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AN·APPROACH TO THE PSYCHOLOGY OF INSTRUCTION
I

R. C. Atkinson and J. A. Paulson

Stanford University
Stanford, California 94305

The task of relating the methods and findings of research in the

behavioral sciences to the problems of education is a continuing concern

of both psychologists and educators. A few years ago, when our faith in

the ability of money and science to cure social ills was at its peak, an

educational researcher could content himself with trying to answer the

same questions that were being studied by his psychologist colleagues.

The essential difference was that his studies referred explicitly to

educational settings, whereas those undertaken by psychologists strived

for greater theoretical generality. There was implicit confidence that

as the body of behavi.oral research grew, applications to education would

occur in the natural course of events. When these applications failed

to materialize, confidence was shaken. Clearly, something essential was

missing from educational research.

A number of factors contributed to the feeling that something was

wrong with business-as-usual. Substantial curriculum changes initiated

on a national scale after the Soviet's launching of Sputnik had to be

carried out with only minimal guidance from behavioral scientists.

Developers of programmed learning and computer-assisted instruction faced

similar problems. Although the literature in learning theory was perhaps

more relevant to their concerns, the questions it treated were still not

the critical ones from the viewpoint of instruction. This situation
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would not have been surprising h~d the study .of learn~ng been in its

infancy. But far from th~t, the psychology of learning had a long and

impressive history. An extensive body of ~xperimental literature existed,

and many simple learning processes were being described with surprising

precision using mathematical models. Whatever was wrong, it did not

seem to be a lack of scientific sophistication.

These issues were on the minds of those who contributed to the 1964

Yearbook of the National Society for the Study of Education, edited by

Hilgard (1964). In that book Bruner summarized the feelings of many of

the contributors when he called for a theory of instruction, which he

sharply distinguished from a theory of learning. He emphasized that

where the latter is essentially descriptive, the former should be pre­

scriptive, setting forth rules specifying the most effective ways of

achieving knowledge or mastering skills. This distinction served to

highlight the difference in the goals of experiments designed to advance

the two kinds of theory. In many instances variations in instructional

procedures affect several psychological variables simultaneously. Ex­

periments that are appropriate for comparing methods of instruction may

be virtually impossible to interpret in terms of learning theory because

of this confounding of variables. The importance of developing a theory

of instruction justifies experimental programs designed to explore

alternative instructional procedures, even if the resulting experiments

are difficult to place in a learning-theoretic framework.

The task of going from a description of the learning process to a

prescription for optimizing learning must be clearly distinguished from

the task of finding the appropriate theoretical description in the first
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place. However, there is a danger that preoccupation with finding pre­

scriptions for instruction may cause us to overlook the critical interplay

between the two enterprises. Recent developments in control theory

(Bellman, 1961) and statistical decision theory (Raiffa & Schlaiffer,

1968) provide potentially powerful methods for discovering optimal

decision-making strategies in a wide variety of contexts. In order to.

use these tools it is necessary to have a reasonable model of the process

to be optimized. As noted earlier, some learning processes can already

be described with the required degree of accuracy. This paper will

examine an approach to the psychology of instruction which is appropriate

when the· learning is governed by such a process .

STEPS IN THE DEVELOPMENT OF OPTIMAL INSTRUCTIONAL STRATEGIES

The development of optimal strategies can be broken down into a

number of tasks which involve both descriptive and normative analyses.

One task requires that the instructional problem be stated in a form

amenable to a decision-theoretic analysis. While the detailed formula­

tions of decision problems vary widely from field to field, the same

formal elements can be found in most of them. It will be a·useful

starting point to identify these elements in the context of an instruc­

tional situation.

The formal elements of a decision problem which must be specified

are the following;

1) The possible states of nature.

2) The actions that the decision-maker can take to transform the

state Of nature.
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should be divided between phonics and sight word recognition, yith all

other features of the .designfixed. Amore complicated que:stion w()\l.ld

be to determine the optimal ordering of the two types of exercises in.

addition to the optiDlalallocation of time.. It would be easy to continue

gene:ratingdifferent optimization problems in this manner. The point is

that varying the .set of actions from which the de cisioXHuake: r is f.ree to

choose changes the decision problem, even though the other elements

remain the same.

For the decision problems that arise in instruction it is uS\l.ally

natural to,identify.the state:s of nature with learning states of the

student.. Specifying the transformation of the staj;es. of nature caused

by the actions of the. decision-maker is tantamount to constructing a

model of learning for the situation under consideration.

The role of costs and returns is more. formal than substantive for

the' class of. decision problems considered in this paper. The specifica­

tionof costs and. returns in instructional situations tends to .be.

straightforward when examined on a short-time basis, but virtually i,n­

tractable over the 1-ong teTnJ.· In the short-term one can assign .costs

andretur'ns for the mastery of, say, certain basic reading skUls, b\l.t

sophisticated determinations f()rthe long"term value of these skills to

the individual and society are diffi.cult to make. There is an important

ro1-e for detailed economic analysis of. the long-term impacj; of education,

but such studies deal with issues at a more global level than we require.

In this p13.per analysis is limited to those costs and returns directly

re1-ated to the specific instructional task being considered.
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Afh,r a problem has been form~lated in a way amenable to deGision~

theoretiG analysis, tMnextstepis to derive the optimal strategy for

the learning model whiGhbest desGribes the sit~ation. If more tban one

learning model seems reasonable ~ pi'iori,then GOIupetingcandidates for

the optimal strategy Gan be ded~ced. When these steps bavebeen aGGOm­

plished, an experiment caribedesigried to determine which stra.tegy is

best.

