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Richa~d C. Atkinson
Stanford University

James F. Juo1a
University of Kansas

INTRODUCTION

In this chapter we develop and evaluate a mathematical model for

a se~ies of expe~iments on recognition memory. The model is extremely

simple, incorpo~ating only those assumptions necessary fo~ treatment

of the phenomena unde~ analysis. It should be noted, however, that the

model is a special case of a more gene~al theory of memory (Atkinson &

Shiffrin, 1968, 1971); thus its evaluation has implications not only for

the experiments examined here, but fo~ the theory of which it is",

special case.

Ee:\,ore discussing the model and the relevant experiments,. it will

be useful to p~ovide a brief ~eview of the general theOry. The theory

views memory as a dynamic and inte~active system; the main components

of the memory system and paths of info~ation flow are diag~ammed in

Fig. 1. Stimuli impinge on the system via the sensory ~egiste~, and the

system, in tu~n, acts upon its envi~onment th~ough the ~esponse gene~ato~.

Within the system itself, a distinction is made between the memory sto~age

netwo~k, in which info~ation is ~eco~ded, and cont~ol p~ocesses that

gove~n the .flow and sequencing of info~ation. The memory sto~age net-

wo~k is cOmposed of the sensory ~egiste~1 a sho~t-te~ sto~e (STS), and

a.10ng-te~ sto~e (LTS). 'rhe sensory ~egiste~ analyzes and t~ansfo~ms........-
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Fig, 1, A flow cha~t of the memoYJ system. Solid lines indicate paths of
information transfer. Dashed lines indicate connections that permit
comparison of information arrays residing in different parts of the
system; they also indicate paths along whi.ch control signals may be
sent whi.ch modulate information transfer, activate rehearsal mechan­
isms, set deci.si.on cri.teri.a, alter biases of sensory channels,
ini.tiate the response generator, etc,
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the input from the sensory system and briefly retains this information

while it is selectively read into one of the memory stoJ;'€s, The STS is

a-working memory of l:l.mited capacity from which information decays fairly

rapidly unless it is maintained by control processes puch as imagery or

rehearsal. The contents of STS may be thought of as the "current state

of consciousness" for the subject. The LTS is a -large and _essentially

permanent memory bank; information once recorded in this store does not

decay, but its availability for further processing depends upon the ef-

fectiveness Of retrieval proceSSeS, In the figure, STS and LTS are

depicted as two separate boxes, but this is not meant to imply neuro-

logically separate systems; it is quite possible that STSis simply the

active phase of neuJ;'al processes quiescent in LTS.The control processes

;regulate the transfer of information from one store to another, and the

sequencing of operations within each memory store, These processes are

labile. strategies adopted by the subject in response to envirol1lUental

and task conditions. They_ includ" selective attention, r"h"arsal, _coding,

selection Of retrieval cu"s, and all types of decision strategies.

Although the model developed in this paper-is a special case of the

theory represented in Fig. 1, it can equally well be int"J;'preted as con­

2
sistent with a number of oth"r theories. It is possible to theorize

about compon"nts of the memory process without making commitments on all

aspects of a theory of memory. Oomponent Problems can be isolated exper-

-imentally and local models developed. Work of this sort eventually leads

to modification Of the general theory, but a close connection between

lqcal models and the general theory is not required at "very stage of
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· The te'0Jl "recogpition jilemory" covers a wide variety of phenomena.in

which the subjeGt attempts to decide whether or not a given c:bject or

event has been experienced previous;l.y (Kintsch, 1970 13-, b; McCo'0Jlack,

1972). It is '1 common process in eVeryday,life and one that is readily

SUbject to experimentation. In the recognition task that .we have been

investigating, the subject must decide whether or not a given test

stim1.1.;l.us is a member of a.predefined set of target items •. For any set

8 of stimUli, a subset 81 is defined whiGh is Of size d. 8ti,muli in

8
1

wi;l.l be referred to as target items; subset 8
0

is the complement of

8
1

with respect to 8, and its members will be called distractor items.

The eXPerimental task involves a 10Pg series of discrete trials with a

stimulUS froms presented on each trial. To eaGh presentation the sub­

jectmakes either an Ai or Ao response indicating that he jUdges the

stimu;l.us to be a target or distractor item, respectively.

The target sets in our experiments involve fair;Ly long lists of

words (sometimes as many as 60 words) that are thoroughly memorized by

the subject prior to the test session. Duri.llg the test session individ­

ua1- words are presented, and the subject I S task is to respond as rapidly

as possib1-e, indicating whether or not the test word is. a member of the

target set. Errors are fairly iJ;lfre'l.uent, and the principal data are

response latencies (i.e., the time between the onset of the test word and

the subject I S response). The length of the target list. and other features

of the experimental procedure prevent the. subject froill rehearsing the list

during the COUrse of t):le test session, thus re'l.)liring that the subject

access LTS in order to make a decision abo1.1.teacl1.. test word.
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In some respeots this tas\\:is similar to that studied by Sternberg

(1966) and otheps. In the Sternberg task, a small number of items (e.g.,

1 to 6 digits) ape presented at the sta~ of each tpial and make up the

target set for that trial. The test item is then presented, and the

subjeot makes an A
l

response i~ the item is a member of that trial's

target set, or an Ao otherwise. In the Sternberg task the subjeotdoes

not need to master the target set, for it is small and can be maintained

in STS while needed. This type of sho~~term recognition e~periment

differs then from ourlong~term studies in terms of the size and mastery

of the target set. The data from the two types Of studies are similar

in man;y respects, but there are some stri\\:ing differences. In both t;ypes

of studies, response latency is an increasing linear function of the size

o~ the target set; however, the slope Of the function is about 5 msec

per item in the long~term studies, as compared with about 35 msecin the

short~term studies. Other points Of comparison will be considered later.

~rom a variety of long-term recognition studies we have achieved a

better understanding of how information is represented in memory and how

it is retrieved and processed in making response decisions. A model

based on this wor\\: will be formally developed in the next section. First,

however, a more intuitive account will be given.

Consider the case in which the target set consists Of a,long list

of words that the subject has thoroughly memorized prior to the test

session. The initial problems are to postulate mechanisms by which this

in~ormation is used to distinguish target words from distractors. It is

assumed that every word in the subject's language has associated with it

aparticularlong~termmemory location that we will refer to as a node

4



in the lexical store (Miller, 1969; Rubenstein, Garfield, &Millikan,

1970). When a word is presented for test, the sensory input is encoded

and mapped onto the appropriate node. This process is essential in iden­

tifying or naming the test stimulus as well" as in retrieving other

information that is associated with the item. Fig. 2 shows a represen­

tation of a single node in the lexical store (left panel), along with an

example of an associative network by which various nodes are interconnected

(right panel). Each node is a functional unit :representing a single word

or concept (such as the relational concepts "to the left of, 'I "above,"

or other concepts dealing With size, shape, etc.). A variety of nodes

and their associations in the lexicon is necessary in accounting for

language use and other symbolic behavior (Schank, 1972), but for our pur­

poses we need only consider nodes that cor~espond to potential test words.

At each node is stored an array of codes. The input codes represent

the end reSUlts' of the encoding processes that operate on the aUditory,

pictorial, or graphemic information in the sensory register. These codes

serve as means to access the appropriate node in the lexicon. Internal

codes are alternative representations of the stimulus word that can be

used to locate the item if it is stored elsewhere in memory. The internal

codes can be of various types; they may be abstract pictorial or aUditory

images, a list of semantic-syntactic markers, predicate relations, etc.

Information recorded in memory involves an array of internal codes, and

the same object or event may be represented by different codes depending

on the memory store involved and related information. Finally, output

codes, when entered into the response generator, permit the subject to

produce the word"in various forms (oral, written, etc.). The property

5
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Fig. 2. A schematic representation of the lexical store. Panel (A) illustrates· a hypothetical node

in the lexicon with associated input codes [(1) auditory, (2) pictorial, (3) graphic]3 out­
put codes [(4) written, (5) spoken, (6) imaged], and internal codes [(7) acoustical code
for STS, (8) imaginal code for LTS, (9) verbal code for LTS]. Panel (B) illustrates a
subset of nodes in the lexicon, with dashed lines indicating codes that are shared by more
than one lexical node. For example, depending on an individual's experience, the nodes
for mare and stallion could share a common internal code; if this code is used (along with
others) to represent a particular episode, then ini'ormation about the horse's sex will not
be recorded in the E/K store.



of lexical nodes that allows transformation from one code to another has

proved useful in other theories of memory, most notably in the logogen

system of Morton (1969, 1970).

It is possible that information stored at the node representing the

test word could lead directly to the decision to make an Al or A
O

re­

sponse. This would be the case if, for example, each node corresponding

to a target word had associated with it a marker or list tag which could

be retrieved when the item is tested (Anderson & Bower, 1972). We take

the alternative view, however, that information contained in the lexical

store is relatively isolated from those parts of the memory system that

record the occurrence of particular events, experiences, and thought

processes. The lexical store contains the set of symbols used in the

information-handling process, and the various codes associated with each

symbol; these codes are the language in which experiences are recorded,

but the actual record is elsewhere in memory. Thus, memorizing a list

of words involves extracting appropriate codes from the lexicon and or­

ganizing these codes into an array to be recorded in a partition of LTS

separate from the lexical store. There is no direct link between a word's

node in the lexicon and its representation in the memory structure for

the word list; to establish that a word is a member of the memorized list

involves extracting an appropriate code from the word's lexical node and

scanning it against the list for a possible match,

Thus, LTS is viewed as being partitioned into a lexical store and

what we will call the event-knowledge store (ElK store). As noted above,

the lexical store maintains a set of symbols and codes that can be used

by the subject to represent knowledge and the occurrence of particular

6



events. When the subject is confronted with new information, he repre­

septs it in the form of .an arJ;'ay of appropriate internal codes, and if

it is to be re.t.ained on a ..lang-term basis, that array is recorded in the

ElK store. 3 Our representation of words resembles the model proposed by

Kintsch (1970b), but differs from his model regarding the representation

of a memoJ;'ized list. Kintsch assumes that acquisition of a list involves

increasing the familiarity or strength of an item in the lexical store.

While we agree with Kintsch up to this point, we also propose that, in

addition, the code or codes of a word in the lexical store are copied

and placed in the E/K store. The organization of these codes in the

ElK store, as suggested by Herrmann (1972), will depend on the particular

stUdy procedure used in acquisition (e.g., serial order, an aJ;'bitrary

pairing of words, or clustering by a common meaning such as category

membership). The division of LTS into a lexical store and an ElK store

is similar to the distinction made by Tulving (1972) between semantic

and episodic memory. In Tulving's taxonomy, the lexical store would be

classified as a case of semantic memory. The ElK store, however, might

be classified by Tulving as either semantic memory or episodic memor~

depending on the type of information in the ElK store. To Tulving, one's

memory for a list learned in a psychology experiment constitutes an

episodic memory, but the knowledge one learns in a chemistry course

(such as the periodic table of elements) constitutes a semantic memory.

