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ADAPTIVE INSTRUCTIONAL SYSTEMS:
SOME- ATTEMPTS TO OPTIMIZE THE LEARNING PROCESSl

Richard ¢. Atkinson

Stanford University

INTRODUCTION

One canﬁot help but question the éignificance'df ps&chblogy‘s con-
tribution to the development of effective instructionel procedures. On
the one hand; psycﬁolog& has been veny.influéﬂtial in the field of
education. In the.lasf twenty-Tive years almost every majot innovation
n éducation--programmed textbooks, behavioral objéctives; ungraded
schbois, indifidually prescribed instruction, COmputef'managed and
assisted instruction, token ecbﬁomies, and tailored testing to neme a
few--can be traced to psychology.' In maﬁy céses”thesé innovations have
not been due to psychologists priﬁéril& ideﬁtified'wifh education, but
rather to laboratory scientists whose research has éﬁggeéted ne?
epproaches to instruction. Psychology can be préud of that record of
accomplishmerit° But upon closer'examination, it is.evident thaf these
accomplishments are not as closely linked to psychologicél research ag
many might believe. Psychology has suggested new approaéhes'to education,
- but these suggestions have not led to sustained research programs that
have the proﬁisé of producing a truly effectiveﬁtheory of instruction.

Rathér, psychology seems to'provide the stimulus for innovation, but

lTo be published in Klahr, D. (Ed.), Cognition and Instruction. Hillsdale,
New Jersey: Erlbaum Associates, 1975.
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'innovation'that has not in turn led to a dgeper understanding of the
~ learning process..

Why has psychelogy not had a moré-substantiai impacf? There are
several réasons. The brightest and aﬁlesf young psychologists usually
.are not attracted to educaticnal research, and the research that has
been done tends to be piecemeal;'nbt'pﬁrsuing probilems in real depth.
This picture may change in the near future due to the Jdimited pumber of
-Jobs for new Ph.D.'s and o soclety's increasing emphasis on applied
research. The more serious problem, however, is that psychologists know
a great deal sbout the acquisition of individual facts and skills, but
véfy little about how these combine to form a meaningful mental stxucture.
Effective ‘methods  for acquiring skills and facts are important, but‘the
 major:problem is the development of knowledge struciurgs_ihat are more
_ then the sum:of individual facts. In order to deal effectively with .
educational. problems, we need theorles that tell us how knowledge is,
represented in memory, how informetion is retrieved from that knowledge
justructure, how new information is added to the structure, and how the |
system can expand that knowledge structure by self—generative processes.
The ‘development of such theories 1s under way, and increasingly work in
~cognitive psychology is moving in that direction. The contributions of
' Andérson'and Bower (1973), Newell and Simon (1972), Rumelhart and Norman
(1973),.and.8chank (1974} are examples of substantial efforts to develop
'.cqmprehensivettheories of cognition, and it is already evident that this
‘work will have implications for educaiion. Such theories will nct simply

add another wrinkle to eduecaticnal research, but will lay the foundations




for research encompassing a larger set of educationally significant
problems then has been considered in the past, .

" In this paper I want to review the ongoing work in my lsboratory
thet has implications for instruction. BSome of that work represents . -
attempts to deal with the issue of complex knowledge structures, whereas
some 18 more vestrictive dealing with the acquisition of specific skills
and facts. All of the work“involves computer-based programs of -instruc-
tion used on a daily basis in schools and colleges.  These programs c¢an

best be described as adaptive instructiondl systems. By that term T

mean two things: (1) the‘éequence of instructional ‘actions taken by the
progfam varies as a function of a given student's performance history,
ana (2) the program is organized to modify itself sutomatically as more
‘gtudents complete the course and their response records identify defects
in instructional strategies.

“Our work on adaptive instructional systems has three focli. One is
the development of a course in computer programming for-junior college
and college students; the second is a course for teaching reading inthe
first three grades of elementary school; and the third is a foreign--
language vocabulary program being used at the college level. This paper

willl review research on each of these projects.
INSTRUCTION IN COMPUTER PROGBAMMING

Our first efforts to teach computer programming involvéd the
development of a computer-assisted instruction (CAIL) curriculum to teach
the AID programming language; this course has been used extensively in

colleges end junior colleges as an introducticn to computer programming




(Beard, Lorton, Searie, & Atkinson, 1973). However, it is a linear,
"frame-criented" CAI program and dces not provide individualized instruc-
tion during the problem-solving activity itself. After working through
lesson segments on syntax, expressions, etc., the student 1s assigned a
problem to solve in ATD. He must then leave the instructional pfogram,
call up a separate AID interpreter, perform the required programming
task, and return to the instructiocnal program with an answer. As the
student writes his program with.ATD, his only sources of assistance are
the error messages provided by.the non-instructlonal interpreter.