There are several possible directions in which to proceed after the

initial comparison of strategies, depending on theres~lts Of· the ex­

periment. If none of the supposedly optimal strategies produces·

satisfactory res~lts, then further experimental analysis of the assump_

tions of the underlying learning models is indicated. .New issues may

arise even if one of the procedures ·is su.ccessful. In one. case that we

shall discuss, the successful strategy produced an unusually high erro,

rate du.i'ing leamirig, which is contrary to a widely accepted principle

of programmed· instruction. When anomaliep such as this occur, they

suggest Jiewlines of experimental inquiry, and often reqUire a reform~

ulation of the axioms of the learning model. The learningmodelrnay

ha.ve provided an excellent account of data for a range of experimental

conditions,but'can prove totally inadeq~ate in an optimiZ.ation condition

where special feat~res of the proced~re magnify inacc~racies of the

model that· had previo~sly gone undeteoted.

AN OPTIMIZATION PROBLEM WHICH ARISES IN COMPUTER-ASSISTED INSTRUCTION

One application of computer-assisted instruction (CAI)whfch has

proved to be very effective in the primary grades involves a regular

program of practice and review specifically designed to complement the
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efforts· of the classroom teacher (Atkinson, 1969). The curriculum

materials in sUch programs. frequently take the form of lists of instruc­

tional ·units or itemS. . The objective of the CAl programs is to. teach

students the cQ:rrectresponse to each item in a given .1ist. Typically,

a sublist of items is presented each day in one or more fixed exercise

formats . The optimization problem that arises concerns the selection

of items for presentation ona given day.

The Stanford Reading Project is an example of such a program in

initial reading instruction (Atkinson, Fletcher,Chetin, &. Stauffer,

1970). The vocabularies of several of the commonly used basal readers

were compiled into one dictionary and a variety of. exercises using

these words was designed to develop reading skills. Separat"exercis"

formats were designed to strengthen the studel).t' s decoding skills with

special emphasis on letter identification, sight-worO. recognition,

phonics, spelling patterns, and word comprehension. The details of the

teaching procedure vary from one format to another, but most include a

sequence in ·which an item is presented, •eliciting a response from the

student, followed by a short period for studying the correct response.

For example, one exercise in sight-word recognitiqn has the following

format:

Teletype Display

NUT MEN RED

Audio Message

Type .red

Three words are printed on the teletype, followed by an aUdio presenta~

tion of one of the words. If the student types the correct word, he

receives· a reinforcing message and proceeds to the next presentation.
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If he responds incorrectly or exceeds the time, the teletype prints the

correct word simultaneously with its audio presentation and ,then moves

to the next presehtation. Under one version of the progr~, items are

presepted in pi'edetennined sublists, with an exercise contin1,lipg on a

sUblist until a specified criterion has been met.

Strategies can be found that will improve on the fixed orderqf

presentation. Two recent dissertation studies to 'be desc:cibed below are

concerned with the development of such strategies. Lortop (1969) studied

alternative presentation strategies for teaching spelling words in an

experiment with elementa:cy school children, and Laubsch (1969) studied

similar strategies for teaching Swahili vocabula:cy items to Stanfqrd

undergraduates.

The optimization problems in both the Lorton and Laubsch studies

were essentially the same. A list of N items is to be learned, and a

fixed number of days, D, are allocated for its study. On each ~ay a

sublist of items is presented for test and study. The sublist always

involvesM items and each item is presented only once for test followed

immediately by a brief stUdy period. The total set of N items is eX­

tremely large with regard to the sublist of M items. Once the experimenter

has specified a sublist for a given day its order of presentation is

random. After the D days of study are completed, a posttest is given

over all items. The parameters N, D and Mare fiJ>ed, an~ so is the

instructional fonnat on each day. Within these constraints the problem

is to maximize perfonnance on the posttest by an appropriate selection

of sublists from day to day. The strategy for selecting sublists is
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dynamic (or·response sensitive, using the terminology·of Groen and

Atkinson, 1966) to the extent that it depends upon the· student's history

of performance.

Three Models of the Learning Process

Two extremely simple learning models will be considered first. Then

a third model which combines features of the firsttwo.wi11 be de.scribed.

In the fLrst model, the state of the. learner with respect to each

item is completely determined by the number of times the item has been

presented. In terms of the classification scheme introduced by Groen

and Atkinson (1966), the process is response~insensitive. The state of

the lea~ner is related. to his responses as follows: at the start of the

experirnent,al1 items have some initial probability of error, say ql;

each time an item is presented, its error probability is reduced by a

factor 01, which is less than one; Stated as an equation,. this becomes

(1)

or alternatively

(2) n
qn+l - CXql

The error probability for a given item depends on the number of times

i.t has been reduced by the factor cx; Le., the number of times it has

been presented. Learning is the gradual reduction in the probability

of error by repeated presentations of items. This model is sometimes

called the linear model because the equation describing change in re-

sponse probability is linear (Bush & Mosteller, 1955).
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In the second model,mastery of an item is not at all gradual. At

any point in time a student is in one of two states with .~spectto each

item: the learned state or the unlearned state. If an item in the learned

state is presented, the correct response is always given;. if an item is

in the unlearned state, an incorrect r<;osponse is given unless th<;o student

rnakesa cor):'ect response by guessing. When,an unlearned item is pre-

sented, it may move into the learned state with probability c. Stated

as an eguati on,

gn+l ~ r: g

o

n ' with probability l-c

1 ,with probability c .

