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The task of relatrng the methods and flnarhgs of research in the
behav1oral 501ences to the problems of educatlon is a contlnurng cohcern
of both psychologlsts and educatorso. A.few.years ago, whern our falth in
the ahlllty of money and sclence to cure soclal 1lls was-at its peak an
educatlonal researcher could‘content hlmself with trylng to answer the
same questlons rhat here be1ng studled by his psychologlsﬁ colleagues.
The essentlal dlfference was that hls studles referred exp11c1tly to
educational.settings whereas those underrakeh hy psychologlsts strlved
for greater theoretlcal generallty | There was 1mpllC1t confldence that

as the body of behavloral research grew; appllcatlons to. educatlon would
heccur 1h the natural course of events, When these appllcatlons falled
fo.materialize; confiaencerwas shakeh;' Clearly, somethlng essentlal Was
mlsslng”from educatlcnal research. | o o

| A number of factors contrlbuted to the‘feellhg that.somethlng was
.rrohg wth bus1ness;as~usualn Substantlal currlculum changes 1n1t1ated
.ohﬂa nariehai.scale after the.SOVLet’s lahnchlng of Sputnlk had to be
carrled.out with cnly mlnlmal guldance from behasloral sc1entlsts;
berelobers cf programmed learnlng and computermassrsted rnstructlon.faced
s1m11ar problems° Although the llterature in 1earn1ng theory was perhaps
more relevaht to rhelr concerns‘ the questlons it treated were still not

the critlcal ones from the viewpolnt of instruction, This situation



would nct have been surprising had the stgdylpf 1earp}pg‘been in its
infancy. But far from that, the psychology of learning had a long and
impregsive history. An extensive body cf experimental literature existed,
and many simple leerniﬁéjﬁroceeees.were being described with surprising
precision using mathematical models. Whatever was wrong, it dld not
1:seem to be a‘lack of 501entif1c.sophlstlcatlon,'7:Vt.' | o

| Thesewlssﬁee were on the mlnds of those who centrtbeted to tee l96h
Yearbook of the Natlonal Soc1ety for the Study of Educatlon, edlted by
”Hllgaxd (1964) In that book Bruner summarlzed the feellngs of many of

the contrlbutors When he called for a theory of 1nstructlon, whlch he

sharply dlstlngu1shed from a theory of learnlng He emph351zed that -

lwhere the latter 1s essentlally descrlptlve the former should be pre;
lSCIlptlve settlng forth rules speclfylng the most effectlve ways of
lrachlev1ng knowledgeror masterlng skllls Thls dlstlnctlon served‘to-"
rhlghllght the dlfferencetln the goals of expertments deeléneé to’edvance
the two klnds of theory In many 1nstencee varlations in 1nstructlonel
procedures affect several pbychologlcel varlables 51multaﬁeously 4;E£:
perlments that are approprlate for eomparlng.methods of 1nstrﬁct1eﬁ may
_be v1rtually 1mp0551ble to 1ntexpret in terms of learnlng theory because
of thls confounding of varlablesa. The 1mportance of developlﬂg a theory
of 1nstructloniaust1fles exPerlmental prOgrams deelgned to explore
alternatlve 1nstruct10nal procedures, even 1f the resultlng expertmeﬁts
a:e dlfflcult to plece 1n‘e,learn1ng-theoret1c fremework. |

- The task of g01ng from a descrlptlon.of the 1earn1ng proeess to &
prescrlptlon for optlmlzlng 1earn1ng must be cleerly dlStlnéUlShed from

the task of finding the appropriate theoretlcal descrlptlon in the flrst



place. However, there is a danger that precoccupation with finding pre-
scriptions for instruction may cause us to overlook the critical interplay
petween the two enterprises. Recent developments in control theory
(Bellman, 1961) and statistical decision theory (Raiffa & Schlaiffer,
1968) provide potentially powerful methods for discovering optimal .
decision-making strategies in a wide wvariety of contexts. In order to.
‘uge thege tools it is necessary to have a reasonable model of the process
to be optimized.  As ‘noted-earlier; some learning processes can already

be described with the required degree of accuracy. This paper will
exgmine “an approach to the psychology of instruction which is appropriate

wherl the learning is governed by such a process.

| §TEPS TN THE DEVELOPMENT OF OPTIMAL INSTRUCTIONAL, STRATEGTES

'Thé'devélopmeﬁf-of'bptimél.strétegies'can'be broken down into a
number of tééks which involve both,describtiVe and noxmative snalyses.
‘Ohé task requires that the instructicnal problem be stated in & form
amenable to a decision-theoretic analysis. While the detailed formula-
tions of deéisioh problems vary widely from field to field, the same
foﬁmai eiéﬁenfs can be found in most of them. Tt will be a useful
starting point to identify these elements in the context of an instruc-
:Eionél situation,

The formal elements of a decision problem which must be specified
‘are the following:

1) The possible states of nature.”

2) The actions that the decision-maker can take to transform the

state of nature.




3) The transformstion of the state.of nature that results from ..

~ each action..

4) The cost of each action.

A "5) The return resulting from .each state of nature.
Statistical aspects eccur in a decision problem when uncertainty is
associated with one or more of these elements. ' For example, -the state
‘of nature may be imperfectly observable or-the transformation of the
state of nature which a given ‘action will csuse may not be completely . .
predictable.

In the context of the psychology of instruction, most of these
elements divide naturally into-two-grcups, those having t¢ do with the
description of the: underlying learning process ggd.those specifying the
cost-benefit dimensions of the problem. The one elgmegtlthatwdoesn't
fit is the specification of the set of actions from wh;eh,the decisionf
mgker must make his choiqei_ Thginature_of this elgment gan“be indic¢ated
. by an example.

Suppose one wants to design a supplemental program of exercises for
an initial reading program. Most_reasonable programé_of ipitial reading
instruction ineciude both training in sight word identification and
training in phonies. Let ug assume that on the basis of_experiﬁentatign
two useful exercise formats have been developed, one for ﬁraining on
sight words, the other for phonies. Given these formats?_there are many
ways to design an overall program. A variety of optimizaticn problems
can be generated by fixing some features of the design and leaving the
others to be determined in a theoretically optimal manner. For example,

it may be desirable to determine how the time available for instruction
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should be divided.hetween phonics and sight word recognition, with all
other.features.of the design fixed. ;A,more.complicated.Questiqn_wogld:
-be to determine the optimal ordering.of the two types of exercises in
addition to“the,optimalwallocatiqn;Qf time. It would.be easy‘tp‘gontinue
generating different.optimization problems in-this manner,. The point is
that varying the: set. of ections from which.the.@ecision—maker_is_iree.ﬁo
choose changes the decision problem, even though the other e}ementsﬁ_
remain-the . game.