An inadequacy of the AID course, especially for research purposes,
is its limited ability to characterize individual students' knowledge
of specific skills, and its inability to.relate students® skills to thg
ccurrliculum as anything more than a ratio of problems correct to problems
- attempted. The program cannot make fine distinctions between a student's
strengths and weaknesseg, and cannot present instructional material
gpecifically appropriate to that student beyond "harder” or "easier"
legscns. In crder to explore the effects of different curriculum selec-
tion strategies in more detail, we developed another intrcductory
programming course, capable of representing both its subject matier and
student performance more adequately. The internal representation of
programming skills and their relationships to the curriculum is similar
in some ways to the semantic networks used‘in the “generative" CAL programs
developed by.Carbonell and.othérs (Carbonell, 1970, and Collins, Carbonell,

| & Warnock, 1973).



.The BASIC Instructicnal Program

" An-important feature of a tutorial CAI program is to - provide assls~
tance as the student attempts to solve a problem. The program must. ...:
contain a representation of the subject matter that 1s complex. enough ..
to allow the program to generate appropriate assgistance at any stage: of-
the student's éolution'attempt. The BASIC Instructional Program (BIP). .
contains a representation of inTormation appropriate to the teaching of.
computer programming that allows the program-both to provide help to
the student and to perform a limited but adequate analysis of the cor-. .
rectness of his program ss a.sclution to the given problem.

To the student scated at a terminal BIP lcoks very much like a. .
typical timesharing BASIC operating system. . The BASIC interprefer,-..
written especially for BIP, analyzes each program-line after the student
. types 1t, and notifies the student ef syntax errors. When the student
runs his program, it is checked for structural illegalities, and during
runtime "execution" errors are indicated. A file storage system, a
calculator, and utility commends are available,

" 'Residing sbove the simulated operating system is the . '"tutor," or.
-instructional program. It overlooks the entire student/BIP dialogue -,
‘and motivates the instructional interaction. In addition to selecting
and presenting programming problems to.the student, the IP identifies
the student's problem areas, suggests simpler "subtasks,” gives hints.
or medel solutions when necessary, offers debugging aids,. and. supplies.
incidental instruction in the form of messages, interactive lessong, or

manvual references.




At BIP's core is an information network whose nodes are .concepts, -
skills, problems, sub-problems, prerequisites, BASIC . commands, remedial
- lessons, hints, and manual references. The network 1s used to charae- .
terize both the logical structure of thé course and our-estimate of the
student’s current state of knowledge; more will be said about the network
_later.. Figure 1 illustrates the interactions of the:parts of the. BIP
program. °

The curriculum is organized as a set of programming problems whose
text includes only the description of the problem, nct lengthy descrip-.-
tions of programming structures or explanations of syntax. There is no
fixed ordering of the tasks; the decision to move from: one task to
another ‘is made on the basis of the information about the tasks (skills
involved, prerequisites, subtasks available) stored in BIP's network. -

A student progresses through the curriculum by writing, and running,
& program that solves the problem presented on his tewminal. Virtually
no_limitations are iﬁposed on the amount of time he spends, .the number
of lines he writes, the number of errors he is allowed to make, the -
number of times he chooses tc execute the program, the changes he makes
within-it; etec.  The task on which he 1s working is stored on a -stack-
‘likérstructure, 80 that he may work on another task, for whatever reason,
and return to the previous tasgk auvtomatically. . The curriculum structure
can?aéeommodate.a wide variety of student aptitudes and skills. Most
of the ccurriculum-related options are designed with the less competent
student in mind. A more independent sfudent may simply ignore the
options. Thus, BIP gives students the opportunity to determine their -

own "challenge levels" by making assistance available but not inevitable.
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Figure 1. BIP®s Information Flow Diagram




BIP offers the student considerable flexibility in making-his éﬁn
task-related decisions. He may ask for hints:and suﬁﬁasks tojheip him
get started in sclving the given prcblem, or he may ponder the probiem
on hi& own, using only the manual for additional information. He may
. request a different task by name, in the event that hé.wishES to work
on 1t immediételyg elther completing the new task or not, &s he chooses.
On his return, BIP tells him the name of the again-current task, and
allows him fo have its ﬁext printed to remind him of the @roblem he is
to solve. The student may request the mode 1l solution.fof any task at
any time, but BIf will not print the.madei:for the current task unless
the student haslexhausted the available”hints and sub{asks, Taken tQ—
gether, the cuf?iéulum.optidns_allow for a wide range of.stﬁdent |
preferences and-Behaviorsf