Once an item is learned, it remains in the learn<;od state throug1wut the

course of instruction. Some items are learned the first time ti:ley are

presented, others may be presented several times before ti:ley are finally

learned. Therefore, the list as a whole is learned gradually. But for

any particular item, ti:le transition from ti:le unlearned to the learned

state occurs on a single trial. The model is sometimes called the all-

or-none model because of ti:lis charact<;orization of the possible states

of learning (Atkinson & Crothers, 1964).

Ti:le ti:lird model to be considered is called the random-trial incre-

ments (RTI) model and represents a compromise between ti:le linear and

all-or-none model (Norman, 1964). For this model

(4)
~ { gn ' with probability l-c

<J,'u+l
ag ,with probability c •

n
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If 'c ~ 1, then qn+l ~ exqn and the model reduces to the linear model, ,

If ex ~ 0, then the model :reduces to the alhox-none modeL Howe V"er , if

c < 1 and ex> 0, the RTlmodel generates predictions that are quite

distinct from both the linear and the all-or-none models, It should be

noted that both the alhor-none model and the RTI model, are response

sensitiV"e in the sense that the learner's particular history of correct

and incorrec'tresponses makes 'a difference in predicting performance on

the next presentation of an item;

The Cost/Bene:fi t Structure

At the present level of analysis, it will expedite matters if some

assumptions are made to simp'lify the appraisal of costs and benefits

associated with various strategies , It' is ,tadtlYassumed that, the

subject matter being taught'1.s SUffiCiently important to ,justHy aUocat­

ing a fixed amount of time to 1.t for instruct1.on, Since the exercise

formats and thet1.me allocated to instruction are the same for all

strategies, ,itis:reasonable to assume ,that the costs of instruction

are the' sarrie for all strateg1.es as welL If the costs of instruction

'are equal for' all strategies, then for purposes of comparison they may

be ignored arldattention focused on the cOillparat1.V"e benefits Of the

V"arious strategies, This is an important simplificationbecauseit

affects the degree of pre cis1. on necessary 1.n, t,heassessment of costs and

bene'fits, If' both costs and benefits are significantly variable in a

problem, then 'it is essential that both quantities be estimated accu­

rately, This is often difficult to do, When one of these quantities

can be ignored, it suffices if the other can be assessed accurately

enough to order the possible outcomes, This is usually fairly easy to
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apcomplish. In the present p);'obrem,fore"amprl', it is reasonl1.ble to

consider all the,vocablJlarw items I'qually;important, This ;impl;ies that

benefits depend only On the overall: probab;iJity of ". Cor:rect response,

not on the particurar items known. ;It, tlJ:rns out that thisspecif:ication

(If cost .l1.nd benefit is sUfficient for .the mode:Ls to determine .optiml1.1

strategies.

The above cost/benl'fit asswnptions pe;nni"\;us to COncentrate on the

main concern o:f this paper, tile derivation of tile ed\lcationa:L impl,ica.

tions of learning models. Also, they ar", ".pp:rpximately valid in.many

instmptionalcol)tellts .. l'Ieverthe:Less? g mlJst 1;>e ,:!;,ecognized tllat in

the majority o:fGasep theSe ".ss\ll1lptions wil,l,not bes".tis;f'ied, For

instance, the. asswnption that the alte:!;'n".tive stJ;'ategies cost the same

to implerrientusuauy does not hold, It only 1)Ql,ds .as ". :fi:!;'st approxi­

mation in the case being considered here. In the present :fo+)llu:).ation

of the probl-em! s fixed amount of t'ime;Ls alrocate\lfor study and the

problem is to max;imize learning, subject to ttlip ti!Ue constraint. An

arternatiVe formulation wllich is more apPropJ;'iate in Some sit\lations

fi"es a minimwn CJ;'iterionlevel for rearning. II) this formulation, tile

problem is to find a strategy for ach;ieving this criterion level of

performance in the sho:rtept time. As a rule? both costs <l.ndbenefits

must be weighed in the snarys;Ls, and f:req\lentrysubtopics within a

curricurwn vary significantly in their importance. Sometimes there is

aclloice amongsever<l.:Lexercise :formats. In Cl'rtain cases, whether OJ;'

not a c)'rtain topic should be taught at allis the cri'tica.:;I. question.

Smallwood (1970) hilS trel1.ted a problem similar to the one conside:red in



tilis paper in a way tilat in~ludesso1J1e of these factors in the structure

of costs and 'benefits'.

Deducing Strategies, from the Learning Mode'ls

Optimal strategies can be deduced for tile linear and all-or_none

mOdels under the assumption that, all i temshave the same learning

parameters. The situation is more complicated ,in the case of theRTI

model. An, approximati'on to the optimal strategy for the RTI case will

be discussed; tile strategy will explicitly allow for differences in

paramete r': values .

For tile linear model, if an item has been presentedntimes',tile

n-lprobability or an eJ;'ror on tile ne,xt,pJ;'esentstionof ,tile item is aql;

n
wilen,the itemi,spresented, tile error probability is reduced to a ql"

n-l
The size of tile reduction is thus a (l-q)ql' Observe tilat tile size

of the decrement ill error probability gets smaller with each pJ;'esentation

of the item, This observation can be used to deduce, that the following

procedure 'is optimal.