It is maintained here that both kinds of information are held in the ElK

store and are treated by the memory system in essentially the same manner.

Figure 3 presents a summary of the processes involved in recognition

memory for words that aJ;'e members of a list stored in long-term memory.
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Fig, 3. A,schematic representation of the search and decision processes
:l.n long~terrn recognition memory. A test stimu.lus is presented
(1) and then encoded and matched to an appropriate node in the
lexicon (2). The famil:iarity j,ndex associated with the node may
lead to an immediate decision (3) and in turn generate a response
(6).' Otherwise an extended search of the stored target list is
initiated (4), which eventuaUy leads to a deoision (5) and a
SUbsequent response (6). Path (1), (2), (3), (6) y-esults in a
mUch faster response than path (1), (2), (4), (5), (6), and one
that is independent of target·-set size,



When the test word is presented, it is encoded into an input code that

allows direct access to the appropriate node in the lexical store. AI-

though the node dDes not contain a tag or marl<er indicating list membe.t'-

ship, it will be assumed that by accessing the node the subject can

arrive at an index of the test word i p familiarity. The familiarity

value for any node is a function of the time since that node was last

accessed relative to the number of times the node had been accessed in

the pasL Infrequently occurring words receive a large increase in

familiarity after a single test, whereas the test of a frequent word

results in only a small increase in its familiarity. The familiarity

,value for any word is assumed to regress to its base value as a function
h

of time since the last access of the node. '

In recognition experiments of the type described above, the famil--

iarity value of a word sometimes can be a fairly reliable indicator of

list membership. It will be assumed that when the subject finds a very

high familiarity value at the lexical node of the test word, he outputs

an· inunediate Al response; if he finds a very low familiarity value, he

outputs an inunediate A
O

' If the familiarity value is intermediate

(neither low nor high), the subject extracts an appropriate internal

code for the test word and scans it against the target list in the ElK

store. If the scan yields a match, an Al is made; otherwise AO' In

the next section, these ideas will be quantified and tested against data

involving both error probabilities and response latencies.
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A MODEL FOR RECOGNITION

Several special cases Qf the model to be considered here have been

presented elsewhere (Atkinson & Juola, 1972; Juola, Fischler, Wood &

Atkinson, 1971). These papers may be consulted for further intuitions

about the model, as well as for applications to a variety of experimental

tasks.

It is assumed that each node in the lexicon has associated with it

a familiarity measure that can be regarded as a value on a continuous

scale. The familiarity values for target items are assumed to have a

mean that is higher than the mean for distractors, although the two dis­

tributions may overlap. In many recognition stUdies (e.g., Shepard and

Teghtsoonian, 1961), the target set is not well-learned and involves

stimuli that have received only a single study presentation. Under

these conditions the familiarity value of the test stimulus leads

directly to the decision to make an Al or A
O

response; that is, the

sUbject has a single criterion along the familiarity continuum which

serves as a decision point for making a response. Familiarity values

that fall above the criterion lead to an A
l

response, whereas those

below the criterion lead to an A
O

response (Banks, 1970; Kintsch, 1967,

1970 a,b; Parks, 1966; Shepard, 1967).

The stUdies that we will consider differ from most recognition

experiments in that the target stimuli are members of a well-memorized

list. In this case, it is assumed that the subject can use the famil_

iarity value to make an A
l

Qr A
O

response as soon as the appropriate

lexical node is accessed, or can delay the response until a search of

the ElK store has confirmed the presence or absence of the test item in

9



the target set. These processes are shown in the flow chart in Fig. 4.

When a test stimulus is presented, the sUbject accesses the appropriate

lexical node and obtains Ii familiarity value. This value is then used

in the decision either to output an immediate A
l

or A
O

response (if the

familiarity is very high or very low, respectively) or to execute a

search of the E/K store before responding (if it is of an intermediate

value). The likelihood that the subject responds on the basis of the

test item's familiarity alone depends upon the criteria that are adopted

fOr making a decision.

A schematic representation of the decision process is shown in Fig.

5. Here the distributions of expected familiarity values for distractor

items and target items are plotted along the familiarity continuum (x).

If the initial familiarity value is above a high criterion (c
l

) or below

a low crite+ion (co), the subject outputs a fast A
l

or A
O

J:esponse, re­

spectively. If the familiarity value is between Co and c
l

' the subject

searches the ElK store before responding; this search guarantees that

the subject will make a correct response, but it takes time and in pro-

poJ:iion to the length of the taJ:getlist.

On the nth presentation of a given item in a test sequence, there

is a density function reflecting the probability that the item will

generate a particulaJ: familiarity value x; the density function will be

denoted $1 (x) for target items and ¢O (x) for distractor items. The,n ·,n

two functions have mean values fl
l

and flO ,respectively. Note that
in -,D

the subscript n refers to the number of times the item has been tested,

and not to the trial number of the e;x:periment. The effect of repeating

specific target or distractor items in the test sequence is assumed to

10



Test stimulus
presentation

Stimulus encading and access
to item's

famil iarity value

Familiarity
value leads to decision
to respond immediately

Yes

Activate response
generator

Response
output

No Execute search af the
ElK STORE to deter­
mine whether sti mulus is
member of target set

Fig, 4. Flow chart representing the memory and decision stages
involved in recognition.
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Fig. 5. Distributions of familiarity values for distractor items,
$o(x), and target items, $l(x),

lOb



increase the mean familiarity value for these stimuli. This is illus-

trated in Fig. 6 where ~ and ~ shown in the bottom panel (n > 1)
l,n O,n

have both been shifted to the right of their initial values ~l 1 and,
~O, 1 shown in the top panel. The effect of shifting the meah familiarity

values up is to change the probability that the presentation of an item

will result in a search of the ElK store.

We can now write equations for the probabilities that the SUbject

will make a correct response to target and distractor items. As shown

in Fig. 5, it is assumed that the subject will make an error if the

familiarity value of a target word is below cO' or if the familiarity of

a distractor is above c
l

. In all other cases, the subject will make a

correct response. Thus the probability of a correct response to a target

word presented for the nth time is the integral of $l,n(x) from Co to 00:

1
00

S ) ~
l,n c

o
$1 (x)dx ~ 1 - <!l (c).

,n l,n ° ( 1)

Similarly, the probability of a correct response to a distractor presented

for the nth time is the integral of $O,n(x) from-m to c
l

:

(2)

Note that <!l(') designates the distribution function associated with the

density function $(x).

In deriving response latencies, we shall assume that the processes

involved in encoding the test stimulus) retrieving information about the

stimulus from memory, making a decision about which response to choose

11
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Fig. 6. Distributions of familiarity values for distractor items and
target items that have not been tested (ranelA), and that
have had at least one prior test (ranel B).
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on the bas~s of this information, and em~tt~ng a response can be repre-

sented af) f)u\,cess:!.ve ane). independent stages. These f)tages are diagrammed

in the flow chart in Fig. 7. When the test stimulus is presented, the

first stages involve encoding theitem, access~ng the appropriate node

~n the leX~Gal store, and retr~eving a. fam~Uari ty value x. The times

required to execute these stages are GPmbined and represented by the

quantity £ in Fig. 7. The next stage is to arrive at a recognition

decision on the basis of x; the decis~on t~me depends on the value of

x relative to Co and cl ' and is given 1:lY the .function v(x). If x < cO'

a negative decision is made; if X > c
l

' a positive dec~sion is made.

If Co ::; x :::: "1' a seaTch of the ElK !3tore is regu~red. The time for

this search is as!3l,lilled to be a funct~on of d, the size of the target set;

namely, K + e.(d). In this eguat~on, K denotes the time to extract an
J.

appropr~ate search code from the lexical node and initiate the scan of

the target list; e.(d) is the time to execute the scan and dependS upon
J.

d and upon whether the test item is a target (i~l) or a distractor (i~O).

The final stage is to output a response once the dec~sion has been made,

the response time being '0 for an A
O

response and r
l

for an Al response. 5

The guantities £, v(x), K, ei(d), and r
i

are expected values for the

times necessary to execute each stage. If assl,lillptions are made about the

forms Of the distribut:lons associated with these expected values, then

express~ons for all moments of the latency data can be derived. The~r

derivation is complicated under some conditions of the model, but under

others it simply involves a probab~listic m~xture of two distributions;

that is, the times resulting from fa!3t respOnses baf)ed on the familiarity

value alone and times re!3ulting from slow responses based on the outcome

12



Test
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presentat ion

Stimulus encoding and access
to item's famil iarity value x
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Comparison of familiarity value x
to cri teria Co and c,

x< Co
v Ixl
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Co $. x $.. ci
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Search ElK Store to esta blish
whether or not test stimulus is

;
from target list

K + Bol d l K+Blldl

Not from From
target ta rget
list list

Execute Execute
negative response positive response

rO rl

Respond Respond
AO AI

Fig, 7. Flow chart representing memory search and decision stages
of recognition. The bottom entry in each box repJ:'esents
the time re~uired to complete that stage.
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of the extended .. me)llOry search. In the present paper, however, wr;; will

only ma».e ass\l)Jlptions about the e;;<;pected value for each stage, thereby

restricting the analysis to mean response data,

We shall let t(A. I
;L

to the nth presentation

S. ) denote the e;;<;pected time for an Ai response
J,n

of a particular stimulus drawn from set S.
J

(i,j ~ 0,1)1 Expressions can be derived from these quantities by weighting

the times associated with each stage by the probability that the stage

occurs during processing. ~hus, for example, the t;i.)D.e to. make an Al

response to the nth presentation of a given target item (Sl) is simply

the t;i.)D.e required to execute a response based on the familiarity value

alone plus the time to execute a response based on a search of the ElK

store, each weighted .by their respective p;robabilities. If x is the

familiarity value, then the time for a fast ~ response is A+ v(x) + rlJ

if, however, a search of the E/:K store 1,8 made, then res;ponse time is

£ + v(x) + K + el(d) + r
l

, The weighting probabilities must take account

of the fact that we are concerned with the time for an Al response con·

ditional on its being correct, The probability of a fast Al response,

conditional on the fact that it is correct, is the integral of ~l (x),n

from cl to 00, divided by the probability of a correct A
l

response (the

integral of ~l,n(x) from Co to 00). Similarly, the probability of a

slow ~ response, conditional on the fact that it is correct, is the

integral ~l,n(x) from Co to cl ' divided by the integral

Co to CD, Thus the expected time for an A;L response to

sentation of a particular target item is

13
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Note thE\t .e, r
l

, K, and 81 (d) do not depend on X and thus may be removed

rrom under the integral. Doing this and rearranging terms yields:

whe;re 1 again, <pC·) denotes the distribution runction asso¢iated with the

density function 4> (x) • Similarly,

(4)

p, + r +o

( 6)

14



Equ~tions (3) and (4) are the expected times ror correct responses and

Eqs. (5) and (6) are expected times ror incorrect~responses to target

and distractor items, respectively.

