom, gince the predicted freguencies are constrained to add te the
total number of protocels. Further, 1t is necessary to subtract one degree
of freedom for each parameter estimate. Thus, there are 87 degrees of
freedom over the three groups for the 