On ~given' day, form tile> sUblist of M items by selecting

those items that ilave received the, fewest presentations

,up' to tha,tpoint. If more tilan M,items satisfy this

criteJ;'ion, ,then select· ,items at random from tile set

satisfying the criterion.

Uponexamination,tilis strategy is seen to be equivalent to tile standard

cyclic presentation procedure commonly employed in experiments on verbal

learning. It amounts to presenting all items once, randomlyrl"ordering

them, presenting them again and repeating the procedure until the number

of days allocated to instruction have been exilausted.
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According to the all-or-none model, once an item has been learned

there is no further reason to present it. Since all unlearned items are

equally likel;r to be learned if presented, it is intUitively reasonable

that the optimal presentation strategy selects the item least likely to

be in the .learned state for presentation. In order to discover a good

index of the likelihood of being in the learned state, consider a

student' 'I resJ?i:mse protocol for a single item. If the last respon"e was

incorrect, the item was certainly in the unlearned state at that time,

although it may then have been learned during the stUdy period that

immediately follOwed; I:f the last response was correct, then it is more

likely that the item is now in the learned state. In general,the more

correct responses there are in the protocol since the last error on the

item, the more likely it is that the item is in the learned state.

The preceding observations provide a heuristic justification for

an algorithm which Karush and Dear (1966) have proved is in fact the

optimal strategy for the all-or-none model. The optimal strategy re-

quires that for each student a bank of counters be set up, one :for each

word in the ·list. To start, M different items are presented each day

until each item has been presented once and a 0 has been entered in its

counter. On all, subsequent days the strategy requires that we conform

to the following two rules:

1. Whenever ~ item is presented, increase its counter byl if

the subject's response is correct, but reset it to 0 if the-- --.-- -- -- -.- ---
response is incorrect.
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2. Present theM items whose counters are lowestamongallei.tems.

Ife more than Mitemsare eligible, then select randomly as many

items as are needed to complete the sublistof size. M.from

those having the same. highes·t .counter reading,having. s.elected

all items with lower counter values.

For example, suppose 6items are presented each day and after. a given

day a certain student has 4.itemswhose counters are 0, 4 whose. counters

are 1, and higher values for the rest of the counters. His study list

would consist of the 4 items whose counters are 0, and 2 items selected

at random from the 4 whose counters are 1.

It has been possible to find relatively simple optimal strategies

for the linear andall-or·none models. It is noteworthy that n"iti:)"r

strategy depends on the values of the parameters of ther"spective

models (Le., on CX, c, or ql)' Another exceptional feature of these

two models is that it is possible to condense a student's response pro-

tocol to one index per item without losing any information relevant to

presentation decisions. Such condensations of response protocols are

referred to as sufficient histories (Groen & Atkinson, 1966). Roughly

speaking, an index summarizing the information in a student's response

protocol is a sufficient history if any additional einformation from the

protocol would be redundant in the determination of the student's state

of learn.ing. The concept is analogous to a sufficient statistic. If

one takes a sample of observations from a popUlation with an underlying

normal distribution and wishes to estimate the popUlation mean, the

sample mean isa sufficient statistic. Other statistics that can be

calculated (such as the median, the range, and thes.tandard deviation)
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cannot be used j;o irnprove on the sample mean as an· estimate of the

cl?Opulation mean, though they ma;y be useful in assessing the precision

of the estimate. In statistics, wllether or not data can be summarized

byafe", ,?:i,mple suffi,cient·statistics is determined by the nature of the

underlying distribution. For educational apPlications, whether or not

a given instructional process can be adequately monitored bya simple

sufficient history is determined by the.model representing. the under­

lying learning proce s s .

The random-trial increments model appears to bean example .of a

process for which the information in the subject 's response protocol

cannot be condensed into a simple sufficient history. It is .also a

model for which the optimal strategy depends on the values of the model

parameters. Consequently, it is not pbssible to state a simple algorithm

for the optimal presentation strategy for this model. Suffice.it to say

that there is an easily computable formula for determining which item

has the best expected immediate gain, if presented. The strategy that

presents this item should be a reasonable approximation to the optimal

strategy. More will:besaid later regarding the problem of parameter

estimation and some of its ramifications.

If the three mOdels under consideration are to be ranked on the

basis of their ability to account for data from laboratory experiments

employing the standard presentation procedure, the order of preference

is clear. The all-or-none model provides a better account of the data

than the linear model,and the random-trial increments model is better

than either of them (Atkinson & Crothers, 1964).. This does not neces­

sarilyimply,however, that the optimization strategies derived from
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these models will receive the same ranking. The standard cyclic pres!=n~

tatiohprocedureused inmost learning experiments may mask certain

deficiencies in the all-or"none or RTI models which would manifest thEem-

selves when the optimal presentation strategy specified by one or the

2
other of these models was employed.

AN EVALUATION OF' THE ·AiL~ OR~NONE STRATEGY

Lorton (1969) compared the a'il-or-none strategy with the standard

procedure in an experiment in computer-assisted spelling instruction

with elementary school children. The former strategy is optimal if the

learning process is indeed all-or-none, whereas the latter is optimal

if the process is linear. The experimentwa'i3 one phase of the Stanford

Reading Project using computer facilities at StanfordlJnlv'ersity linked

via telephone lines to stUdent terminals in the schools.
, . . . , .