~For the decision problems that.arise in instruction it is usually.
natural to.identify. .the-states of nature with learning states of the
student. .- Specifying. the trangformation of the.staﬁes.of,nature,baused.
byftheéactionsiof the decision-maker is tantamount to cpﬁétructiggua_;;
 model of:learning. for the situation under congideration.,
... The role of costs and. returns. is.more formal than. substantive. for.
therclasg of decision problems considered in this paper.. The specifica-
tion of costs;and.feturnsmin instructional-situatians_tendsxyp:pew,
straightforward when examined on & short-time basls, but virtually in-
tractable over the long term.. In the shori-term one can assign costs .
and. returns for the masitery of, say, certain basic reading skills, but.
. - scphisticated deierminations;fqrﬂthe 1Qng—term_value of* these ski}lﬁlﬁo
the individual and society_g;@ diﬁficplt:to make. There_is”an”imppptant
‘rele for detailed economic analysis. of .the long-term impact. of education,
:bgtusugh_studiesidgal with_igsuesrﬁtﬂa more global level than we require.
In”tpisSpgper analysisﬂis.;imited_fo fhésg_éostsrana fet#rﬁgldirécfl§

related to the specific instructional task being considered.




St pftéT A problem*has'béen~formuldted=in a way aménable to decision-
theoretic aralysis, thé ‘next step is to derive the optimal strategy for
the learning model which best describes thé situation. If more than one
““learning model ééeﬁs'reasénable'g pfidri,“theh'compefing candidates for
“the optimal st:'raté’gy can be deduted.” When these'steps have been accom-
ﬁliéhed?;aﬁ"ékpériment>éaﬁ'be~designed to'detérminEJWhich‘strategy is .
pest, B | |

There are several possiﬁle directions in which to procaed?after;the
ihiiiélfcompafigcn of strétégies,:depeﬁding~dn the-resulté_bf.the:ex-
periment. “If nbne-of-theISupposedly cptimal straﬁegiééfproducés&s':
;sétiéféctdr& feSults,‘theﬁ”further experimenﬁalranalySis“ofpthe‘aSSump;
tions of”£he‘underlying learning models is indicated: WNeW=iéSuestmay“'
arise even if,one‘Cf*theVprdceduresfis-SuccessfulgifinVOnewcaéesthat*we
Shallwdiséﬁss;:the*éuccessti stratégy-produced-an‘unusuallyfhigh‘error
”faté'dﬁfing?iearhiﬁgQ which is Contrafy-to'a‘widely accepted principle
Qf programmed instruction. -When anocmalies such'asfthisfbcéur;‘ﬁhey= "
sﬁggééf néw iines of experimental inguiry, and often Trequire s reform--

" ulation ‘of ‘the s¥icms of the learnihg modeli ’Theflearhing*modél"may'ﬂ’
have proViaéd'aﬁ'éxcelleht'écbbﬁht of data for & range of experimentsl
‘conditions, but”can prove totally inadéquaté“in' an optimization condition
" ‘where:Special féatures of the procedure magnify inaccuracies of the
“mogel fhé%‘héd”prévibusly gbnE'unQEtEEted;"' R ;‘ ‘ﬂ5;ﬁ

AN OPTIMIZATTON PROBLEM WHTCH ARISES TN 'VCOMPUTER—'ASSIS;]JE.D: TNSTRUCTION
-ﬁﬂﬁbﬁéﬂéﬁﬁliééfioﬁ‘éfrcﬁmbu{éf;aééiéféd'iﬁstfuétibnjtﬁﬁijfﬁhiéh'haéf

. proved to‘bé ;éfﬁleffeétivé inrthe'ﬁfimafy éfadeg involves a regﬁiéfzu
program of practice and review specifically designed to complement the
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. efforts of the classrocm teacher (Atkinson,~l969). The curriculum
materials. in such programs fregquently take the form of lists of Instxuc-
tional units or items. - The objective of the CAl programs is tc teach.
students the eerrect response. to each ifem in a given list. - Typlcally,
a sublist of items is presented each day in one or more fixed exercise.
formats. ~The optimizatiocn problem that arises -concerns the selection
of items for presentation on a given day.

" The Stanford Reading Project is an example of such & program in ..
initisl resding instruction (Atkinson, Fletcher, Chetin, & Stauffer,
" 1970). The vocabularies of several of ‘the commonly used'basal;readers
were -complled. into one-dictionary and = variety of.exercises using
these words was designed tc develop reading skills. Sepératghexercise_
formats were -desigred to strengthen-the student's decoding skillg-with
special emphasis on letter identification, sight-word recognition,
phonics, épelling patterns, and -word:comprehension. The details of the
teaching procedure vary from one format to ancther, but most include a
sequence inwhich an item 1s presented,:eliciting a response from the.
student, followed: by a short pericd for studying the correct response,
‘For example, one exercise in sight-word recognition has the following

formats - -

< Teletype Display ooy T Audio Megsage
NUT MEN. RED .0 ¢ . - Type red
'Thfée words‘are”printed on the teletype, followed by an audio presenta-
tion of one of the words. If the student types the correct word, he

receives a reinforcing message and proceeds to the next presentation.




If he responds incorrectly or exceeds the time, the teletyﬁe_prints,the,
'cbfréct7word'simultaneoﬁsly with its audic presentation -and ‘then moves
to the next presentation.  Under one version of the program, items .are
présented*in predetermined sublists, with an exercise_ccntinuing on.a
suplist until ‘a specified criterion has been met.

:“StratEgies can be found ‘that will improve on the fixed order of . ..
presentation. Two_redent dissertation studies to-be degscribed below are
concérﬂed‘with~the-develqpment.of-such-strategies;; Lorton. (1969) studied
alternative presentation strategles for teaching spelling words in an
experiment with elementary school children, and Laubsch (1969) studied
similar strategies for teaching Swahili vocabulary items to Stanford .
undergraduates: -

#The Gptimization problems in-both the Lorton and Laubsch studies -
were eSSenﬁially-thE'same, A list of N.items is to be learned, and a.
fixed number-of days, D, are allocated for its study. . On each.day.a'-v
sublist of items is presented fdr-test and study. The sublist always
involves M items and each item is presented only once for test followed
immediately by a brief study period. The total set of N items 1s ex--
tremely‘large with regard to the sublist of-ﬁ'items,- Once the experimenter
hag specified a sublist for a given day its order of presentation -is- .
random. After the D days of study are completed, & posttest is given
over all itemso.aThe.pafameters N, D and Mare fixed, and so is the
 instructional format on each day. Wiﬁh;n these constraints the problem
is 1o maximize performance on the postiest by an‘apprgprigte selectéoﬁ

of sublists fromrday,to day. _The strategy for_selecting sublists 1s



dynamic (or'reéponSe-sensitive3 using the terminology of Green and

“Atkinson, 1966) to-the extent that-it depends. upon. the-student's history
of performande.