In fitting the model to dat~, it will be assumed that ~o (x) is
l,n

normally distriputed with upit vari~nGe for all values of i and n. ~husl

the presentatiqp of an item causes the distribution to be shifted up with-

out changing its form or variance. The unit-normal assumption is often

m~de in theoretical work because it simpliries the mathematics, It is

done here for this reason, and does not have any sl?ecial psychologic~l

sign:j.ficanoe. 6

In this l?al?er no assumptions will be made about

withn. Several iJ.ssuml?tions seem reasonable on an a

how ~o changes
l,n

priori b~sis; rather

tllan select among them, we bypass the issue by siml?ly estill\ating ",0
. J",n

from the data for each value of n. This approach is practical since the

range on n is smiJ.ll for the experiments considered here.

It sho1.1ld be remiJ.rked that the criteria Co and cl are viewed ~s

being determined by the s1.1bject. In the initial stages of an experiment,

theY would vary as the SUbject adjusted to the task, but it is assumed

that in time they stabilize at fixed val1.1es, Again no theory will be

given of how Co aqd cl vary over initial trials, and thus data for the

early stages of an experiment will not be treated.

Yet another simplifying assuml?tion Should be mentioned at this point.

Equations (1) and (2) indicate that errors are determined by the values

of "'i,n' Co and c1' In the eXJ?eriments examined in this paper, there is

no evidence to suggest thiJ.t error rates vary as a fUnction of d, the size

of the target list. Thus, in treating d~ta we will make the assuml?tion



that ~i,n' cQ and C:J. are independent of d. Expe:rimenta:J. p:rocedures can

be devised where this assumption would be vi~lated (see Atkinson & Juo1a,

1972), but for the experiments discussed here it is warranted.

What remains to be specified are the f'unctions v(x) and e. (d). It
~

is assumed that v(x) takes the following fo~:7

.(x-c )t3
pe 1 , for x > C

1

v(x) = p , for Co ::; x ::; c
l

(7)

·(c. -x)13
pe 0 , fo:r x < Co .

Figure 8 presents a graph of the equation. If' the familiarity value x

is far above the uppe:r cnter:i.on or far beJ,ow the :Lower cnterio", the

decision time approaches zero; for values close to the criteria, the

. q,ecision time approaches p. A special case of interest is when t3 = 0;

namely,

v(x) = p •

:En this case, the time to eva:J.uate the familiarity value is constant

(8)

regard:J.ess of its relation to cl and cO'

The quantity e. (d) represents the time to search the ElK store, and
~

is assumed to be a linear function of the target set size. For the most

genera:J. case we assume that search times on positive and negative trials

vary independently; that is,

e:J.(d) ~ ad

6J
O

(d) = aId .
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As a spec:Lal case. of Eg. (9), :Lt is possible that the search times are

identical for both target and distractor :LtemS:

(10 )

Alternat:Lvely, it might be that the length of the memory search is shorter

on positive trials than on negative trials. This situat:Lon would occ~r

if the target :Ltems are stored as a l:Lst structure, and portions of the

list are retrieved and scanned as the subject seeks a match for the test

stimulus. When a match :Ls obtained, the search ends; otherw:Lse all the

memory locations are checl<ed. The time for th:Ls process is

(Ha)

(Hb)

The memory-search processes described by Eqs. (10) and (ll)corres-

pond to the exhaustive and self-terminat:Lng cases of the serial scanning

model proposed by sternberg (1966, 1969b), While Sternberg's models

have proved to be extremely valuable in. :Lnterpreting data from a variety

of memory-search exper:Lments, good fits between the models and data do

not require that the underly:Lng psychological process be serial in nature.

There are alternative models, including parallel scanning models, that

are mathematically egu:Lvalent to those proposed by Sternberg and yield

the same pred:i,ctions as Egs. (10) and (11) (Atk:i,nson, Holmgren, & Juola,

.1969; Falmagne & The:Los, 1969; Murdock,1971; Townsend,. 1971). ThUS,

the use of the above equations to specify the time to search the ElK

store does not commit us to either a serial or parallel interpretation.
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EFFECTS OF TARGET LXST LENGrTH AND TEST RE:E'ET!T:I:Ol'lS

The first experiment to be considered was designed primarily as a

replication of two earlier experiments as we:Ll as to provide a largro

data base with which to test the model, JllPla, et al" (1971) demon­

st~ated that recognition time was a straight-:Line function of the number

of items in a large (10 to 30 items) target set: as the number of items

in the target set increased, response latency increased linearly for

both positive and negative trials. A second experiment (Fischler &

Juola, 1971) showed response latency to deprond on Whether or not the

test stimllllls had been presented p;t'eviously. The response latency ;for

a repeated target item was more than 100 msec less than the latency for

a target on its first presentation, For a distractor, repetitions in­

creased latency, with response time being about 50 msec greater for a

repeated distractor than ;for one rece,iving its first presentation.

The present study alsp inclllded repeated tests of t"rget and dis­

tractor items, and three target list lengths were used. Groups of 24

subjects eaCh were given lists of· either 16, 24, or 32 words. Each list

was constructed randomly selecting d words. frOm ,a pool o;f 48 cow~on,

one-syllable nouns. The words remaining in "the pool after each list had

been selected were used as "the distractor set (SO) to accompany that

target set (Sl)' The subjec"ts were given the lists about 24 hours be_

fore the experimen"tal session, and ins"truc"ted to memorize them in seri.al

order,

At the start of the test .~essiont each SUbject successfully com­

pleted a written' serial recall of the "target list. The subject WaS then

18



seated in front of a tachistoscope, in which the test words were presented

one ata time. To each pl'esentation the subject made either an A
l

or A
O

;response by depressing one of two telegraph keys with his right fore­

finger. The procedure fol' the present study was identical to that

reported in Fischler and Juola (:1.971).

The test sequence consisted of 80 consecutive trials that were

divided into four blocks. For Block I, four target wOl'ds and four dis­

tractors were randomly selected from Sl and SO' respectively. For Block

II, the eight Block I words were repeated, and foul' new targets and four

new dis tractors were also shown. Block III inclUded all the words pre­

sented in Block II with eight new wordS added (four targets and four

distractol's). Finally, Block IV inclUded all the words of Block III and

eight new words (the remaining unused taJ:'get and distractor items).

Order of presentation within blocks was randomized.

With this method of presentation, 16 target wOJ:'ds and 16 distractors

were presented to each sUbject. The test words thus included all of Sl

for subjects with lists of 16 words. For the other groups, the 16 target

words tested were either the first or last 16 words in the 24-woJ:'d lists,

or they were the first, middle, or last 16 in the 32-word lists. It

should be pointed out that the specific part of the target list that was

tested during the experimental session had no effect on J:'esponse times

or eJ:'ror rates. ThUS, no fUrther distinction will be made between groups

of sUbjects depending on which part of the target list was tested. The

lack of any effects due to the list part that was tested is not surpris-

. ing when it is noted that in several previous expeJ:'iments (Atkinson &

Juola, 1972; Fischler & Juola, 1971; Juola, et al., 1971) no effects
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were observed due to the serial position of the target word"thaj; isn,c'

positive response latencies plotted against the target words}" serial

position yielded a flat function. The overall effect of list length o~

latency is also uninfluenced by the testing scheme used; the magnit~~e'

of the list-length effect observed in this study is the same as in

studies where allitems of each list ar€ tested (Juola, et 13.1., 1971).

The procedure used here has the nice feature that the test sequence is

the same for all groups, the only difference among groups being the

length of the list memorized prior to the test session, The subjects

who memorized the longer lists were not told that only part of the list

would be used, and in the debriefing session at the end of the experiment

no one commented on the fact that some items were not tested,

The mean latencies for correct responses are presented in Fig. 9;

the data are from the last two trial blocks only (Blocks III and IV).

The effe'cts. s.hown in Fig. 9 were i3.1so obtained in Trial Blocks I and II;

however, response .times were somewhat greater on these trials, presu,'1)ably

due to practice efi'ects. :rhe data from Blocks III and IV were very

similar and will be regarded as representing asymptotic' performance. In

another paper (Atkinson & Juola, 1972), "e have used the model to make

predictions about all the data, including practioe effects, for a similar

experiment, but we will only be concerned with the data presented in

Fig. 9 in the present discussion. As shown in Fig. 9 , means were obtained

separately for A
l

and AOresponses to test words i;hat were presented for

the first, second, third, and fourth times (n=l, 2, 3, or 4). Since,

wi thin blocks, the presentation number was randomly ordered, the effects

shmm in Fig, 9 are i3.ttributable only to the Prior number of times the
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F~g. 9. Mean response latencies as functions of presentation number for
target and distractors for three list-length (d) conditions.
The top panel presents data for d ~ l6, the middle panel for
d ~ 24, and the bottom panel for d ~ 32. The broken lines
fitted to the data represent theoretical predictions.
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test word had been presented, In general, the results closely repli.cate

the findings of earlier studies, By comparing the mean latencies as the

presentation number increases from one to four in Fig, 9, it can be seen

that the targets and distractors yield opposite effects, Repetitions

decrease response latencies foJ;' targets, and incJ;'ease latencies for dis­

tractors, The line segments fitted to the data were generated from the

model and will be discussed later,

The data from Fig, 9 are replotted in Fig, 10 so that mean error

and. mean response latenci.es are presented as functions of target list

length, The left panel includes the data for items receiving their first

presentations (n;=l), whereas the right panel presents the average data

for repeated presentations (n;=2, 3, and 4) weighted by the number of

observations for each value of n, Again the effects of repetitions are

quite evident; repetitions decrease latency on positive trials by more

than 100 msec, whereas repetitions increase negative latencies by about

50 msec, on the average, Similarly, repeated tests d.ecreased errors to

target words (shaded bars along the lower axis), and repetitions increased

errOrs to distractors (open bars), The linear functions fi t.ted to the

data in Fig, 10 wi.ll be di.scussed later,

The number of t.arget words affected response latency, wit.h mean

latency being an approximately linear function of target si.ze, By way

of contrast, note that error rates do not increase wi.th the number of

target words, but are relatively constant across the list. lengt.hs for

all experimental conditions, Furt.her, an examination of error latencies

showed that there was no effect of target list length on the times for

incorrect responses ~
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of target list ;Length (d); the qata represents a weighted
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The left panel presents data for initial presentations of
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the data for repeated presentations. Incorrect responses
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to the data represent theoretical predictions.
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Perhaps most interesting, however, is the interaction between target

set size and the effects of repetitions. For target words, repetitions

decrease the size of the list-length effect; that is, the slope of the

function relating mean response latency to target list length is less

for repeated targets than for initially presented targets. The opposite

is true for distractors; repeating distractors increases the slope of

the latency function.

A discussion of these results will be postponed unti.l the end of

the next section. We will first demonstrate how parmneters can be esti­

mated and the model fitted to data.
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There are several app:l;Oac~s that can be taken to estimate parameters.