Individual lists of 48 words were compiled in an extensive pretest

. '.

program to guarantee that each stUdent would be stUdying words of ap-

proximately equal difficulty which he did not already know how to spell.

A within-subjects design was used in an effort to make the comparison

of strategies as sensitive as possible. Each student's individualized

list of 48 words was used to form two comparable lists·of 24 words, one

to be taught using the all-or-none strategy and the otherusirig the
'.--,

standard procedure.

Each day a student was given training on 16 words, 8 hom the list

for standard presentation and 8 from the list for presentation according

to'the all-or-none strategy. There were 24 training sessions followed

by three days for testing all the words; approximately two weeks later

three more days were spent on a delayed retention test. Using this
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procedure, all w'ordsin the standard presentation, list received' exactly

one presentationihsuccessive3"day blocks during training. ,Words,in,

the liwtpresentedaccording' to the all"or"none algorithm receivedfrol1l

o to 3 presentatiOns in success:i.ve 3"day blocks during training, witll

one presentation being the average. A flowchart of the daily routine

is given in Figure 1. SpeciaLfea,tllre;3 of the, lesson implementation

prOgram allowed students to correct typing errors or request repetition

of aUdio,m"ssages before a responSe was evaluated. These features re"

duced the likelihood of missing a word beca1,'(se of momentary inattention

or typing errors.

The reSUlts of, the expeFiment aI'", s1).lllIllarized in Figllre 2. The

prOp0l'tionso~, ,cprrectre13Ponses are, l'lotted for successive 3"day blocks

during training, ~ollqwedby ,tb,e first overall test and then the two"

"eek delayed test. Notetb,at C!1,'(ring training the proportion correct is

always lower for, the, all~or"none procedure than for the standard pro"

cedllre, ,but on both the final test and the retention test the proportion

correct ,isgre,ater for the 13.11"or"none strategy. Analysis of variance

tests verif,iedthat these resllltsare statistically significant. The

advantage ,of approximatelyter1percentage points on the posttests for

the all"or"none procedure is of,practical significance as well.

The observed pattern of reSUlts is exactly what WOUld be predicted

if the all-or-none model,does indeed describe the learning process. As

w13.13 shown earlier, final test performance should,beQetter when the

all"or"none optimizatipn strategy, is adopted ,as 0l'posed tothe standard

procedure. Also the greater proportion of error for this strategy during

training is to bee~pected. The all-or"none strategy presents the items

le,
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A ~ST OFA PARAMETER-DEPENDENT STRATEGY

As noted earlier, the strategy derived for the all-or-none model in

the case of homogeneous items does not depend on the actual values of the

model parameters. In many situations either the assumptions of the all­

or-none model or the assumption of homogeneous items or both are seriously

violated, so it is necessary to consider strategies based on other models.

Laubsch (1969) considered the optimization problem for cases where the

RTI model is appropriate. He made what is perhaps a more significant

departure from the assumptions of the all-or-none strategy by allowing

the parameters of the model to vary with students and items.

It is not difficult to derive an approximation to the optimal

strategy for the RTI model that can accommodate student and item dif­

ferences in parameter values, if these parameters are known. Since

parameter values must be specified in order to make the necessary cal­

culations to determine the optimal stUdy list, it makes little difference

whether these numbers are fixed or vary with students and items. However,

making estimates of these parameter values in the heterogeneous case

presents some difficulties.

When the parameters of a model are homogeneous, it is possible to

pool data from different subjects and items to obtain precise estimates.

Estimates based on a sample of stUdents and items can be used to predict
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the perfonnal1ce' of other students or the same students on other 'items .

. When thepar"-meters are' heterogeneous, these advaritagesno'longer exist

unless v~riations in the parameter values' take some known forlll. For this

reason it is necessary to fonnulate a model stating the composition of

each parameter in terms of a subject and item component; The 'model sug-

gested here is asimplifi,,'I,j;ionpf t):le proGedure Laubsch employed.

Let n ...be a generic symbol for a parameter characterizing student
lJ

i and item j., An eX'l,ffiple of. the kind of relati.onshil' des i:['<2d , ~s. fixed-

.effects subje,ctpcby-items analysis of variance model:

where m is the mean, a. is the ability of student i, and d. is the
. l J

difficulty of item j. Because the learning model parameters we are

interested in are probabilities, the above assumption of additivity is

not met; that is, there is no guarantee that Ego 5 would yield estimates

bound<2d qetween 0 and 1. But there is a transformation of the parameter

that Gircumvents this difficulty. In the present context, this trans-

formation has an interesting intuitive j.ustification.

Instead of thinking directly in terms of the parameter n
ij

, it is

helpful to .think in terms of the "odds ratio," n, ./l-n .. ' Allow two
lJ lJ

assumptions: (1) the odds ratio is proportional to student ability;

(2) the odds ratio is inversely proportional to item difficulty. This

can be expressed algebraically as

n. a.
(6) lj K-2

l-n .. d.
,

lJ J
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where K,is apropo;J;'tionality constant. Taking logarithms on both sides

yields

(7 )
1l ° °

log~ ~logK + log a i -log dJo
1-1lij

The logarithm of the odds ratio is usually referred to as the "logit. "

Let log.K ~ [1, log a i ~ Ao, and ~log. dJo ~
I

Then. Eq .. 7 becomes

(8)