Three Models -of the Learning Process

Two extremely simple learning models will be considered first. Then
a third model which combines. features of the first.two.wlll be deseribed.
“:In the first model, the state of .the learner with respect to each
item is completely determined by the number of times the item has been

presented. Tn terms' of 4the ¢lassification scheme intfoduced by Green

and Atkinson (1966), the process is ;esponseiinsensitive, The state of
the learner is relatédité.hié.réspoﬁsés aé.follows: at the start of the
'experiment,*all items have some Initial-probsbility of error, 5ay 4, ;
-each time -an item is presented, its. error probability is reduced -by &

~ factor ¢, which-is less ‘than one. ' Stated' as-an equation, this becocmes,

(l) V qn+l = aqn R
or alternatively
(2) ' q =gy -

n+l

The error probability for a glven item depends on the number of times
it‘has_been_reduced_by the factor_q;_i,ef;:the:gpmber Qf_times_it_has_
been presented. Learning is the g:adu§%7;¢du9ﬁi9n‘in the probability
of errcr by repeated_presgntatigns‘of items, This model is scmetimes
called the linear mcdel because the equation_describiﬂg change in re-

sponse probability is lineaf‘(Busﬁ'& Mosteller, 1055).




In the.second model,.mastery of an item is not at all gradual. - At
aany-pdiﬁt=ih-time-a‘student is in one of-two states with respect to each
item: the learned state or the unlearned state. If an item in.the learned
state is presentea, the correct response iska}way§;given5_if ap_item is
“in the unlearned state, an incorrect response is given unless the student
“makeés ‘a’ correct  response by guessing.;_When;an unlearnedJitem;is pre-
sented; it may move into the learned state with probability c. Stated
as an equation,

-qn-,'with probability l-c. .

@

Lo ,”%éth pfbbabiiity.c ;f

Once an item isilearneq, it remains.in:tﬁe 1earned-state'throughgut the
course of insﬁruction.~3Some-items:are learned the first_tiﬁg they are
presented, others may be presented several times. before they are finally
learned. Therefore, the list as a whole is learned gradually. But for
any particular item, the Transition froﬁ the unlearned to the learned |
state occurs on a single trial. The model is sometimes called the all-
or-nene medel because of this characterization of the possible states .=
of learning {Atkinson & Crothers, 196M4).

o mrfhe.third model to be considered is called.the'randomQtrial incre-
ments (RTI) model aﬁd“fepresents & compromise betWeén the.linear and
all-or-none model (Norman, 1964). “For this model

| B 'qn‘, with probability 1-c

nt+l
og , with probability c .

10



It ¢

1l

1, then oy = 09, and the model reduces . .tc-the linear model.. .
If o = 0, then the model reduces to'the sll-or-none model: However, if
¢.< 1 and @ > 0; the RTT model generates predictions that are quite

" distinct from both theé linear and the gll-or-none models. . It should be
noteéd that both the allior-none model and the RIT model are response
sensitive in the-sense that the learner's particular history of coerrect
and incorrect responses makesra difference in predicting performance on
the next presentation of an-item.

The Cost/Benefit Structure -

" At the present level of analysis, it will expedite matters. if some
assurptions are made to simplify the appraisal of costs and benefits:
gssociated with varicus strategies. Tt is tacitly -assumed-that the -
subject matter beiig taught;is sufficiently” important to justify allocat-
ing a fiked amount of time to it for inmstruetion. ' Since the exercise
formats and the time allccated to imstruction .are the same for. all :
strategies, it ‘is reasonable to assume that the costs .of instruction .
are ‘the ‘'same for all strategies as well. -If the costs. of instruction
“are ‘equal for all strategies, then for purposes of comparison-they may
be ignored and attention focused on the comparative benefits.of the
various strategieg. This ig an important simplification because it .-
affects the degree of-précision-neéessany;in:the:assessment:of costs and
benéfits. T both costs dnd benefits are significantly variable in a
problem, then “it ‘ig-essential that both quantities be-estimated -accu-.
rately. This is often difficult to do. When one of ‘these quantities
“can be ignored; it ‘suffices if ﬁhé other'één,be assessed ‘accurately - ..

enough to order the possible outcomes. This 1s usually fairly easy to

1l




aécomplish. tInithe:presentfpfoblemgeforfexamplg, it i§ reasqnable to
consider all the~voqabulary-items'equallyfimportant, .This.impliesuthat'
_ benefits'depeﬂd.only.On.the’oferail‘probabilif& of a:éor¥ect,TESponse,(
not--on the particulér-items_known. ‘It,turﬁs'éﬁt.fhaf this specification
of cost.and benefit is sufficient for the=quels;ﬁ¢ determine optimal .
trategles. o | | |
The . above cost/beneflt assumptlons permit VS - to concentrate on the -
main'concern of this paper, the derlvatlon_of_thg educatlonal_xmpllca¢
tions of learning modelS.f.Alsp,:they a?e;ﬂpp?ﬁﬁim3t61Y.Y§lid-in,many -
'.instrucﬁionélfcoﬁtextSa.'NEVerthéiess;:it'muéfﬁbe reéogniZed that in
the maJorlty of cases these assumptlons w1ll not. be satlsfled For
;;1nstance, the. assumptlan that the alternatlve strategles cogt the Same
,to:implembnt usually3does_not_hold,._It iny‘thdﬁtas-a fitrst approxi-_
hation in the.gase'being consideréd-here.',ln the~present formulétion
. of the-pfoblem;‘a_fixedlambunf.of timéJis alloéated.for-study and the -
froblem.is to»ﬁakimizewlearning, subject-to.thisztime constraint. . An -
a;ternative formulation which is more aﬁprgériate.in soﬁe-situations~
fixes. a minimum-criterion'level for'learﬁiﬁg. In this formulatiﬁn,-the
problem is to find a strategy for a¢hieving:thi$fcriteriqn;levél Qf
performance in the~shortea£ time, Asravrule,-both costs_and=bénefits_.
t'mast be weighed .in the -analysis, -and frequently!subtopics within é
curriculum vary significantly in their=impbrtance, Sometimes there is
'a~choice among séveral.eierciée formatg.  In_certaiﬁ caSes, whether'or
not.a certain topic should be. tag;ght at all s the. ckitical question.

Smallwood (1970) has treated a_problem‘simila;.to.thejane.qonsidered in

12



this paper in a way. that includes some of these factors in the structure
of costs and benefits.