The method to bejreE;ld ~re is p.ot too l!lost eff;i.(;:i,ent, but it has too merit

of 'being qUite simPle. l;t invo;Lves usiJ:lg thE;l er;J:'Q:t'probab:illt:i.es to esth

mate the J.1. 'I>. The estimates of the J.1. 's are then subst:ituted into'-,n . '-,n .

the la'tency e\luat:ions and treated as f:i.xed values. The rema:in:ingparam-

ete;;-s are es'timated by selecting them so ths't the differences between

obsefved ~d predicted latenc:ies are m:i.nimized. 8

three l:ist-;Lengthcondit:ions, since the:+e were no s:ignificant differences

in error rates across grOupl>. ·We ul>e these data and Eqs. (1) and (2) to

estimate the J.1;L,n's. for examp;Le, pr(Ao I 8;L,1) = ~;L,;L(cO) from Eg, (1),

and the observed value for this Pl;'obabUity iii 0.171 ;from Table 1. Con-

sulting a norma;L probabi;Lity table, J.11,1 = Co + .95 in order for the error

rate to be 0,l7.;L~ 8:im:il.ar;Ly, ~,2 = Co + 2.l4, ~1,3 '" Co + 2.20, and

J.11,4 '" Co + 2.46, using the remaining error data in the first column of

Table 1. PrOceeding in the same way, using Eg. (2) and the error data

in the second column of the table, yields J.10,1 = cl - 2,58, J.10,2 '" cl - 1·76,

J.10 3 '" cl - 1.66, and J.10 4 = cl - 1.66. Thus the obse~ed error proba_, ,
bilities fix the estimates pf J.11,n in terms of Co and J.1o,n in terms of

cl • It can be easily shown that the theoretical predictions for error

probabilit:ies and latencies do not depend on the abSOlute values of Co

and cl ' but only on their differenGe. Thus, Qne or the other can be

set at an arbit~ary value. for simplicity we let cO'" 0; note that no
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Tab1~ 1

)?:r( 1\.0 ··1 Sl ) ;I:?:r(A1 I So . ),n ,n

n '" 1 O.lTL 0.005

n " 2 0,016 0.039

n '" 3 0.014 0.049

n '" 4 0.007 0,049
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matter what va1.ue isselec.ted for c
ll

the error data will be fit perfectly.

By setting Co eqllal to Zero and by assuming unit variance for the ¢-dis­

tributions, we have in essence defined the zero point and measurement unit

for the familiarity scale.

With c
G

= 0 and the fl.' s restricted by the error data, the remain­
~,n

ing parameters can beestimated.from the latency data. Si~ special cases

of the general model will be used to fit the latency data. As indicated

in Table 2, the cases differ in how the functions v(~) and e.(d) are
~

defined. Equations (7) and (8) define two versions of v(~), and Eqs. (9),

(10), and (11) define three versions of e.(d).
~

Listed ih .Table 2 are the

parameters that need to be estimated for each case. The parameters grouped

in parentheses cannot be separately identified; that is, the predictions

of the model depend only on the sum of these parameters, which means that

they cannot be estimated separately.9 Note that the pair of models in

each column of Table 2 are equivalent if t3 = 0; thus the lower model in

each column must predict the data better than the one above it unless t3

is estimated to be zero. Similarly, Model I reduces to MOdel II and IV

to V if a = a'; Model I must be better than II, and IV better than V

unless the estimates of a and a' are identical.

Our method of parameter estimation involves the 24 data points in

Fig. 9. Parameter estimates are selected that minimize the sum of the

squared deviations (weighted by the number of observations) between the

data points and theoretical predictions. Specifically, define the root

mean square deviation (RMSD) between observed and predicted values as

follows:
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~ab1" 2

S~X ModelR ~t~n"d in Te~s at the Functions v(x) and e.(d)
l

e. (d)
;I.

Eg. ( 9) Eq. ( 10) Eq, (11)
v(x)

Mode;!. I Model n Model pI

cl c1 c1

(.e-tPf:t'l) (l1+p+:t'l) (MPHl )

Eq. (6) ;r :r :t'

K K K

a a a

a'

Model. IV Model, V Model. VI

cl °l °l

(£+:t'1) (£+1':1,) (11"':t'1)

r r :t'

Eg. (7) K K K

P P P

i3 i3 i3

a a a

a'

Note; ;r ~ 1;'0 ~ 1;'1 •



RMSD =
1 24·
Iii r n.(t .

i=l l P,l

w~r" N = the total number of observations,

i = an index over the 24 data points shown in Fig. 9,

n:L = the number of obseJ:'VEtions detennini,ng data point i,

t . = predicted response latency for data point i, and
P,l

t . = observed response latency for data point i.
0,1

For each of the six models, the above function is to be miniro,ized with

respect to the parameter set given in Tabla 2. We have not attempted to

carry out the minimization analytically, for it appears tq be an impos-

sible task; rather a computer was programmed to conduct a systematic

search of the parameter space for each model until a minimum was obtained. 10

~ following min:Lmum RMSD's were obtained:

Model I 9.93 (6)

Model II 9.94 (5)

Model III 10.89 (5)

Model rv 9.86 (8)

Model V 9.92 (7)

Model VI 10.34 (7)

The number of parameters estimated in the grid search for each model is

given in parentheses. Model; 111; and VI clearly y:Leld the poorest fit

and can be elim:Lnated from contention. The fact that Models I and II

are about e~uallY good, as are Models IV and V, indicates that separate

estimates of Q and Q' do not substantially improve the goodness of fit.

24



The conclusion to be ,drawn from this observation is that the time to

search the ElK store is approximately the same for both targets and dis­

tractors. Note also that Models I and IV are about equally good, as are

Models II and V, suggesting that the more complicated v(x) functions

yield little improvement over the constant fUnction. 'Add to these ob­

servations the fact that Model II with only five parameters produces

virtually as good a fit as Model IV with. eight parameters.

In view of the above considerations, Model II is our preferred choice

among the six models, and in addition it is mathematically the simplest

of the group. Table 3 presents the parameter estimates for Model II,

and the predicted response times are presented in Fig. 9 as connected

lines.

The straight lines shown in Fig. 10 are the predicted functions

based on Model II for initial presentations (left panel) and repeated

presentations (right panel). The fits displayed in Fig. 10 could be

improved upon somewhat, but it should be kept in mind that they were

obtained using parameter estimates based on a different breakdown of the

data (i.e., the data in Fig. 9).11

The latency of an error response should be fast according to the

theory, since errors can occur only if the subject responds before the

extended memory search is made. The data support this prediction, and

accord well with the values predicted by Model II. Specifically, the

latency of an error is close to the predicted value of £ + P + r
O

~ 731

msec for an Sl item, and to £ + P + r
1

~ 687 msec for an So item. Further,

as predicted by the model, the observed error latencies do not appear to

be influenced by the length of the target list.
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Tab;Le 3

parameter Est~tes for Mode~ II

parameter Estimate

c1 1.~2

I.e ;- p ;- r
1

) 687 msec

r 44 msec

K 137 :m.sec

a 9.9 msec



A verbal interpretation of the results in terms of Model II would

proceed as follows: When a target item is presented for the first time,

the probability that a search of the ElK store will occur before a re­

sponse is made exceeds the probability that a fast positive response will

be emitted on the basis of the item's familiarity value alone. The

opposite is true for initial presentations of distractors: most trials

result in fast negative responses. Thus, the mean latency is longer for

initial presentations of targets than for initial presentations of dis­

tractors, and the list-length effect is greater for targets than for

distractors (since list-length effects depend only upon the search of

the ElK store). The effect of J;'epeated tests of words is to increase

the familiarities of both targets and ~istractQrs. This results in an

increased mean latency foJ;' responses to distractors, and a decrease in

response latency to targets; the magnitude of the list-length effects

are observed to change concomitantly.l2

APPLICATION OF THE MODEL TO RELATED EXPERIMENTS

Other experiments have been conducted to test various features of

the theory. One such study involved target sets in which any specific

word was included either once, twice, or three times in the list memor­

ized prior to the experimental session. If the number of occurrences

of a word in the target list affects its familiarity value, then both

error rate and latency should be less for multiply-represented items

than for items appearing only once in the list. If, however, the word's

familiarity is unaffected by repetitions in the study list, then the

error rate should be the same for all target items; further, any latency
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effects would have to be due to a faster search of the ElK store for an

item multiply~.representedin the target list as compared with one appear­

ing only once. The ,esults showed that error rate and response latency

were less for items that occu,red two or three times in the list than for

items included only once. Model ~~ was used to generate fits to the data,

assuming that the expected familiarity value of a target word was an

increasing function of the number of times it was inCluded in the ta,get

list; the search of the ElK sto,e was postulated to ta~e the same t~e

for all terms. The model p,ovided an excellent fit to both latency and

error data (Atkinson & Juo1a, 1972).

Other experiments have demonstrated the importance of semantic pro­

perties of words in determining the familiarity value of an item. Juola,

et a1•• (1971) reported that if synonyms of target words were used as

distractors, both response latencies and error rates increased over the

values obtained for semantically unrelated distractors. Another experi­

ment (Atkinson & Juola, 1972) Provided target sets arranged into a tree

structure to reflect the semantic hierarchy from which the words were

taken. During the test session target words were selected either from

a "dense" po,tion of the hierarchy (one of four nOdes on a branch with

up to four ef(emp1ar words under each node) or from a "sparse" portion

(one of two nodes with only two exemplar words under each node). The

data showed that mean latencies for positive responses were less for

targets from dense portions of the tree than fOr targets from the

sparsely represented ,egions. The results from these two experiments

indicate that the expected familiarity value of a word can be increased

by testing semantically related WOrds.
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An exper~ment by Juo1a (1972) w~s: designed to test theimportarice

of stimulus-encoding factors in determining an item's familiarity value.