Thus, the two assumptions made above lead to an additive model for the

values of the parameters transformed by the logit function. Equation 8,

by defining a sUl:!ject-item parameter 1lij in terms of a subject parameter

Ai applying to all items and aJ+ item parameterDj applying to al).. subjects,

significantly reduces the number Of parameters to be estimated. If there

are N items and S subjects, theJ+ the model requires only N+Sparameters

to specify the learning parameters for NXS supject-items. More 1mpor-

tantly, it makes it possible to predict a student's performance on items

he has not been exposed to from the performance of. other students on

them. This formulation of learning parameters is essential)..y the same

as the treatment of an analogous problem in item analysis given by Rasch

(1966). Discussion of this and related models for.prob)..ems in mental

test theory is given by Birnbaum (1968 ).•

Given data from an experiment, Eq. 8 can be used to obtain reason-

able parameter estimates ,even though the parame.ters vary with stude.nts

and items. The parameters 1lij a,e .firstestimated. for each student-item

.protocol, yielding a set of initial estimates. Next the l0l$istic trans-

formation is applied to tqese initial estimates, and thenusipg these
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va.lues SUbject and item effects (A. and D.) are estima.ted by standard
~ J

analysis of variance procedures. The estimates of student and item

effects are used to adjust the estimate of each transformed student-item

par~eter, which in turn is transformed back to obtain the final estimate

of the originalstud€nt~itemparameter.

The first student's in an instrUctional program, which employs a

parameter-dependent optimization scheme like the one outlined above do

not benefit maximally from the Program's sensitivity to individual dif-

ferences in students and items; the reason is that the initial parameter

estimates must be based on the data from these students; As more and

more students complete the program, estimates of the D.' s become more
J

precise until finally they Inky be regarded asktiown constants of the

system. When this pbint has been reached,the only task relllainingis

to estimateA-. fbr each new student entering the program. Since the
~

Dj'S are known, the estimates of rtijfora new student are of the right

order, although they may be systematically high Or low until the student

component can be accurately assessed.

Parameter-deJilendent optimization programs with the adaptive charac-

ter just described a.re potentially of great impbrtancein long_term

instructional progr~s. Of interest here is the BTl model,but the

method of decomposing parameters into student and item components would

apply to otherlllodels as well. We turn' now to Laubsch' s experimental

test of the adaptive optimization program'based on the BTl model. In

this case both parameters ex and cof the RTI model were separated into

item and subject components folloWing the logic of Eg. 8. That is, the

parameters for SUbject i working on item jwere defined as follows:
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Note that A~a) and A~c) are measures of the ability of subject i and
l. l

hold for all items, whereas D\a) and D\c)
J J

of item j and hold for all subjects.

are measures of the difficulty

The instructional program was designed to teach 420 Swahili vocab-

ulary items to undergraduate students at Stanford University. Three

presentation strategies were employed: (1) the standard cyclic proced~re,

(2) the all-or-none procedure, and (3) the adaptive optimization pro-

cedure based on the RTJ model, As in the Lorton study, a within-subjects

design was employed in order to provide a sensitive comparison of the

strategies. The procedural details were essentially the same as in

Lorton's experiment, except for the fact that 14 training sessions were

involved, each lasting for approximately one hour. A Swahili word wo~ld

be presented and a response set of five English words would appear on

the teletype. The student's task was fo type the number of the correct

alternative. Reinforcement consisted of a !1+1I or " II and a printout of

the correct Swahili-English pair.

The lesson optimization program for the RTJ model was more complex

than those described earlier. Each night the response data for that day

was entered into the system and used to update estimates of the a's and

c's; in this case an exact record of the complete presentation sequence

and response history had to be preserved. A computer-based search

algorithm was used to estimate parameters and thus the more accurate

25



the previous day's estimates, the more rapid was the search for the up-

dated parameter values. Once updated estimates had been obtained, they

were entered into the optimization program to select individual item

sublists for each student to be run the next day. Early. in the experiment

(before estimates of the Dea),s and D( c) I s had stabilized) the computa-

tion time,was fairly lengthy, but it rapidly decreased as more data

accumulated and the system homed in on precise estimates of item difficulty.

The results of the experiment favored the parameter-dependent strat-

egy for both a final test administered immediately after the termination

of instruction and for a delayed retention test presented several weeks

later. Stated otherwise, the parameter-dependent strategy ofthe RTI

model was more sensitive than the all-or-none or linear strategies in

identifying and presenting those items that would benefit most from

additional training. Another feature of the experiment was that students

were run in successive groups, each starting about one week after the

prior group. As the theory would predict, the overall gains produced

by the parameter-dependent strategy increased from one group to the next.

The reason is that early in the experiment estimates of item difficulty

were crude, but improve with each successive wave of students. Near the

end of the experiment estimates of item difficulty were qUite exact, and

the only task that remained when a new student came on the system was to

estimate his A(a) and A(c) values.

IMPLICATIONS FOR FURTHER HESEARCH

The studies of both Laubsch and Lorton illustrate one approach that

can cqntribute to the development of a theory of instruction. This is
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not to suggest that the strategies they tested represent a cqmplete

solution to the problem of optimal item selection. The models upon which

these strategies, are based ignore several potentially important factors,

such as short"'term memory effects, inter-item relationships, and motiva­

tion.. Undoubtedly, strategies based on learning models that take· some of

these variablesihto account would be superior to those analyzed so far.