Peducing Strategies Trom the Learning Models, :

Optimal strategiés can bededuced:- for the linear.and &gll-or-rcne
models under the assumption that all items-have the same learning
parameters.. The situation 1s more complicated in.the case of the ‘RTT
model. - An- approximation to the optimal strategy for the RTI case-will
be discussed; the strategy will explicitly allow for differénces in
paraneter values. :.

| For the linear model, if an item has been presented n times: the -
probability of an error on the next presentation of the;itemfis*agi;ql;
when the item .is presented, the error probability_is-reduced.to Qqu'
The size’ of the reduetion is thus o 1-0)q,. Observe that the size
of the decrement in error probability gets smaller with each presentation
of the item. This observation can be used to deduce that the following
procedure -is- optimal. - - -

© On E:given<day, form the- sublist of M items Ez1sélecting;_g

. those items that have received. the fewest presentations -

-up to-that point. If more then M -items-satisfy this' -

criterion, then select items- at .random from the set:

. satisfying the criterion.

Upon examination; this strategy 1s seen to be equivalent to the standard
cyclic presentation procedure commonly employed ih experiments on verbal
learning. It amounts ‘to presentinglall items  once, randomlyiygordering

them, presenting them agsin and repeating the procedure until the number

of days allocated to instruction have been exhausted.

13 .




.'According to the'all?or—none'mddel,ZOnce an -item has been learned
there is no further reason to present it. Since all unlearned items are
equally likely to be learned if presented, it is intuitively reasonable
that the optimal presentation strategy'selects:the item leasgt likely to
be in the learned state for presentation.  In order to discover .a good
index of the likelihood of being in ‘the learned state, consider a -
gtudentts response protocolffor a-single iten. 'If the'lasﬁ*feSPOnsérwas
incorrect), the item was.cer£ainly.in the unlearned state at that time,
altheugh 1t may then have been learned during the study pericd that -
immediately.followed;:”If the last_résponse was'corréqt,-then‘it is more
likely'thafrthe ifem_is.ﬁOW in ‘the <learned state. In geheral; the mbre
correct're5p0n5esﬂthere'aréWinfthe protocol sincethe last error on the
item, the more likely it is thét fhe item is in the léarned state.

- ".The preceding observations provide a heuristic justification for
_an-aigorithmrwhiéhAKarush and Dear (1966) hHave proved is in fact the
optimal strategy for the all-or-none model. The pptimal strategy re-
guires that for each student a bank of counters be set up, one for each
word in'the 1ist.- To start, M different items are presented each day
until each item has been-presented_once and a.Q has been entered in its
-counter. On-all subsequent days: the strategy_fequires_tnat”we conform
to. the following two rules: |

“d. Whenever am item is presented, increase its counter by 1 if

the  subject's response is correct, but reset it to O if the

response is incorrect.

-



2. "Present theé M items whose counters are'lowest=amongwalliiféms,

' £§:mdre than M items are eligible, then select randomly as many

“items as are needed to complete the sublist. of size M from . -

- those: -having the' same higheSt_counter'reading,phaving:selegted

gl Iitems with lower counter values.

For*éxample;~5uppose=6~items-are'présented each~day and aftexr a given
day a certain student has 4 ditems whose counters;are 0, 4 whose counters
are 1, and higher values for the rest of the counters.- His study list
would consist of the 4 items whose counters sre 0, and 2 items selected
at randem from the 4 whose counters are 1.

It 'has been possible to find relstively simple optimal strategieg,
for the linear and all—orunone'modeLSM- It-is. -noteworthy that peithqr__
‘strategy depends on the values of the paraseters of the respective. ... ..
‘models (i.e., on ¢, or ql). Another excepticnal feature of .these
two models is-that it is possible to condense a studentis response pro-
teocol to-one-index per-item without losing any information relevant to-
presentation decisions. ‘Such condensations of response protocols- are:

referved to as sufficient histories (Groen & Atkinson, 1966). Roughly:

speaking, an index summarizing the informatiorn in a,étudeht’s,response-
protocol is a sufficient history if any additicnal. infermaticn from the

protocol would be redundant in the determination of the student's gtate

of Jlearning. The_concept;iSianalOgGus.tq_a‘sufficient:statisticﬁ,”If
one takes a sample of observations‘fr?m a population with an underlying
normal dis£fibution:and wishes to estimate the population mean, the.
sample mean is ‘a sufficient statistic. Other gtatistics that can ke

calculated (such as-the median, .the range, and the -standard deviation)
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cannot be used to improve on the sample mean as an estimate of:the.

of the estimate, ..In stetistics, whether or not data can be summarized
by3a;few_gimpleisuffipigntvﬁﬁatistggs QS'deﬁerm?ged:byfthekpature of the
underlying distribution. Forﬁe@ucatipnal_applicatigns,awhetbér or not
g givéh instructional process ‘can be adeguately monitered by.a simple.
sufficient history Is -determined by the.model representing.the under- .
lying learning process. ' .

" The random-trial .increments model appears to be-an example of a
process for which the information in the subject!s response protocol
cdnnct be ‘condensed into a simple sufficient history. . It is &also a
model for which the optimal strategy depends cn thégvalues.of the model
parameters. -Censeguently,. it is not possible to state a simple.algorithm
for the optimal'presentation strategy for this model.- Suffice it to say
that théere is an'easily computédble formula.for determining which item .
hag the best expected immediate gain, if presented. The.strategy that
presents thisg: ditem should be a reascnable apprdximation tc the optimal
strategy. . More will be-.said later.regayging;tﬁgiprpblem of parameter
estimation and-some of its ramifications.

-If: the three models: under cqnsidération are to be. ranked on the
‘basis of their abiliiy tc’ account. for data from laboratery experiments
employing the: standard presentaticn procedure, the order of preference
-1s clear,. ‘The all-or-nche model provides a better‘account_of the data.
than the linear model, and the random-trial increments model is bettex
than either of them {Atkinson & Crothers, 1964). This does not neces-

sarily dimply, however, that the optimization strategies derived from .
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these ‘meodels. will receive the same.  ranking.  The standaxrd qyclic-presgnj
tation“procedure ‘used in-‘most learning experiments may mask: certain.
deficiencies in ‘the all-or-none or RIT models which would manifest them-
selves when the.optimalipresehtation'stratégy_specified,by_Qne_Qr thg_