The sUbjects memorized a list of 48" common nouns and then were tested

with either words or simple outline drawings of the" objects named by the

words. Both words and pictures were presented as targets anddistractors,

and all items were tested twice. Of interest was the nature of the repe­

tition effects when the second test of an item was either identical in

form (e.g., "cAT" followed by "CAT")or different (e.g., "CAT" followed

by a picture of a cat). Repetition of the same pictorial form resulted

in a faster encoding t~me; repetition (whether in the same or a different

form) also increased the familiarity value of the items. The relative

importance of these two effects were estimated by comparing mean latencies

for repeated targets and distractors for the case in which the exact" form

of the stimulus was preserved on both tests, and the case in which dif­

ferent forms of the item were presented on successive tests. The results

showed that subjects were faster on trials in whi~hrepeated items were

presented in the same form (word or picture) as they had been shown on

the first presentation. This was true for dis tractors as well as for

target items. However, there were no significant differences in the

error rates for items that were tested with the same or different stimulus

forms on success~ve presentations. These results indicate that the fa­

mi1iari ty value of an item is :>;e1ative1y independent of the form of the

stimulus at the time of test. However, the form of the stimulus does

have an effect on encoding time.
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RECOGN;ITION MEMORY l"OR ;I!J;'EMS :l:N SHOm;~TEEM i3TORE

Th~ theory ~~esented ~n the ~revio~s seGt~ons was o~iginallY fo~u­

lated, to d,eal with r~Gognition e:x~e~iments ·involv~ng largeta~get sets

stp~d in LTS. :l:t is ~ossibJ.e! howeve~! to extend the model to the Gase

in whiGh the target set qopsists of a small numbe~ of items in STS. The

res\1l'ts from ei\:periments usi,l1g small memopY sets have gel1erally shown

that respol1se latel1cies a~e inGreasingl linear funqtions of the numbe~

of ta~get items with ~oughly equal slopes for ~ositive and negative re­

sponses, A model used to account for these fi,l1dings is the serial

sqanni,ng ~rooess Proposed by Sternberg (1966; 1969). Aooordil1g to

Sternberg's model! the s~bjeot el1codes the test stimulus into a form

that is oOmparable to the inte~nal rep~sentati,ons of the target items

stored in STS. The enooded test i,tem is soanl1ed il1 serial fashion against

each of the memory items! al1d then a d,eqision is made about Whether or

not a match was obtained. The model p~diqts that latenoy will be a

lil1ear function of memory-set Size! with both positive and negative re­

sponses having the same slope but possibly different il1tercepts.

Whereas the Sternbe:rg mode;!, has ~rov"d adeguate irJ. eXPlaining the

~esults from many sho~t~te~ recognition exper;mel1ts! there are reports

in the l;i.teratu;r;-e of systflmai;;io disorl"pal1cies between data and the model's

p~ediotions. It is not~ossib;!,e to rev;i.flw these :res~lts here (sel"

Niok:e~sonl 1970)! but variatiol1s from the mod,el haye ipvolved depart~.es

from ;!'il1earity in the funotiOI1S "elat~ng .esponse lateno~es to target-

set sizel d;i.f~erel1oe il1 slopes between the ful1ctions obta~ned for positive

apd negative respQI1Ses (inoluding oases il1 whi,oh the slo~e for ~ositive
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responses is significantly greater than that for negatives), serial posi-

tion effects in the latencie9 of positive responses, and trial-to-trial

dependencies. These, findings have led some authors (Baddeley & Ecob,

;~970i Corballisi Kirby, & Miller, 1972) to propose alternative models for
,- ',', ,', ".-' - ',," ,,' ..... . , '

short-term recognition memory, suggesting that response decisions might

be based solely on the test item I s memory strength. Strength models

usually assume that, there is a single criterion along the strength con··

tinuum; values above this criterion lead to positive responses. In

addition, the decision time is assumed to be greater for values near the

criterion, and both the criterion itself and the mean strength value of

the target items are assumed to decrease as the number of targets

It is our view that the test item's familiarity value (which in

some sense is comparable to a strength notion) may play the same role

in the short-term case as it does in long-term recognition studies.

List-length effects ,are still to be explained in terms of a scan of the

target set, but on occasion this search may be bypassed if the test item's

familiarity is very high or very low; as in the long-term case, the proba-

bility of bypassing the target-set search will depend upon the reliability

of the familiarity measure in generating correct responses. The proba-

bility of bypassing the target-set search should be minimal in experiments

usin~ a small pool of items from which targets and distractors are to be

dr~v» on each ,trial, as in the Sternberg (1966) study which involved only,.
the digits ° to 9. The reason is that during an experimental session,

I

allt~tems in the stimulus pool receive repeated presentations, and the

resulting high familiarity values become less and less useful in
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dis~ing~ishing ~argets from ilistractors; thus a search of the target set

will be made o~ most trials resulting in large list~length effects. Sup~

port for this view com~s f:rom a study by Rosenfdil and Morin (1972) ~ wi")

r~ported m~qh larger slopes for the respoAse~time ~nc~ioA in a shott.

te~ scanning ~ask if th~ stimuli were selected from a small pool (10

w"rds) thfln when selected, witllo~t r,,'placement, fr9m a very laJ;'ge pool

of words. for the small item pool, we assume thflt repeflted p:resentfltion

iAcJ;'eases the familiarity of all items to a ~nifo~ly high' level, ther"by

reducing its us"fulness as a basis for responding. Th~s, the pJ;'obability

of exec~ting a taJ;'get.set search sho~ld be maximal, ca~sing the slope of

~he response~time functions to ~ak" on its maximum val~e.

fi~re 11 presents a flow diagram pfthe processes inyplved in

recognition memory for items stored, in STS. As in th" case for target

sets stOred in the ElK st"re (Fig. 3), the test item is first encoded

and the appropJ;'iate node in the lexical store is accessed leading to th"

retrieval of a familiarity val1.\e for the item. J:f the familiarity value

is very high or very low, the SUbject o~tp~ts a fast response which is

independent of memory.set si~". For inte~ediate familiarity values, the

SUbject retrieves an internal code for ~se in scanning STS, Th~s far,

the processes proposed for sho:rt~te~ recognition are id"ntical with those

of the long~te~ case. However, the internal code used to search STS may

not be the same as that ~sed in tlle long.te~ memory search. For example,

KlatZkY~ JUOla, and Atkinson (1971) p:rovided evidence that alternative

COdes for the same test item can be generated and compared with eithe:r

ve:rbal o:r SPatial representations of target~set items. After retrieval
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o~ the app~op~~ate ~nte~nal code, a sea~ch of the target list stored in

STS is executed" and a response bi3,sed on the outcome of this SCi3,n. is then

mad,e,

An .unpublished, study cond,ucted by C~arles Darley and P~ipps Arabie

at Sti3,nford Un~versity was designed, to i3,ssess the effects of item famil­

iarity in a short-term memory task. The familiarity vi3,lues of distractor

items were manipulated, to determine if this vi3,rii3,bJ,e wOl:\ld ".ffect the

slopes and intercepts of the function reli3,ting response latency to ti3,rget_

set si~e. On each of a long series of trials, a target Set of from two

to five words was presented, i3,uditorally followed, by the visual presenta­

tion of i3, single test wo~d,! The words used in the ti3,rget sets were

d,iffe~ent on every trial of tbe experiment; that is, a word once used in

a ti3,rget set was never used in any other target set. On ~lf the trials

a word from the current target set was presented for test; these trials

,Jill be designated l?-tri,i3,ls to ind,icate that i3, "positive response" is

correct. On the other hi3,lf of the t~ials/ a d,ist~i3,cto~ (a word not in

the cu~rent target set) was presented for test; these trials will be

ci3,lled JIl-trials since a "negative ~e13Ponse" is correct. The distracto~

wOl1ds were of three types: new wo~ds neve~ presented befoJ:1e in the ex­

pe~iment (denoted I'll' since the word, was p~esented fop the first time);

words that had, been p~esented for the first time in the experiment as

distractors on the immed,iately preced,ing t~ial (denoted N2/ since the

word was now being presented for the second time); and wOl1ds that had

been presented for the first time both asa member of the memory set and,

as a positive test stimulUS on the immediately preced,ing trial (denoted

N3, since the word, was now being Presented for the third time). Thus



there were four types of test items (Ni' N
2
,N

3
, p), and we. assume that

different degrees of faln:iliarity are associated with each.

Figure 12 presents a schematic repre.sentation of the four familiarity

distributions. The density functions associated with the test word on an

N
l

, N
2

, N
3

, and P trial will be denoted~(x;Nl)' ~(x;N2)' HX;N
3
), and

~(x;p), respectively; as in the previous application, these functions

will be assumed to be normally distributed with unit variance.· Their

expected value s will be denoted !"N ' !"N ' !"N ' and!-'p' The quantity Pp
123

should be largest since the test word on a P-trial is a member· of the

Cllrrenttrial target set and should be very familiar, !"N
l

should be

smallest because N
l

words are completely new, and I'll and!"N should be
2 3

intermediate since N
2

and N
3

words appeared on the prior trial. The

·probabil:Lties of errors for the four trial· types are determined by the

areas of the familiarity distributions· above· c
l

for dis tractors, and

below Co for targets; that is

Pr(Error IN.)
~

Pr(Error I p)

(i 1,2,3) (13)

(14)

Let us now derive e;xpressions for reaction times in this situation.

For simplicity, only .Model II of the previous. section ·will be considered.

To obtain e<;iuations for response latencies , it is necessary to .sum the

time for the encoding and familiarity-retrieval process (time £), the

time for a fast . response decision based 9n· the.famili.arity value alone
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:Fig. 12. Distributions o:t' :t'El.1llUiarity val1-les ;1'0):' the th:ree types
O:t' dist):'actor items (Nl~ N2, N

3
) and for target items (?).



(time p) weighted by its probability, the time for a search of the memory

list in STS (time K + om, with m defined as the size of the short-term

target set) also weighted by its probability, and the time for response

output (ro and r
l

for negative and positive responses, respectively).

Thus, the expected time for a correct response is

t(N. )
'l

£ + r
O

+

c
(1

p~(x;N.)dx +", (P+K+om) ~(x;N.)dx
l Co l

-0)

~(x;N )dx
1 '

(fori ~ 1, 2, 3)

t(p)

00 c lJ p~(x;P)dx + f (p+K+om) $(x;P)dx

c l Co

00J ~(x;P)dx
Co

( 16)

Note that only equations for a correct response are presented; t(N.)
l

denotes the time to correctly respond to an N. item, whereas t(p) denotes
l

the time for a correct response to a P item. The above expressions can

be written more simply if we define

", ~ ~:' 'IX;',)",,] le,(x;N,)""J-, (, .. ',',3) (rr)

""[f '(X;Pl1[( '(x,"l""r (,8:



Then

(19)

t(p) =; [£ + P + :rl ] + S[K + Q!llJ (20)

The quantities s. and s a:re determined by the familiarity dist:ributions
:J.

and cl and Co and are not influenced by m. Thus t(N.) and t(p) plotted
:J.

as functions of myield st:raight lines with slopes as! and as, respectively,
:J.

The latency data frOm the eAPe:riment are presented in Fig. 13, Note

that latency inc:reases with memo~~set size and is o:rde:red such that P

is fastest, and Nl , N2, and N
3

are p:rog:ressively slowe:r. To fit the

model to these data, we ]?:roceed in the same way as we did for the long..

term e~pe:riment. The observed p:robabilities of an e:rror on Nl , N2, and

the following relations: ~ =; cl ­
1

The probability of an error on a P

2.41;

Setting Co equal

Using these errorand .0~8, respectively,

yields

N
S

trials were .008, .018,

probabilities and Eq. (13)

~ =; cl - 2.10; ~ =; c
l

~ 1.~6.
2· 3

trial was .028; using Eq. (13) Yields ~ =; Co +

to ze:ro leaves the following five parameters to be estimated from the

latency data: cl ' (£ + P + r l ), :r, K, CY., where ris again defined as

rO - r l • An RMBD function equivalent to the one presented in Eq. (12)

was specified for the 16 data points in Fig. 13, and a compute:rprogram~ed

to search the pa:rameter space fox a minimum.