The studies deScribed he.re avoided many difficulties associated

with short-term retention effectsby!presenting items for test and stUdy

at most once per day. But in many situations it is desirable to employ

procedures in which items can be presented more than, once per day. If

such procedures are employed, experiments by Greeno (1964 ),Fishman,

Keller,andAtkinson (1968), and others indicate tha.t the optim13.1

strategy will have to take short-term memory effects:lnto accounL The

results reported by these investigators can be accounted for by a more

general model similar in manYI~spects to the all-or-none and RTI model

(Atkinson & Shiffrin, 1968), The difference is that the more general

model has· two learned states: a long"'term memory' state a.nd a short_term

state. An. item in the long-term state remains ,there for a relatively

indefinite period of time!, ,but an item in the short-term state will be

forgotten with a probability that, depends on the interval between suc­

cessive presentations, When items receive repeated presentations in

short intervals of time, they may be respopded to correctly several times

in a row because they are in the,short-terrn state, A strategy (like

the one based on the all-or-none model) which did not take this possi­

bility into account would regard theSe items aswell,learned and tend
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not to present them again, when in fact they would have a high probability

of being forgotten.

In many situations some of the items to be presented are interrelated

in an obvious way; a realistic model of the learning process would have

to reflect these organizational factors. It is likely that the differ­

ence between the standard procedure and the best possible procedure is

very large in these instances so there is considerable reason-:to study

them. Unfortunately, as yet very little work has been done in formula­

ting mathematical models for such interrelationships, but there are

several obvious directions to pursue.

The results of an experiment reported by Hartley (1968) illustrate

the complexity of empirical relationships in this area. The study in­

volved the Stanford CAl Project in initial reading and was designed to

investigate two types of list organization: minimal versus maximal con­

trast, combined with three sources of cue; the word itself, the word

plus a picture, and the word plus a sentence context cue. Hartley was

interested in the relative merit of these conditions for the acquisition

of an initial sight-word vocabulary. Fries (1962) had advocated the use

of minimal contrast lists in reading instruction in order to exploit

linguistic regularities. On the other hand, Rothkopf (1958) found that

lists composed of dissimilar items were learned more rapidly than those

with small or minimal differences. Hartley's experiment indicated that

which list organization is best depends on the cue source. When the

word itself was the only cue, performance was best on minimal contrast

lists. When the word was augmented with a picture cue, there was little

difference in performance on the two kinds of list. But in the presence

of a context cue, performance was best on the maximal contrast lists.
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In the description of Lorton'sexperDnent we mentioned that the

allcor.none strategy produced a ,high~r.errorrat~ duringlE,arning than

the standard procedure. If some observations made by Suppes (1967) are

'correct, this, fact suggests that; abetter strategy could be devised.

SU:ppes argues that in long-term ins,tructionalprograms it i,q crucial to

balance, consideratiOns' of frustration due tom",teri,al that is too difc

ficult against boredom form",terial thatiq too easy., lIe.. conjectures

that there is an optimal ,error rate , which if deviated from adversely

affects learning. This conjecture poses two interesting problems : first,

to 'determine- the range, ;anddegree to which it is correct; second, to

formulate;,a modelof;theleaJ;'ning procesq that takes account of error

rates. The resulting optDni,zation scheme would need to estimate the

optimum ·error rate for each student and. these ,estimates in turn would be

inputs to the decision-theoretic problem. The view that there . is an

optimal error rate is held by many psychologists and educatoJ;'s, so inc

formation'aboutthis;question would be of some. significance.

The directions for research which have been discussed.here point to

. the need forconsideJ;'able theoretical and experimental groundwork to

serve as a basis for devising instructional strategies. There are funda­

mental issues in learning theory that need to be explored and intuitively

reasonable strategies of instruction to be tried out. It qeems likely

that new proposals for optimal procedures will involve parameter·dependent

strategies', If' this is the case, then pJ;'ovision for variations in

parameter values due to differences among students and curriculum )llate­

rials will be an important consideration. The approach described in the

discussion of Laubsch I s stUdy could well be applicable to these ,problems.
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CONCLUDING REMARKS

This paper has presented examples· of. the kind of study we. believe·

can contribute to the psychology of instruction, as .distinguishedfrom

the psychology of learning. SU:chstudies have both descriptive and pre­

scriptive aspects. Each aspect in turn has an· empirical and.a theoretical

component. The examples described involved the derivation of optimal

presentation strategies for fairly simple learning models and the com­

parison of these strategies in CAr experiments. In both studies the

optimal strategy produced significantly better results on criterion

tests than a standard cyclic procedure. Evaluation of these experiments

suggests a nUlJiberofwaysin which the strategies might be improved,

and general:i;zed to a broader range of problems.

The task and learning models considered in this paper arecextremely

simple and of reStricted generality; nevertheless, there are at least

two reasons for studying them. First, this type of task oCCUl:S in many

different fields of instruction and should be understood in its own

right. No matter what the pedagogical orientation, it is hard to con­

ceive of an irii tial reading program or foreign-language course that does

not involve some fom of· list learning activity. Although this type of

task has frequently been misused in the design of curricula, its use is

so widespread that optimal procedures need to be specified.

There is a second and equally important reason for the type ..of

analysis reported here. Elf making a study of one case that can be

pursued in detail, it is possible to develop prototypical procedures

for analyzing more complex optimization problems. At present, analyses

comparable to those reported here cannot be made for many problems of
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central inte;restto education, but by having examples of the above sort

it is possible to list with more .claritythe steps involved in. dey-ising

optimal p;r;ocedures. Three aspects need to be emp4asized: (1) the devel­

opment' ofah adequate desc;r;iptioh of the learning p;r;ocess ,(:;0) the

assessment6f·costsand benefits associated wit4 possible inst;r;uctional

actiolls'alld sta,tes of learning, and(3) the derivation of optima,l st;r;at­

egies"Biised on the goals set for t4e student. The· e:)Camples considered

here dealwrth each of these factors and point out the is.sues that arise.