cther of these models was em.plOyed;2

AN EVATUATTON OF THE ALL-OR-NONE STRATEGY
© U Lorton {1959) ccmpa'red"fhe all-or-none strategy with the standard -
procedure in an experiment in‘cdmpﬁter;éSéisted spelling ‘insgtruction
wiﬁh}éiémen%éry school children. The former strategy is optimal if +the
learning process is indeed all-or-none, whereas the latter -is optimal ~
if thézfroCésgﬁ{SulihEar: The experiment was one’ phase of “the Stanford
'Readiﬁg%fréjééfﬁuSiﬁg.cdﬁpﬁﬁéf'fdéiiitiés”at'Sfahfbfd"ﬁﬁiﬁérSity”iihkedl
via féiéﬁhbhé“liﬁés.tb student terminals in the schools. =
| ihéiﬁidﬁai\iiété‘OfnﬁB wads:wefé?éompiléd in an extensive pretest
progrém'térgﬁéfantee fﬁatfeaéh;étudéﬁﬂ*wbﬁld*béEétﬁdyihgTWofdéLOf'aﬁ¥¥'
:pfbﬁimétéifxéquai diffiéulfy which Fe did nofJeréédy'know”hOﬁ"%o”spell,
A Wiéﬁih;suﬁjéﬁféEdééign'ﬁés'USed'ih an effort to ﬁake-fhe560m§ariSbn
of éfrategiés asigéhSifivE aé'péésiﬁle;::Eédﬁ student's individualized
1ist of 48 words was:ﬁséd to form two comparable lists of 2L words, one
toc be taught'uSing“the all—or-ﬁdhé‘st¥§{égyzénd'theHOther*using the
Sféﬁﬁard”prdcédﬁre, |
Each day'a student was given training on 16 words, 8 from the 1ist
for standard presentation and 8 from the list for presentation sccording
to the all-or-none strategy. Theve were 2k training sessions followed
“ by three days for tééfiﬁg all the words; approximately two weeks later:
“three more &éys'weré spent dn'é‘deléyéd retention test. Using this -
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procedurd, all words-in the standard.presentation list received exactly.
one p?eSentatiOn'inrsuccéssivej3~dayfblocks:during training: . -Words-in...
theflistfbTESentéﬂ”acéordingftb the all-cr-none.algorithm: received: from
0 to'3 presentations in successive 3-day- blocks during: training,. with - ..
one presentation being the average.:'A:flOWychart of. the daily routine
is given in Figure .l.. Special_featgrgsiof\theblgggpn.implementation
prqgram,allpwednstudgnts to correct iy?%ng_errqxs.p;;request yepgtition
7of_audioumessagesﬁbefpre-a:responseuwa§nevaluated7 zibeseuﬁegturgg_re~ _
duced: the 1ikglihood‘of_miss;ng_g_wgyd bgg§g§e of WQmeﬁﬁa?V,%FaFt?ntion'
or typing errors.. .. |
The results of the experinent are swmarized in Figure 2. The
proportions.of correct responses are piotteé;fqrvsu¢C?ssiV?.3rdﬂY.blO¢ks
dﬁring training, followed by the first OVerQll:ﬁeSt and thgp‘thelﬁwo—”
week delayed test, Note.that during training the proportion correct is
a;wayg.;EEEE_for_theyglijqrinope prqgedurerthan for t@e gtquaxﬁlﬁﬁoi
cegure, but on both the finsl test and the retention test the proportion
: corr¢g§<i§vgre§ter_fgr the gllfpr7noge stratégyu_ Ana}yéisﬁQﬁ'vgxiénce.
tests verified that these resglts‘are_statisﬁicglly‘sigﬂ;fipantf ?he
advantageﬂof%approximate;y_teqwgercgntage pointg_pn.the postiests for
the all-or-none procedure is Qﬁﬁpraqticgl_sign@ficaqce_as wellq
The observed pattern of results is exactly what Wou;q"befpredigied
if the, allﬁor—nogg=queltdoes indeed describe ﬁhq_learniqg process. As
;qu:shown.equierz.fgnal test performance shoul@‘be beﬁﬁe;-When the
all-or-none optimizatipn‘strategylis4adpptedqgswopposeg to the standaxrd
procedure. . Also the‘gxeatey_proport;on_of_errg;:fo;:th;s sp?ategy_dur;ng

training is to be expected. .The all-or-none strategy presents the ltenms
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Figure 1. Daily list presentation routine.
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PROBABILITY OF CORRECT RESPONSE

ALL=OR-NONE STRATEGY

i ¥ \ 1 . . . :f : J. : j“w?“'.'”'] o :

' SUCCESSIVE 3-DAY TRAINING BLOCKS ~  POST- POST-
TEST TEST

lgure 2,"Probability‘of correct response in Lorton's experiment.
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least -likely to be in the learned state, so it 1ls natural that.more
errors would. be made during training,..Thus,_accordingrto_tne_allsoranone
-model the most rapid 1earning~resuits from a routine which, in a sense,
‘maximizes the student's failures during training. .This apparent anomaly

will be considered later.

A TEST OF A PARAMETER-DEPENDENT' STRATEGY.
As noted.earlier,’the strategy derived for the all-or-none medel in
" the case of homogenecus items does not depend on the actual wvalues of the
model parsmeters. In many situations either the assumptions of the all-
or-none model or the assumpticn of homogeneous items or both are seriously
violated, sco 1t is necessary to conslder strategles based on other models.
TLaubsch (1969) conSldered the optlmlzatlon problem for cases where the
RTT model is approprlate, He made what is perhaps a more s1gn1f1cant
departure from the assumptlons of the all-or—none strategy by allow1ng
the parameters of the nodel to vary w1th students and ltems,.' o
| It is not difficult to derive an approx1matlon to ‘the optimal
strategy for the RTI model tnat.can accommodate Student'and item.diféu-
ferences in parameter ualues; if these.narameters are'known. lSineeJi
parameter values must-besspecified in order to make the necessary cal-
cllations to determine the optlmal.study llst it makes:iittle difference
whether these numbers are flxed.or vary w1th students and 1tems.;‘Houeuer,
maklng estlmates of these parameter values in the heterogeneous case
presgents some difficulties. R
When the parameters of a model are.homogeneous, 1% is possible to
pocl data from different subjects and items to obtain precise estimates,

.Estimates based on & sample of students and items can be used to predict
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the performarice ¢f other students orf the same: students on -othér. items, .
‘When ‘the parameters aré heterogencous, thesé advantages no’longer exist
'uniéS§'vériétiohe”in7%he:ﬁarémeter values take ‘some known form. For this
reason it is necessary to formulate &’ model stating the composition of.
each parameter in terms of a subject and item component.: The'model sug-
gested here 1s a simplification. of the procedure Laubsch employed.