Table 4 p:resents the pa:rameter estimates, and the theo:retical pre~

dictions are graphed as straight lines in ]'ig, 13. In ca:rrying out these

data fits, nine parameters were estimated from the data; howeve:r, the:re

a:re fOur er:ror p:robabilities and 16 latency measu:res to account for.
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Table 4

Pa:raJl1ete:\' Estimates fo:r the Sho:rt-t,,:\'m Memory Study

Pa:raJl1e t,,:r Estj,mate

01 2.52

(.e + p + :r1) 499 mSeo

;r 64 mseo

K 70 msen

ex 33.9 msen

Note:



Thus nine on 20 degrees of freedom were used in the estimation process,

leaving 11 against which to evaluate the goodness of fit.

The results in Fig. 13 indicate that the familiadty value of the

distractor item has a large effect, with the slopes and intercepts of

the negative functions increasing with their expected familiarity values.

These effects are captured by the model, which generally does a satis­

factory job pf fitting the data. The predicted slope of the t(p) function

is 24 msec, whereas the predicted slopes for t(N
l
), t(N

2
), and t(N

3
) go

from 18 msec to 22 msec, to 28 msec, respectively. If the subject

ignored the familiarity measure and made a search of the memory list on

every trial, then all four functions would have a slope equal to a, which

was estimated to be 33.9 msec. 13

The results shown in Fig. 13 support the proposition that familiarity

effects playa role in short-term memory scanning experiments. Further,

these effects can be accounted for with the same model that was developed

for long-term recognition studies. However, examination of the parameter

estimates for the short- and long-term cases indicate that the time con­

stants for the two processes are not the same (see Tables 3 and 4). For

example, the time to initiate the extended search, K, is 70 msec in the

short-term study compared to 137 msec in the long-term study. In contrast,

the search rate, a, is 33.9 msec in the short-term case and only 9.9 msec

in the long-term case. Thus, the search is initiated more rapidly in the

short-term case, but the search rate is faster in the long-term case.

We will not pursue these compari.sons here, but will return to them later.

In the next section the model is generalized to an experiment in

which target items were stored in either STS, LTS, or both. For this
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case, the theory will have to be elaborated to account ~or such possi"

bilities as sequential or simultaneous search of the two memory stores

and changes in the decision criteria, depending on ·whether the test item

is potenti<tlly a member of a list stored in LTS, STS,. or both.

AN EXPERIMENT INVOLVING BOTH LONG- AND SHORT"TERM TARGET SETS

An experiment by Wescourt and Atkinson (1972) was designed to com­

pare results for the cases in which the subject maintained target sets

in eitherLTS, STS, or both. Figure 14 presents a .flow diagram fOr the

case in which the test stimulus could be a member of a target set in

either store. When tne test stimulus is presented, it is· encoded and

tne appropriate lexical node is accessed. If the familiarity value as­

sociated witn that node is above the high criterion or below the low

criterion, a fast response is emitted. If familiarity is of an. inter"

mediate value, tne subject executes an extended search of tnetwo memory

sto):'es. Again, it is likely that tne internal representations of items

in STS and the E/K store are different, thus different internal codes of

the test item must be extracted from the test item's lexical node before

this search can begin. The searcn Continues until a match is obtained

or until both sets are searched without finding a match, and then the

appropriate response is made.

In the Wescourt and Atkinson study, two types of trial blocks were

used. For one type, designated the S-Block, the target set consisted of,'

only short_term items (ST-set). For the other, the M-Block, the target

set involved a "mix" of both a ST-set and a LT-set. The ST-set is dis­

tinguished from the LT"set in two ways: (1) l'he pT-set was presented OIl



LEXICAL STORERESPONSE
GENERATOR

S
E R ST-set

TEST H N r--'"
E I 0'", :

STIMULUS • S G I u2
w "RESENTATION I ~ I , .
-J S I . ,
'"

.
T I urn I
E L __l

R

SHORT-TERM
STORE

,...------.------.
I
I
I
I
I
I___________J

.-----.-------,
: ElK STORE :
: LT-set I

r--, I
X, I I
X I I

I .21 I
I : I I
I I I

I Xd : ,
L __ " I

I
I I
L .J

LONG -TERM STORE

Fig. l4. A schematic representation for theWescourt-Atkinson study. A test
item is presented {I) and then matched to its node in the lexical
store (2). The familiarity index of the node may lead to an immed­
iate decision (3) and response output (7). Otherwise, an ST-code
and an LT-code are extracted for the lexical node, and then used to
search STS and LTS (4). A decision about the test item is eventually
made based on the search of LTS (5) or of STS (6), and a response is
output (7).



each t~ial befo~e the onset of the test stimulus, and always involved a

new set of wo~ds never·befo~e used in the experiment. On the othe~ hand,

the LT-set was tho~oughly memorized the day before the first test session

and used throughout the expe~iment. (2) The ST-set contained a small

number of words (1 to 4), which could be readily maintained in sho~t-term

memo~ without taxing its capacity. The LT-set, however, consisted of

a list of 30 words (memorized in serial o~der) stored in long-term memo~.

The subjects were tested in three consecutive daily sessions (the

data from the first day are not included in the ~esults reported here).

Each session was divided into M- and S-Blocks, On each trial of an

M-Block, 0 to 4 wo~ds (ST-set) were presented p~ior to the onset of the

test word. On positive trials, the test word was selected from either

the LT-set or the ST-set, if the ST-set was non-empty (load condition);

o~ the test word was selected from the LT-set, if the~e were no ST items

(no_load condition). On negative trials, the test wo~d;was not in either

the ST- o~ LT-set and had never been presented before in the experiment.

On each trial of the S-Block, an ST-set of from 1 to 4 words was presented

prior to the onset of the test stimulus; on positive trials a word from

the ST-set was presented for test, and on negative t~ials a word never

used before was presented.

Trials in the S-Block are like those in a typical short-term memo~

scanning experiment and will be ~eferred to as S-t~ials. The no-load

trials of the M-Block correspond to those in a long_term recognition

task like the one reported earlier in this paper; since tests involve

only the long-term ta~get set, these t~ials will be called L-trials.

The load trials of the M-Block requi~e the subject to evaluate a test
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word against both an ST-set and the 1T-set, and will be called M-trials.

Thus, S-trials involve a pure test of short-te~ memory, 1-trials a pure

test of long-term memory, and M-trials involve a mix of both short_ and

long-term memories. 14 A diagram illustrating the various trial types is

presented in Fig. 15.

Figure 16 presents the mean latencies of correct responses for the

various trial types. The straight lines fitted to the data represent

theoretical predictions and will be discussed later. In discussing

these results, it will be useful to adopt the following notation:

tS(P) ~ time for a positive response on an S-trial

tS(N) ~ time for a negative response on an S-trial

t 1 (p) time for a positive response on an 1-trial

t
1

(N) ~ time for a negative response on an 1-trial

tM(P--ST) ~ time for a positive response to a test item

from the ST-set on an M-trial

tM(P--LT) ~ time for a positive response to a test item

from the 1T-set on an M-trial

tM(N) ~ time for a negative response on an M-trial

(21a)

(21b)

(22a)

(22b)

(23b)

In all cases these measures refer to the latency of a correct response.

The sUbscript on t indicates the trial type (S, 1, or M); the Pin paren-

theses indicates that a positive response was correct (i.e., a target

item was presented for test), whereas N indicates that a negative response

was correct (i.e., a distractor was presented for test).
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Inspect~on of F~g. 16 shows that the observed valves for ts(p))

tS(N)) and tM(p~~are all increas~ng functions of m) the size of the

ST-set. In contrast) ne~ther tM(F*t~nor tM(N) appear to be systemat­

ically influenced by the s~ze of the ST-set. The presence or absence

of an ST-set '~n the M-Block) however) does have an effect) as ~s evident

by comparing responses on L-trials w~th comparable ones on M-tr~als,

Spec~fically) note that the four observed values for tM(P""L~ are well

above tL(p)) and that the four tM(N) 's are above tL(N).

The model to be tested aga~nst these data assumes that the extended

searches are executed separately in STS and ~n the ElK sto~e. The gues-

tions to be asked involve the not~on of whether the two memory stores

aJ;'e searched sequent~ally or s~multaneously. Figure 17 presents several

flow charts that represent the differences between ser~al and parallel

searches of STS and the ElK store. The diagram in F~g. 17(A) represents

the sequenqe of events on an S-trial and cOrresponds to the short-tepn

recogn~t~on model presented ~n the previous section. It assumes that

initially the SUbject makes a fam~liar~ty estimate pf the test item,

and on th~s basis dec~des to output a fast pos~t~ve or negative response

if ~ts value is above the high criterion or below the low criterion,

respectively. Otherw~se, the SUbject delays h~s response until a search

of STS has been made, the length of which ~s a l~near function of m (the

s~ze of the ST-set). F~gure 17(B) represents the stages involved on an

L-trial. Aga~n, the subject can output a fast negat~ve or pos~tive re-

sponse based on familiarity alone. Otherw~se) he ~nitiates a search of

the ElK store before responding; the t~me for this search ~s a linear

fUnct~on of d (the size of the LT-set) ,15
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Fig, 17. Flow charts representing models for processing strategies in .
searching the memory stores. The model fox' S-trials is shown
in :panel A; arrows (1) and (2) represent fast responses based
on familiarity alone, Whereas (4) and (5) represent responses
after a search of STS has occurred. The model for L-trials
is shown in Panel B and has the same interpretation as Panel
A except that the search involves the ElK store. Two alter­
native models forM-trials are presented in the bottom two
panels.. Panel C presents a parallel search. As before (1)
and (2) indicate fast responses based on familiarity; (3) and
(4) indicate that the searches of STS and the ElK store are
done simultaneously. If the test item is found in the ST-set
(5) or in the LT-set (7), a positive reSponse is made; if the
item is not found in the ST-set (6) the subject has to wait
for a similar outcome from the search of the LT-set (8) before
a negative response can be made. In :panel D, a seguential
search model is presented forM-trials. The arrows (1) and
(2) represent fast responses based on familiarity. When a
search is reqUired, the ST-set is examined first (3). If a
match is found, a positive response is made (4); if not, the
LT-set is searched (5). When the LT-set search is complete,
either a positive (6) or negative response (7) is output.
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On M-trials there are at least two search strategies that suggest

themselves. First, it is possible that the subject might search both

STS and the ElK store simultaneously, outputting a response when the test

item is found or when both stores are searched exhaustively without find­

ing the target. This strategy is represented in Fig. lire). Alternatively,

it is possible that the two memory stores are searched sequentially, and

(since response time is less to a test item from the ST-set than the LT­

set) it will be assumed that STS is searched first, as shown in Fig. lieD).

For both li(e) and li(D), a fast response will be emitted before a search

of either store is made, if the retrieved familiarity value is above the

high criterion or below the low criterion.