It hasbecollle fashiona.ble in recent years to chide learning theory

for ignoring t4e 'presc;r;iptive aspects Of inst;r;uction, and some have even

argued thatcefforts devoted tothel"boratory analysis Of le,,;r;ning

shoula' be :redirected t6the studyof'complexp4enomena as theyocc)lr in

instructi6ll\H situations. The,sec;riticisms. are not entirelY.1Jnj1Jatified

for :tn.practice psyc401ogists h"ve too narrowly define(l: the field Of

learning, but to focus all effort on the study of complex instructional

tilsks would be a mistake. Some initial successes might be achieved,

but in the 'long run understanding comple:)Cleaming situations must depend

upon a detailed analysis Of the elemelltary perceptual and cognitive pro~

cesses from which the inform"tion handling system of each h\llllan being is

const;r;uded. The .trend ,to press for relevance of learning theory is

healthy, but if the surge in t4isdirection gOes too far, we -will end

up with a massive set ofprescrfptive rules ·but no t4eory tointegpate

them. Information processing models of memory "nd t40ught and .,thewo;r;k

on psycholinguistics are promising avenues of resea;r;ch on .the.learning

process,,,nd the prospects are good that they will pJ:'ovideuseful

theoretical' ideas for interpreting the complex phen<;>mena of instmction.

31



It needs to be emphasized, however, that theintE;Tpretation of com­

plex phenomenaisprobJ.ematical, even in the best of circums1;anCes.

ConSider, for example, the case of hydrodynamici3, one of .1;hemos1;. highly

developed branches of theoreticalphys ics. DifferenhaJ.' eq\lationi3eX~

pressing certain basic hydrodynamic relationships were formvlated by

Eliler in the eighteenth century. Special cases Of these equatiolW

sufficed to aCco\lnt for a wide variety of experimental data. These

successes prompted Lagrange to assert that the success wO\lld be ,\lniverc

sal were it not forthediffiC\llty in integrating Euler' seq\lations in

partic\llar cases. Lagrange's view is still widelyhe;Ld by many, in

spite of numerous experiments yielding anamolo\ls .res\lJ.1;s , Euler's

equations have beenintegJ;'ated in many caSeS, and the. results werE;

found to disagreedram«tic<lJ.ly with observa'tion, thus contr?dicting

Lagrange's' assertion, The problems involve more than merE; fine points,

and raise serious paradoxes when extrapolations.arE; made from resuJ.ts

obtained in wind tunnels and from models Of harbors and rivers to actual

conditions, The following quotation from Birkhoff (1960) should ,s1;rill;e

asymp«thetic cord among those trying toe relate psychology andeduoation:

"These paradoxes have been the subject of many witticisms, Th\ls, it has

recently been said that in the nineteenth oentury, fl\lid dynamicists

were divided into hydra\llic engineers who observed what cO\lld not be

explained, and mathematicians who explained things that CO\l;Ld not be

observed. It is my impression that many survivors of both species are

s till with us. '.'

Research on learning appears to be in a similar state. Ed\loation<ll

researcherS13rE; concerned with experiments that cannot be .readiJ.y,
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interpreted in terms of learningtheory',while l?sychologists continue to

develol? theories that seem to be al?l?licable only to the l?henomena ob­

served in their laboratories. Hopefully, work of the sort described

here will bridge this gap and help lay the foundations for a viable

theory of instruction. If the necessary level of interchange between

workers in different disciplines can be developed, the prospects for

advancing bothlisychology and education are good.
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FOOTNOTES

IAn early version of this paper was presented by the first author as an

invited address at the Western Psychological Association Meetings, 1969.

The second part of the paper was presented at a seminar on "The Use

of Computers in Education" organized by the Japanese Ministry of Educa­

tion in collaboration with the Organization for Economic Cooperation

al)d Development in ToltYo, July 1970. Support for this research was

sponsored by the National Science Foundation, Grant No. NSF-GJ-443X.

2This type of result was obtained by Dear, Silberman, Estavan, and

Atkinson (1967). They used the all-or-none model to generate optimal

presentation schedules where there were no constraints on the number

of times a given item could be presented for test and stUdy within an

instructional period. Under these conditions the model generates an

optimal strategy that has a high probability of repeatil)g the same

item over and over again until a correct response occurs. In their

experiment the all-or-none strategy proved qUite unsatisfactory when

compared with the standard presentatiol) schedule. The problem was

that the all-or-none model provides an accurate account of learning

when the items are well spaced, but fails badly under highly massed

conditions. Laboratory experiments prior to the Dear et al stUdy had

not employed a massing procedure, and this particular deficiency of

the all-or-none model had not been made apparent. The important remark

here is that the analysis of instructiol)al problems can provide im­

portal)tinformation il) the development of learning models. II) certain

cases the set of phenomena that the psychologist deals with may be

such that it fails to uncover that particular task which would cause

the model to fail. B,y analyzing optimal learning conditions we are

imposing a somewhat different test on a learning model, which may

provide a more sensitive measure of its adequa~y.
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