Lo let ﬂij_bﬁ_a;generic;symbol;fer a perameter_cheraeteri;ipg&stgdent
- i and item. J.;.. An example intpe-kind_of_relationship_deeixed??sﬁehfixed—

effects subjects-by-items; analysis of wariance model:

1:150T5x::vf N L E(ﬂij)qi:m'+~ai.+.dj:‘

where‘m.iertbe meenz:ei is the ablllty of student 1, and d is the -
dlfflculty of 1tem Je .Eecause the learnlng model parameters we are‘
1nterested 1n are probebllltlee, the above assumptlon of eddltlv1ty is
nof_met; that is, therel;e no guaranteelthat Ega 5 wguld yield estlmatee
boundedwpeﬁween_O_end.le Bﬁ£rﬁhere ie altfaﬁefe;mation.of;the_paramefer
thet,g;:euqvenee;this.difﬁiculf&%  In ﬁhe_éreeeﬂt contextz fhis trans-
formation has an interesting.inteitive juefificationa - | .
Instead of thlnklng dlrectLy 1n terms of the parameter nlJ, it is
:_helpful to think in terms of the ”odds ratlo,' Ty /l-ﬂ 15 Allow two
_‘gesumptlonS“ (1) the odds ratlo 15 proportlonal to student ablllty,
(2) the odds retlo is 1nverse'L;y' proportlonal 'to item dlfflcultyo ThlS.

can be expressed algebralcally as

:i'EiJ. ai
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where K.ig a proportionality constant, Teking logarithms Qn;both_sides

yields .,

. T,
(7) log l'“ij = log K + log a, - ‘log dj '

The logarithm of the odds ratio is usually referred to as the "logit.".

Let lOg‘Kfz-p,_loghai”;_Aij_and.Tlog_dj.; Dj" Then, Eq. 7 becomes
(5), . o :}églt ﬂij,é L+ Ai f_Dj .

-Thus, the twe.assumptions made abové lead to an additive model for the
values of the parameters transformed by the logit function. . Equation 8,

. by defining~a_subjectvit¢m parameterhﬁij in terms,Qj;§ subje¢tlparam¢tgr
Ai applying;to_ailsitemsﬁa@d aq:itgm,parameteF_Dj gpplying to"gl}_subjects,
significantly reduces:the*numper_of_parameterg tgmbg estimated. KIf_thgre
are N items and S subjects, then the model requireg,only N+S,paramete:§
to speelfy the learning parameters for NXS;subject—itemsﬁ  More_impari

- tantly, it makes it possible to:pre&ict abstudent's performance on ltems
-he has not been exposed to from the performance of other-students on
them. - This formulation- of ;learning pérameters is essentiallyﬂthe game

as the treatment of an analogous. problem in item analysis given by Rasch
(i966),- Discussion of this and related models for problems in mental
‘test theory is given by Birnbaum (1968). . -

Given data from an experiment, Eg. 8 can be used . .to. obtain reason-
able parameter-estimates,.even though the parameters vary with stﬁdents
and. items. = The parameters ﬂij.are.firsﬁ:estimated,for'each_student—item

~protocol, yielding a set  of initigl,estimates[ ,Ne;t the logistic trans-

formation is applied to these initial estimates,.and“theniusing:thgse,
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values subject and item effects (Ai éﬂﬂ'Dj) are-estimated by standard
analysis of variance procedures. The estimates of student and item
effects are used tq,adjust the estimate.qf<ea¢h;ﬁrag§formed student-item
parameter, which iﬁ turn is transformed back £o thain the final estimate
of the;driéinal“studéntJifemzparamEter.

The first stidents in an instructional program-which employs &
parameter-dependent optimization scheme like the one outlined aboverdo
not benefit maximally.frbm thé‘program's‘seﬁsitivity to individual difQ
ferences in”étudents and items; the reason. is thatéthelinitial parametér
estimates must be based on-the data from these Studeﬂté; As more. -and:
‘move students complete the program, eStiMatésibffthe~Djls become more

."pfeciséiﬁﬁtil fihaii& fhe&”ﬁéj”bé3régardéd as known constants of the
;‘systéﬁ. ‘When this point has been reached, ‘the only ‘task rémaining is
fto'eétima£e”Ai for each new Studeﬁt entering the program, - Since the - -
DJ'S'are:kﬁcwn;"fhé”eétimates of ﬂij‘for'ainewfstudeﬁtware'of‘theﬂright
" order, although they may be systematically high or. low until the student
 component can be accurately assessed.

Paremeter-dependent optimizatich programs with the adaptive charse-
“ter just described are potentially of grest importance in long-temm - -
instructional programs. Of interest here is the RTT model, but the:
method of decomposing parameters into student and item. components would
‘epply to other models as well; We turr now to Laubsch's experimental
“test of the adaptive optimization program based en the RTI.model. In
this ¢ase both parameters ¢ -and ¢ of fhe-RTI-model'were‘separated-into
‘item and subject components following the logic of'Eq. 8. That is, the
parsmeters for subject i working dnfitem_j~were-defiﬂed'as follows’ :
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logit o, . = W@ 4 al@y o)
. . -k J

(9)

It

£ ol

Jogit Cij L

Note thst Aga) end.sgc) are measures of the ablllty of subject i and
hold for all items, wherees_Dg.) and DS )Kare meesures ot_the dlfflcu;ty
of 1tem J and hold for all subJects | |

The 1nstructlonal program was des1gned to teach MEO SWahlll voeab—_
ulary items to undergraduate students at Stanford UanETSlty Three
presentatlon strategles were employed (l) the standard cycllc procedure
(2) the all—or-none procedure, and (3) the adaptlve optzmlzatlon pro—
cedure based on the RTT model As in the Lorton study, a w1th1n~sub3ects
design was employed in order to provlde a sensltlve comparlson of the
strategles. The- procedural detalls were essentlally the same as in |
Lortonfs experlment except for thelfact that 14 tralnlng gegsions were
involved each 1ast1ng for approxlmately one hour. A Swahlll word would
:be presented and a response set of fxve Engllsh words would appear on
-the teletype. The student's task was to type tne number of the correct
elternative,_ Beinforeement_consisted of a ”+" or.”ff and a prtntout of
, the correct Swahili~English pair. | |