Examination of the data in Fig. 16 indicates that the sequential

model of Fig. lieD) can be rejected. In this model, the search of the

E/K store cannot begin until the STS scan has been completed. Since the

length of the STS search depends on the size of the ST-set, the beginning

of the search of the ElK store and, in turn, tM(P+f,T) and tM(N) should

increase as the ST-set increases. The data in Fig. 16 indicate that this

is not the case; both tM(P+f.T) and tM(N) appear to be independent of ST­

set size. However, these data are compatible with a parallel search

model of the type shown in Fig. lire), if it is assumed that the rate of

search in the ElK store is independent of the number of ST items. In

order to make a detailed analysis of the models shown in Fig. li, theo­

retical equations will be derived and fit to the data.
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THEORETICAL PREDICTIONS FOR THE STS-LTS INTERACTION STUDY

The decision stage of the general model, as represented in Fig. 5,

must be adapted to account for the experimental conditions of the

Wescourt-Atkinson experiment. It is necessary to allow for differences

in the decision process, depending on whether the test item is poten­

tially located in STS only, the ElK store only, or both. These differ­

encesmay be included in the model by allowing either the means of the

familiarity distributions to vary as a function of the trial type, or

by allowing the decision criteria to change. For the present analysis,

we assume that the means of the familiarity distributions are constant

over all conditions. This seems like the most parsimonious assumption;

familiarity should be a property of the test stimulus, but the subject

could be expected to adjust his decision criteria differently depending

on whether it is an S-trial, an L-trial, or an M-trial. Three familiarity

distributions will be specified; one associated with a test item from the

ST-set, another for a test item from the LT-set, and the third for a dis­

tractor item. These distributions are assumed to be unit-normal, with

cumulative distribution functions ~S(·), ~L(')' and ~D(')' respectively.

The means of the distributions will be designated ~S' ~, and ~D' and

assumed to be fixed for the data analyzed in this paper, The reasons

for fixing the means is as follows: distractor items and ST-items appear

only once during the experiment and, consequently, repetition effects on

familiarity are not a factor; for the LT-items, we only treat data after

these items have had several prior tests, and their familiarity shOUld

be close to an asymptotic level.
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Figure 18 presents a diagram of the familiarity distributions as

they apply on S, L, and M trials. Note that the mean for each distribu-

tion is placed at the same point on the familiarity scale no matter what

type of trial is involved. Differences in the decision process arise

because the subject can set his criteria at different values in anticipa-

tion of an S, L, or M trial. This possibility is indicated in Fig. 18.

and cl,L

sets theHow the subject

trials; as Co ­,1,

The low and high criterion values are denoted as Co Sand cl S for S-, ,
for L-trials; and as Co M and cl M for M-trials., ,
criteria depends on the trade-off he is willing

to accept between speed and accuracy; the nature of the trade-off, of

course, varies as a function of the trial type.

Notation comparable to that in Eqs. (21) to (23) will be used to

denote error probabilities. For example, ES(P) denotes the probability

of an error on an S-trial for which the correct response was positive.

This probability is the tail of the ST-distribution to the left of Co S,
in Fig. 18. Table 5 presents theoretical expressions for the various

types of errors.

As before, it is possible to derive equations for response latencies

by weighting each stage of the process by the probability that it occurs,

and then summing over stages. On every trial the test stimulus must he

encoded and the appropriate node in the lexical store accessed; time for

this stage is £ and is assumed to be the same for all trial types. Next,

the subject must make a decision based on the retrieved familiarity value;

using Model II, we assume that this decision time is p and also indepen-

dent of the trial type. If a fast positive or negative response is called
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for based on the familiarity value, it will be executed with times r
l

and

r
O

' respectively.
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F~g. 18. D~stributions of famil~arity values for the three trial types
of the Wescourt"Atkinson study.



Table 5
.,... ,y

Theoretical Expressions for the Probabilities

Seven Types of Errors

S-trials L-trials M-trials



When the familiarity value falls between the two criterion values,

a search of the stored target list or lists is required. The nature of

this search depends on the trial type since different internal codes may

be used and different memory stores scanned. Three cases are to be con~

sidered: (1) S~trials. An ST-code is extracted from the test item's

lexical node and then scanned against the target set in STS, the time to

extract the code will be denoted as KS' and then time m.aS will be re­

quired to scan the m items in the s~_set.16 (2) L~trials. An LT~code

is extracted from the lexical node, which takes time K
L

, and then scanned

against the d items in the LT~set, which t<ikes time d'~ (d in the e"per-·

iment is 30). (3) M-trials. Both an ST-code and an LT-code are e"tracted

from the node, and each scanned against the appropriate list. The extraq-

tion of the two codes will take time KM, and the respective scans, times

m'a
s

and d'OL' (Thus, a positive response to an ST and LT item takes

times m.as and d·Dt, respectively, a negative response takes times d'OL

since both lists must be scanned and the time will be determined by the

slowest scan which always involves the LT_set.) Whichever of the above

three cases apply, once a decision has been made a positive or negative

response requires times r
l

and ro' respectively.17

In terms of these assumptions, expressions can be derived for the

latency of a correct response for each of the trial types. The derivation

is like that for Eqs. (15) and (16), and only the results will be presented:

(24a)

(24b)
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tL(p)

tL(N)

(t + P + r 1) + SL(KL + dOL)

(t + p + r O) + sL(KL + dOL)

(25a )

(25b)

(26a)

(26b)

(26c)

The s-functions in the above equations represent the probability of an

extended search conditional on the occurrence of a correct response;

they are comparable to those in Eqs. (17) and (18) and are given in

Table 6.

To fit the model.to data, we proceed as we did for the other exper-

iments treated in this paper. For convenience ~D was set at zero. The

error data and theoretical equations in Table 5 were then used to esti-

mate all but one of the two remaining ~IS and six CiS. Once this was

done an RMSD function comparable to the one given in Eq. (12)~as defined

for the 22 data points in Fig. 16. The remaining parameters were esti-

mated by using a computer to search the parameter space and obtain

parameter values that minimized the RMSD function. The parameter esti-

mates are given in Table 7. Fifteen parameters were estimated from the

data, but there are seven error probabilities and 22 latency measures

to be predicted; thus 15 of 29 degrees of freedom were used in parameter

estimation leaving 14 against which to judge the goodness of fits.

The theoretical fits for the latency data are presented as straight

lines in Fig. 16. The most deviant point is for ts(P) when m ~ 1. This

particular discrepancy is not unexpected in view of previous research



Table 6

~robability of an Extended Memovy Search Conditional

on a Correct Besponse

s~f'\.lnct:Lon Theoretical expressions

Ss ['PS(c1 S) - Is(QO,s)][l - IS(CO,s)]-l,

s 1 (ID(C1 S) - I D(Co s) HID( c1 S) ]-1S , , ,

sL [IL(C1 L) - IL(CO L)][l ~ IL(CO L)]-l, , ,

S 1 [I D(Cl,L) - ID(CO,L)] [ID(ql,L)]-lL

sM s [IS(Cl M) - Is(qO M)][l - IS(CO M)]-l, , , 1

sM,L [IL(C1 M) - IL(CO,M)][l - IL(CO,M)]-l,

s I [I D( C1 M) - I D( qO,M) HID( Cl,M) ]-1M ,



Table 7

Parameter Values for Wescourt-Atkinson Study

Familiarity measures and
Latency measures decision criteria

(£+p+r
l

) 408 msec IlD
0

r ~ 30 msec ilL ~ 1.53

K ~ 69 msec IlS
~ 1.51S

K 140 msec Co S ~ -,99L ,
K ~ 207 msec c1 S ~ 2,13M ,

Os 35,0 msec Co L .- -,33,

C\ 9.8 msec cl L ~ 1.56,

Co M~ -.25,

c1 M ~ 1. 72,

Note:
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(Juo;La & Atkinson, 1971); it appea:rs thl;l.t fo:r I;l. memo:ry set of one item

(in the pu~ sho:rt~te:rm ol;l.se) I;l. decision Cl;l.n 01" oased on a di:rect com"

parison oetween I;l. senso:ry image of the memo:ry item and the senso:ry input

fo:r the test item. Thus , a diffe:rent process is ope~ative on these

pa:rtioula:r t:rials, leading to unusually fast :response times. Othe~ise,

the :!'its displayed in Fig. 16 a~e quite good , given the linea:r ohl;l.~aote:r

a:!, the p:rediotions.18 Also, the pa:rameter estimates are orde:red in the

e~peoted way, The estimate of K
S

is less than KL, as would be expected

Oy Gompa~ing the KI S for the long~te:rm and short~te:rm ~oognition ex~

periments given in Tables 3 and 4; ~ is the la:rg\"st of the g:roup and

should Os sine\" it involves extraoting both an ST and LT ood\". The

agreement between the estimate of K
S

in this study (69 mseo) and in the

short~term study (70 mseo) is quite remarkable; similarly, the estimate

of KL (140 mseo) is almost in perfect agreement with its estimate in the

long-term stUdy (137 ms\"o). The a's are alSO ordered as expeGted, with

a mUGh slower sea:rGh rat\" for the ST-set than for the LT. set. Note that

the estimate of as (35.0 mseo) is clos\" to the a~value estimated for the

short~t\"rm study (33.9 mseo) , and that OL (9.8 mseG) is vi:rtuallY identi,oal

to the a-value estimat\"d for the long~t\"rm study (9.9 msee). Diffe~ences

in response keys and stimulus displays make it doubtful that (~ + P + :rl )

or :r should ag:ree ao:ross the three studies :reported in this paper. The

pa~ameters that one might hope to o\" oonstant ove:r exp\"riments dO indeed

se\"m to be, providing support for the model beyond the goodn\"ss.of.fit

d\"monstratioll"
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SUMMARY AND CONCLUSIONS

In this paper we have presented and evaluated a model for recognition

memory, The model assumes that wher, a test stimulus is presented, the

sUbject accesses the lexical store, and retrieves a familiarity value for

the stimulus, Response decisions based only on this familiarity value

can be made very quickly, but result in a relatively high error rate, If

the familiarity value does not provide the subject with sufficient infor­

mation to respond with confidence, a second search of a more extended type

is executed, This latter search guarantees that the subject will arrive

at a correct decision, but with a consequent increase in response latency,

By adjusting the criteria for emitting responses based on familiarity

versus those basedon an extended memory search, the subject can achieve

a stable level of performance, matching the speed and accuracy of re­

sponses to the demand characteristics of the experiment,

The model provides a tentative explanation for the results of

several recognition-memory experiments, The memory search and decision

stages proposed in the present paper are indicative of possible mecha­

nisms involved in recognition, We do not, however, believe that they

provide a complete description of the processes involved; the comparisons

of data with theoretical predictions are reported mainly to demonstrate

that many features of our results can be described adequately by the model,

There are several additional observations, however, which suggest

that the memory and decision components of the model correspond to pro­

cessing stages of the SUbject, Introspective reports indicate that

SUbjects might indeed output a rapid response based on tentative, but

qUickly retrieved, information about the test stimulus, Subjects report
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that they are sometimes able to respond almost immediately a:('ter the word

is presented without "lmowing for sU:J;,e" if the item is a target or not,

The same subjects report that on other trials they recall portions of

the memori:;;ed list before responCiing. The fact that subjects are always

aware qf their errors ·also sUJ;lpoJ:'ts the general outline of the model; even

if the initial familiarity of an item produces a Ciecision to reSJ;lond im­

mediately, the search ·of the ElK store continues and, when completeCi,

J;lermits the subject to confirm whetheJ:' o~ not his response was correct.