BIP's Information Network

-Task selectién, remedial assistance, and problem area:determination
.require that thé program have a flexible infqrmation store. interrelating
tasks, hiﬁts; mznual references, ete. 'This étore has been built using
the assoclative language LEAP, & SATL sub-language, in which éeti list
and ordered triple data structures are available (FeldmangéLowj éwinéhart,
& Taylor, 1972; Swinehart & Sproull, 1971; Vanlehn, 1973). Figure 2
presents a simplified relationship among & few prqgramming concepts,
specific observable skills that characterize the acquisition of the
concepts, and programming problems that require the use of those skills.
The network is constructed using the asgscelative triple structure, and

is best described in terms‘of_fhe various types of nodes:
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WRITE'A PROGRAM THAT:
| PRINTS THE NAME OF A
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PRINTING LITERALS | | PRINTING VARIABLES | | ASSIGNING LITERALS |

OUTPUT - ( variaBLE ) (assiGNMENT)

 Figure 2, A Segment of ‘BIP's Information Network




TASKSe All curriculum elements exist as task nodes in the network.
They are llnked to each other as subtasks, prerequisite
_tasks, or must follow" tasks.

SKILLS ; The skill ncdes are intermediaries between the concept nodes
'~ and the task nodes (Figure 2). Skills are very specific,
e.g., "concatenating string veariables" or "incrementing a
counter variable." By evalueting success on the individual
skills, the program estimates competence levels in the con-
cept areas. TIn the network, skills are related to the tasks
that require them and to the concepts that embody them.

CONCEFPTS The prineipal concept areas covered by BIP are the following:
' interactive programs; variables and-literals; expressions;
input and output; program control - branching; repetition -
loops; debugging; subroutines; and arrays.

OPERATORS  Bach BASIC operation (PRINT, IET, ...) is a node in the
: . network. The operations are linked to the tasks in two
ways: elther as elements that must be used in the solution
of the problem or as those that must not be used in the
solutlon.
HINTS " The hint nodes are linked to the tasks for which they may
be helpful. Bach time a new sgkill, concept or BASIC cperator
is introduced, there is an extrs hlnt that gives- a sultable
manual reference,

" ERRORS  All discoverable syntax, structural, and execution errors
exist as ncdes in the network; linked to the relevant “help"
nessages, manual references and remedial lessons.

Clearly,. in some cases, a hierarchy among skills or problems is

imﬁlicit; mere freguently, however, such a relEtionship cannot be assumed.

By imposing only a very locse hierarchy (e.g., requiring that all students

‘begin the course with the same problem), it is possible to select currie-

ulum end provide essistance on the bagis of a student's demonstrated

competence level on'specific skills, rather than on the basgisg of a pre-
determined, nonindividualized, sequence of prcblems. Students who acquire.
competence in skills in some manner other than that assumed by subject-

matter experts to he standard should benefit most from this potential

for individualization.
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Upon ébmpletion of a task, the student is given a “post task inter-
‘view" in which BIP presents the model solution stored for that problem.
The student is encouraged to regard the model as only one of many possible
solutions. EIP asks the student whether he has solved the problem, then
asks (for each of the skills associated with the task) whether he needs
more practice involving that skill., In addition teo the information
gained from this student self-analysis, BIP also stores the result: of a
comparison between the student's program end the model solution, based
on the output-of both programs when run on a set of test data. The
-studentfs responses to the interview and the results of the program
comparison are used in future BIP-generated curriculum declsions. BIP
informs the student that he has completed the task, énd either allows
him to select his next task by name (from an off-line printed list of
names and problem texts), or selects it for him.