The lesson optimization program tor the RTT nodel was more complex
than those described earlier° Each night the respense data for that.day
was entered into the system and used tolupdete estimates of the.a's and
¢lg; in this case an exect reeord of'the.eompiete presentation sequence
Vand response history had to be preserved A,computer—basedlsearch

algorlthm was used to estlmate parameters and thus “the more accurate

25




the previous day's estimates, the more:rapid was the search for the up-
dated parameter values. Once updated eatimates had. been obtained, they.
were entered into the optimiZation program to. select individual item
sublistg for each student to be run the next day. Early in the‘experiment
(before estlmates of the D( )‘s and D( OF 's had stablllzed) the computa-
tlonltlme WAS falrly lengthy, but 1t rapldly decreased as more data.
accumulated and the system homed in on pre01se eetlmates of 1tem dlfflcultye
o The reeults.of.the experlment favored the parameter-dependent strat-
egy for both a flnal teat admlnletered 1mmed1ately after the termlnatlon
of 1nstructlon and for a delayed retehtLOh test presented several Weeke
later; Stated.otherw1se; the parameter—dependent strategy of the RTI
.model uas more sen51t1ve than the alluor-nohe or llnear strategles in
1dent1fy1ng and'presentlng”those 1tems that Would beneflt ‘most from.
additional tralnlng, Another feature of the experlment was that students
_aere run ihnsucceeaire groupe each startlng about one week after the N
”prlor groupo: As the theory would prEdlct the overall gains produced
by the parameter-dependent strategy 1ncreased from one group to the next.
The reason is that early in the experlment estlmates of item dlfflculty
were crude, but 1mprove w1th each succesalve wave of studentsa Tear the
end of the EXperlment estimates of item dlfflculty were qulte exact, and
.the.only task that remalned Whenra new student came on the system was to
rest:‘i.mate'his A( @) gna alS)

and A values°

7 IMPLICATIONS FOR FURTHER RESEARCH
The studles of both Laubsch and Lorton 1llustrate one approach that

can contribute to the development of a theory of 1nstructlono This is
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“not- to suggest that the strategies theyitested‘represent.a;complete;.;
- solution to the problem of optimal item selection. The models upon which
-these strategies:are: based ignore several potentially important factors,
such as shortatermimemory-effects,ainter—item_relationsﬁips,,and motive-
tion.  Undoubtedly, strategies based on learning models that take some of
these variables intc.account would be superior to those analyzed so far.
The studies described here avoided. many. difficulties assqgiated.‘
with short-term retention effects by ‘presenting items for test ané study
at most once:per day. - But-in,many-situations_it'is.desirable“to_emplqy
procedures in which items can be pfesented more than once per day. . I1f
such procedures are émployed, experiments by Greeno (1964), Fishman,
Keller, and Atkinson.(1968), and others indicate thet the optimal .
strategy will have to- take "shorit-term memory effects inte: account. . The
results reported by these investigators-can be agcounted for by & more-
general model similar:in many: respects.tc the.ali-or-none and RIT model
(Atkinson & Shiffrin, 1968). The difference.is that the more general .
“model has- two learned states: aalongatermlmemoryﬁstate-and a short-term
“state.  Ancditem in the long-term: state remains there for a relatively
indefinite period of time), but an’ item in the short-term state will be
forgotten with'a probability that. depends on the interval between suc-
cesgive presentations.. When items receive repeated presentations in
short intervals of time, they may be responded to cﬁrrectly,several times
in & row becauge :they -are. in the;;short-term state. _A,strategy_(like
the one hesed cn- the all-or-none quel).which did.not take this possi-

“bility into account would regard these items as well learned and tend.
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not to present them' again, when in fact they would have a high prebability
" of being forgotten.

- In many situations some of the items to be presented are interrelated
in an obvious way; a realistic‘model'bf the learning process would have
““to reflect these organizational factors. It is likely :that the differ-
‘ence between the standard procedure and the best possible precedure is -
very large in these instances so there is ‘considerable reasenito study
them. Unfortunately53as vet very little work has been done in formula-
ting mathematical models for such interrelationships, but. there are
séveral chvicus' directiorns to pursue.:.

The results of an experiment reported by Hartley (1968) illustrate
the complexity of empirical relationships in this area, The study -in-
volved the Stanford CAT Project in initial reeding and was designed to
investigate two types cof list organization: minimal versus maximzl cen-
trast, combined with three gources of cue; the word itself, the word
plus & picture, and the word. plus a sentence context cue. Hartley was
intérested in the relative merit of these conditicns fox the acgquisition
of an initial sight-word vocabulary. Fries (1962} had advocated the use
of minimal contrast lists in reading instruction in_order.to exploit
linguistic regularities. On the other hand, Rothkopf (1958). found that
lists composed of dlssimilar items were learned more rapidly than those
‘with small or minimal différences. Hartley's experiment indicated that
which list organization is best depends:on the cue source.  When the
word itself was the only cue, performance was best on minimal contrast
lists. When the word was augmented with & picture cue, there was little

difference in performance on the two kinds of list. But in the presence
of a context cue, performance was best on the maximsl contrast lists.
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In the description of Lorton's experiment we mentioned that the
all-or-none’ strategy: produced a.higher error: rate during -learning than
the standard procedure. If some observations made by Suppes:(1967) are
-correct, this fact suggests that. a better:strategy could be devised.
LarBuppes:argues.sthat in leng-term instructicnal programs it i§Hcrucial‘tp
balance ponsiderationsEof frustration due to material that.is too dif-
ficﬁlt against boredom -for material that is too easy.. He.conjectures
that: there dis.an optimal error rate, which if deviated from adversely ..
affects -learning. "This-conjecture poses two interesting problems: first,
to ‘detemmire the range ‘and degree .to which it is correct; .second, to
- formulatea model-of:the learning-progess that tgkes account of error .
rates. The resulting optimizaticn scheme would need to estimate the.
voptimumserrer rate forieach studentrand thesge . estimates -In turn.would be
inputs to the “decision-theoretic :problem.  The view that there-ig an. -
optimgl error rate is held by many psychologists and educators, so in-
formation about:thig:question would be of .some.significance.

The directions fof'research which have been discussed here point.to
“the need for:-congiderasble theoretical -and experimental groundwork to
SErve.asrafbasis:forﬁdevising‘insfructional.strategies.- There. arve - funda-
ﬁental issues. in.learning theory that need to.be explored and intuitively
reagonable strategies of instruction to be tried out. It seems likely
that new proposals:for-optimal procedures will involve-pgrameter-dependent
strategies: If this is the case,_then provision_for:variations in
perameter-valueg due to-differences among students and curriculum mate-
rials will-be an important consideration. .The approzch-deseribed.in the

discussion of Laubsch's study could well be applicable to thesg problems.
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CONCLUDING .REMARKS

This paper hasVﬁresented examplésvof,thefkind'of'stﬁdy we: belleve .
can contribute. to the psycliology of instruction, as:distinguished from .
the psychology of learning. Such studies’ have both :descriptive and:pxe—
scriptive aspects. Bach aspect inturn has an.empirical ‘and:a theoretical
component. The examples described involved the derivation of optimel ..
presentation strategies for fairly simple learning models and the ‘com- .
parison ‘of ‘these strategies in CAT experiments. In both studies the
- optimal strategy produced significantly better results on criterion .
tests than-a standard cyelic procedure. - Evaluation of these experiments
suggests ‘a number of ways in which the-strategiesfmightabe:improved,_
and generalized to a‘broader range of problems. . . .-

i The'itask-and learning models :considered in this paper are:extremely
‘simple -and of ‘restricted generality; nevertheless, there are .at least .:
fwo-reasons'for studying them. First, this type:cf rtask-occurs in many
‘different fields of instruction and should be understood in its- own - -
right.: No'matter what the pedagogical orientatlen; it is. hard to con-
ceive of an initial reading program ox foreign-language course that does
“not- invelve ‘some - form® of - list-learning activity. -Althcough this type of
< téask has frequently been misused.in the design .oficurricula, its use is
so-widéspread that éptimal procedures need to be speeified.