These introspective reports lend supJ;lort to the general theoretical

representation, anCi go beyonCi the goodness-of-fit Ciemonstrations.

Additional support for the model comes from its generality to a

variety of experimental paradigms (for examJ;lles, see Atkinson & Juola,

1972). As reported here, the moCiel can be used to preCiict response

times in recognition tasks with target sets sto~eCi either in LTS, STS,

or both. Jt can also hanCile reSUlts from other classes of recognition

experiments, such as those employing the Shepard-Teghtsoonian paradigm

(e,g., Hintzman, 1969; OkaCia, 1971). The Ciifferences in results from

these various types of tasks can be explaineCi in terms of the e~tended

memory search stage of the model; the likelihood that the subject delays

his response and makes an extended search of memory is determined by

the criteria he adopts to minimi:;;e errors while still insuring fast re­

sponses, Once. the extended search is initiated, its exact nature depends

on how the target set is stored in l1\emorv (Slllith, 1968~. If the target

set is a well-ordered and thoroughly memo~i:;;ed list of words, the extended

search will involve systematic comparisons between the test stir~ulus and

the target items. On the other hano" the target set may be repl;'eSente(l
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in memory as a list of critical attributes (Meyer, 1970). In this case,

the extended search would involve checking features of the test stimulus

.against the attribute list (Neisser, 1967). The dependency of latency

on target-set size then would be determined by the relationship between

the number of attributes needed to unambiguously specify a target set

and the set's size. Finally, target items may be weakly represented in

memory (e.g., because they received only a single stUdy presentation);,

then the extended search might be aimed at retrieving. contextual infor-

mation, with search time relatively indepehdeht of target-set size.

These speculations about recognition memory and the nature of the

specific task lead to certain testable hypotheses 0 If the subject adjusts

his criteria to balance errors against response speed, different instruc-

tions could be used to alter the criteria. For example, if the target

set is. a well-memorized list of words, and the subject is instruct.ed to

make every effort to avoid errors, the appropriate strategy ,muld. be to

always conduct the extended search before responding. Since the time

necessary to complete this search depends on target-set size, both. over-

all latency and list-length effects should increase. Alternatively, if

response speed is emphasized in the instructions, the subject should

respond primarily on the basis of familiarity. In this case, responses

would be emitted without an extended search, and overall latency would

decrease and there should be little, if any, list-length effects.

For the theory described in this paper, the encoding process that

permits access to the appropriate node in the lexical store is assumed

to occur without error and at a rate independent of the size and makeup

of the target set. For highly familiar and minimally confusable words,



this assumption appears to be reasonable and is sUpported by our data.

However, for many types of stimuli, increases in target-set size will

lead to greater confusability and consequently slower, as well as less

accurate, responses (Juola, et al., 1971). When this is the case, the

explanation of the set-size effect given here will not be sufficient,

for we have assumed that it is due entirely to the extended memory search.

Analyses of set-size effects in the framework of this theory would be

inappropriate if the experiment were not des~gned to minimize confusions

among stimuli. The theory can be extended to encompass cOnfusion effects

by reformulating the encoding scheme and perhaps the extended search

process. However, the result would be a cumbersome model with so many

interacting processes that it would be of doubtful value as an analytic

tool. Trying to aocount for stimulus confusability in a theory of recog­

nition memory is too ambitious a project, given our CUrrent state of

knowledge. Greater progress can be made by employing experimental

paradigms specifically designed to study recognition memory, and others

specifically designed to study confusions among stimuli.
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FOOTNOTES

~his research was supported by grants from the National Institute

of Mental Health (MH21747) and the National Science Foundation (NSFGJ­

443X3), The authors are indebted to J. C. Falmagne and D. J. Herrmann

for extensive comments and criticisms on an early draft of this paper.

2See , for example, a collection of papers concerning models of

memory edited by Norman (1970).

3In oJ;"der to simplify the presentation, a sharp distinction has

been made between the lexical store and the ElK store. The distinction

is satisfactory for the experiments treated in this paper. But, in

general, we view LTS as composed of a graded set of memories; those de­

scribed here as lexical nodes represent one extreme, while event memories

represent the opposite. The lexical store evolves over a person's life­

time; by analysis of past memories the individual develops new codes

that make the storage of future events more and more economical. Thus

one's history of experiences determines the codes available in the

lexical system and, in turn, the ability to store different types of

infor.mation.

4Familiarity as used here is not specific to particular events.

It can be viewed as a reverberatory activity that dissipates over tune.

Whenever a node is accessed, it is set in motion. The amount of rever­

beration and its time course depends on the prior reverberation of the

node and the reverberatory activity at neighboring nodes (Schvaneveldt

&Meyer, 1972). When a node is accessed, the system can gauge the cur­

rent reverberatory level of that node and use the measure as an item of

information,
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5The successive and independent stages of the process, as repre-

sented by the blocks in Fig. 7, should be regarded as an approximation

to the true state of affairs. Psychological and physiological evidence

makes it doubtful that processes of the sort considered here are" cOIll­

posed of truly independent stages (Egeth, Marcus & Pevan, 1972; St:etnberg,

1969a) • Nevertheless, stage models tend 'to be mathematically, ,tractable,

and thus are useful tools for experimental' analysis; ,

6
Work by Suppes (196o) developsmathernat;i'ca::t'methods that would be

useful in the fO!!l1ulation of a more general'lllodelfbr fa.mi'liarity change"

7'rhe v(x) function proposed here is similar to orie invest'igated by

Thomas (1971) for a si,gnal,-detection task', .

8There are methods that permit simultaneous estimates of all param-

eters, but practical limitations make them unfeasible except in special

cases. For a discussion of this topi.c see Atkinson and Juola 1972) •

9proof of this remark is straightforward and will not be given here.

It is interesting that for Models I, II, and III, the par'ameterp is not

identifiable but lumped i.n the quantity (£ + p + r 1)' whereas for Models

IV, V, and VI, p is identifiable and only (£ + r.
1

) is lu.m.peda
.L

10For a discussion of such search procedures see Wilde (1964).

IlSimilarity factors not represented in the model could contribute

to the list·-.length effects displayed in ~"ig8. 9 and 10; As the target

set increases, the probability that any given distractor, will be similar

to a target item also increases.' Visual (or graphemic) similarity ,could

affect the speed with which the appropriate lexical node is accessi"d,

58



s:ib:i;L;Lty i~ ;r"ported by Juola, et a1., (1971); they showed, among other

th;Lngs, that d~st;racto;J;' words, graphically very similar to target items,
~

we." respond"d to mor" s;Lowly. hn th:is experiment no estimate can be

made of th" contr:ibution of similar:ity to the overall set-size effect.

Uowev"r, r"sUlts from sev"ral long-term recognition studies indicate

that both semantic and graph"miq s;Lmilarity cause increased er;ror rates

as w"ll as increased response latenci"s (Atkinson & Juola, 1972; Juola,

et al" 1971). S:ince there were no differences in er;ror rates among the

three groups, ;Lt is un;1.:ikely that a significant propo;rtion of the list-

length effects are attr:ibutable to sim:ilarity factors.

;L2Variables other than those ;represented :in the model influence

fami;L;Larity. Of particular :importance is the effect of the number of

intervening tr:ia;Ls between successive tests on a given item. Lag effects

in response latency have been observed, with the magn:itude of the effect

decreas:ing with ;Lag for both target and distractor items (F:isch;1.er &

Juo;1.a, ;1.971; Juola, et a;1.., 197;1.). This phenomenon wou;1.d be accounted

for in th" theory by assuming that the familiarity of an :item increases

:immed:iately after presentation, and then gradually declines over trials.

To develop th;Ls :id"a mathematiqal;1.y would compl:icate the model. By

design, ;Lags were relat:ively constant for the data treated here and need

not be exp;1.icitlY rep;resented in the model.

;L~S:imilar tits were carried out using Model I, which :involved est:i~

mating both a and a ' . The estimate of a' was somewhat below that of a,

but the goodness of fit was on;1.y slight;Ly :improved over that obtained

fo;r Mode;1. II, us:ing pne ;Less parameter.
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14Studies of this sorthave been reported byFor:riri'ancl Mariti (1969)

and Doll (1971). However, they have employed very sm,;;il LT-sets, aM

there is the possibility that the subject could enter the entire LTcset

into short-term memory on some or all of the' 'trials. Thus a complete

separation of the long- and short-term searches might not have been

achieved.

15Throughout this paper d is used to denote the size of a long-term

target set, and m the size of a short-term target set.

16The parameters K and a are used ,here in the same way as in earlier

accounts of the theory. The sUbscrip'tindicates, that K depends on the

cOde(s) to be extracted, and a on the memory store to be scanned.

17It is assumed, that ~ is indtp<;nd\,pt Of ,'the size of the STeset,

apd that any differences ip sc,anning thf ,Vr-seton L-trials and on

M-trials is due to, KLand K
M

, respectiyely. Independent SlJ.pport fOl;'

this assumption comes from a stUdy whi~h replicat~d the M-Block tri~l

sequence, except that all targets were drawn from the LT-set. Subjects

had to maintain a set of. items in STS (that varied from 0 to 4 word,S),;,

however, they knew that the test would involve either an LT-ii;em or' a

distractor. Under these conditions the latency of a positive response

to an LT-item and the latency of a negative response tO,a distractor

were both constant, not varying as a function of the STe,set size. In,

this experiment the scan of the LT-set was determined by DL and K , on
L

all trials; the parameter K
M

was not required since only the LT-code

had to be extracted from the lexical node on both L-trials and M-trials.

60



18The curvilinear component in the data of the left-hand panel of

Fig. 16 (excluding ts(p) for m ~ 1) was unexpected, since a study by

Juola and AtKinson (1971), using a similar procedure but employing only

S-type trials, yielded quite straight lines. (For a comparison of the

two procedures, see Wescourt and Atkinson, 1972.) The model presented

in this paper can be easily generalized to yield curvilinear predictions.

One possibility is that the subject adjusts his decision criteria as a

function of the ST-set size; when the large memory set is presented, he

anticipates a slow response and attempts to compensate by adjusting the

criteria to generate more fast responses based on familiarity alone.

Another possibility is that under certain experimental conditions, the

familiarity of the target items depends on their serial position in the

study list (Burrows & Okada, 1971). This assumption would lead to serial

position effects and could also account for the curvilinear effects noted

above.

61