There ‘1s & second and equally important reason: for the type of. - =
analysis reported here. By making a study of one case that can:' be
pursued in detail, ‘it is possible tc develop prototyplcal procedures
-for analyzing more complex optimization problems. At present, analyses

~comparable- 1o -those reported here cannct be made for.many problems . of
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éentfalfinterést‘to'education; but by having examples of thé above sort
it is-possible to list with more clarity the steps. involved .in devising
optimal procedures. Three-aspects need to be emphasized: (1) the devel-
opment of an’adequate’ description of the.learning process,. (2) the
assessment ' of ‘costs and benefits assodiated with possible instructionéL
actiong“and-states- of learning, and:(3) the derivation of -optimal strat-
egieé“ﬁééed'cnffhé goals set for the student. The’examples-considered
héféideal*wifh=éach.ofﬁthese faétorSﬁand paint out the issues that arise.
Tt hés beeéme fashionsble in recent years to chide learning theory
for lgnering the'prescriptive aspects of instruction, and éome-have-even
argued that-efforts devoted to the laboratory analysis of learning .
shoul@<be redirected to the studyrofjcomplex"phenomena.as.they-océur:in
instruction&l situations. 'These criticisms. are 'ﬁof entirely unjustified
_ for‘inépraptiCe3psychologists.haveitoo‘narrowly defined the field of .. :
learning, but: to focus all effort or the study of complex instructional
tasks would‘be:aJmistake;-5Some initial sucéesses_might be achieved,
but in the dongirun understanding complex . learning situations must depend
“upohn a-detalled:analysis of the elementary perceptual aﬁd cognitive pro-
“gesses from which the information handling system of eachﬂhumanmbeing is
constructed. " The' trend to press for relevance: of learning theory-is
healthy, but 'if the surge in this direction goes too far, we will end
up with a massive set of prescriptive rules but no: thecry to integrate.
them.: Information ‘processing models of memory and thought and ;the- work
on peycholingulistics are promising avenues of research on the learning
- process, and the prospects are good that they will provide useful

theoretical ideas for interpreting the complex phenomena. of instructiocn,
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It needs to be emphasized, however, that the interpretation of com-
plex phenomena is problematical, even in the best of -circumstances.
Ceonsider, for example, the case of hydrodynamics, one,of;theﬁmo§t‘highly
developed branches of theoretical physics..: Differential eguations. ex-
pressing certein basic hydrodynamic relationships were formulated. by
CEuler in the eighteenth.century. .Special -cases.of these eguations. . ..
suffiéed-to account for a wide variety of experimental data. . These.

- guccesses prompted-Lagrange‘tQ assert that the success would be univer-
gal were it not for the difficulty in integrating Euler's.equations in
‘particular cases. Lagrange's view is still widely held. by many, in
splte of numerous experiments yielding anamolous results.. . Buler's.. .
_equations'haVe been ‘integrated.in-many:cases,..and . the: results were. ...
L Found kD disagree:dramatical1y5with‘observ&tion;;thusgcontradicting_u.
Lagrange's ‘assertion. The_problems;involfe more: than mere, fine poinis,
and raise serious paradoxes when extrapolatioﬂs:arexmade~from iesults_
obtained in wind’ tunnels and from models-ofharbors. and rivers to actual
“-conditions.  The following quotation from Birkhoff (1960)-should .éfcrike
“agympathetic cord among those trying tosrelate psychology and education:
"These paradoxes have been the subject of many witticisms.. Thus, it has
recently been said that in the nineteenth century, fluid dynamicists. ..
were divided into hydraulic engineexrs who obgexrved. what could not be.
explained, and mathematiclans -who explained things that-could not be
‘observed. It is my impression that many . survivors. of both species are
st111 with us."

Research: on learning appears te be in-a similar state.. Eduweational

- researchers are concerned with -experiments that cannct be readily. ... .-
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interpreted in terms cf learning'theory, while psychologists continue to
deveipp the?ries that seemrto be.applicable only to the phenomena oh-
served in their laboratories. prefully, work of the sort descrlbed
here w1ll brldge thlS gap and help lay the foundatlons for a v1ab1e
theory of 1nstructlon _ If the necessary level of 1nterchange between
workers in dlfférent dlsc1p11nes can. be develoyed the prospects for.

advancing both psychology and educat:_on are good. o
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FOOTNOTES

lAm early versicn of this paper was presented by the first author as an
invited address at the Western Psychological Association Meetings, 1969.
The second part of the paper was presented at a seminar on "The Use
of Computers in Education" organized by the Japanese Ministry of Educa-
tion in collaboration with the Organization for Econcmic Cooperation
and Development in Tokyc, July 1970.. Support for this research was
Sponsored by the_National Science Foundation, Grant No. NSF-GJ-4M3X;

2This type of result was obtalned by Dear, Silberman, Estavan, snd
CAtkinson (1967). They used the all-or-none model to generate optimal
presentation schedules where there were no constraints on the number
of times a given item could be presented Tor test =nd study within an
instructional pericd. Under these conditions the model generates an
optimal strategy that has a high'probability of-rgpeating-the same
“item over and over again until a correct response oceurs. .In their
experiment.the all-or-none strategy proved quite_unsatisféctory when
compared with the standard presentation schedule. The problem was
that the all-or-none model provides an accurate account of learning
when the items are well spaced, but feils badly under highly massed
conditions. Laboratory experiments prior to the Dear et al study had
not employed a massing procedure, and this pérticular deficienéy of
-therall—orunone model had not been made apparent. The important remark
here is that the analysis of instructional problems can provide im-
_§ortant'information in the development cf learning models. In certain
caseg the set of phenomena that the psychologist deals with may be
such that it fails to uncover that particular task which would cause
the mcdel to fail. By analyzing optimal learning conditions we are
imposing a somewhat different test on a learning model, which mey

provide a more sensitive measure of its adeguacy.
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