An example of the role of the Information Network in BIP's tutorisl
capabilities is the BIP~-generated curriculum decisions mentioned above.
.By stbring the student's own evaluation of his skiils; and by comparing
his solution attempts to the stored models, BIP can be said to "learn"
aboﬁt each Studént as an Individusl who has attained a ceértain level of
competence in the skills asscociated with each task. For example, BIP
might have recorded the fazt that a given student had demonstrated com-
petence (and confidence) in the skill of assigning afliteral value to a
variable (e.g., N = 1), but had failed to master the skill of incrementing
a counter variable (e.g., N = W+l), BIP can then search the network tc
locate the skills that are appropriate to each studentls abilities and

.present tasks that incorporate those skills. - The network provides the
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base from which BIP can generate decisions that take into account both
the subject matter and the student, behaving somewhat like a human tuﬁor
... in presenting material that either corrects specific weaknesses or
.challenges and extends particular strengths, proéeeding into as yet un-
encountered areas,

| - The EIP prbgram has been running successfully with both junior
college and university students. However, the program is still very
much in an experimental stage. From a psychological viewpoint, the
principal research issues deal with (1) procedures for obtaining on-line
estimates of student abilitles as represented in the informaticn network,
and (2)-alternative methods for using the current estimates in the in-
formation netwerk to make instructional decisions.. Neithgr of these
issues is restricted to this particular course, and a major goal in the
development of BIP is to provide an instructional model suitable to a
- variety of different subject areas. Two toples must be discussed in
relation to this goal: the nature of appropriate subject areas and the
‘general characteristics of the BIP-like structure that makes it pariicu-
larly useful in teaching such subjects.

- A subJect well-suited to this approach generally fits the following
description: it has clearly definable, demcnstrable skills, whose
-relationships are well-known: the real content of the subject matter is
of a problem-solving, rather than a fact-acguiring, nature; the problems
~.presented to the student involve overlapplng sets of skills; and a
-student’s solution tc a given problem can be judged as adequate or - -in-
adequate with some degree of confidence. The BASIC language, as taught

by BiP,.1s. one such subject, but the range of appropriate curvieulums
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goes well beyond the area of computer sclence. TFor example, elementary
statistics could be taught by a similar approach, as could algebra,
navigation, accounting, o organic chemisiry. All these subject areas
involve the manipulation of information by the student toward a known
goal, all involve processes that can be carried out or gimulated by a
computer, and all are based on a bedy of skills whese acguisition by the
gtudent can be measured with: an acceptable degree of accuracy.

Because they require the development of problem-solving skills,
rather than the memorization of facts, these subject areas are frequently
difficult to master and difficult to tutor,-espeeially using standard
CAT techniques. One limitation of such standard techniques is their
dependence on a "right" answer to a given guestion or problem, which.
;precludes active studenf participatiocn in a problem-solving process |
consisting of many steps, znone of which can be evaluated as correct or
‘incorrect-except within the ccontext of the solution as a whele. In
addition, standard CAI techrniques usually consilst of en instructional
facility alone--a mechanism by which information ig presented and
respohses are Judged. This facillty can be linked to a true problem-
solving facility that allows the student to proceed thrcugh the steps
to a solution, but the link does not allow the transfer of information
between the instructional and the problem-solving portions of the progran.
The complete integration of the two parts is a key feature of EIP, making
"~ it appropriate to'inétruction in subject areas that have been inadeduately
~treated in CAI.

The most general characteristics of the "network" structure include

a representation of the curriculum in terms of the specific skills
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reguired in its mastery and a representation of the student’s currenpr_
- levels of competence in each of the skills he has been regquired to use.
Individual record-keeping relates each student's.progress.tolthe cur- .
rieulum at all times, and any numbex of schemes may be . used to apply. .
that relationship to the selection of tasks or the presentation of P
‘additional information, hints, advice, estc.

Aﬁ.important-element of cur network structure is the absence of an
established path through the curriculum, providing the built-in flexi-
“bility (like that of & human tutor) to respond to individual students'
strengths and weaknesses as each student works with the course. This
can only be accomplished through a careful analysis and precise specifi-
catlon of the skills inherent in the subject matter, the construction of
a thorough curriculum. providing in-depth experience with alil the.skillg,
and a.structure of associations among elements of the curriculumrthatvx
allows for the implementation of varlous instructional strategies.
Instructional flexibility is complemented by research flexibiliﬁy in
such a structure, because the nature of the associations can be mpdified
fer different-experimental purpeses. Once the elements of the network
have been established, it is easy, for example, to change the prereg-
ulsite relationship between two problems, or to specify a higher level
of -competence in a givern skill as a criterion meagure.

The considerable complexi{y invelved in. programming this kind of
-+ Tlexible structure imposes a certain limitation. Standard CAI ”author

-langueages' are not appropriate to this network approach,.and‘constructing
‘a8 CAL course en EBIP's pattern is not a task to be undertaken by the

educator (or researcher) who has no programming support. The usefulness
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of author languages is their simpliicity, which allows subjectw-matter
experts to prepare course material relatively quickly and easily. Most
guthor- languages provide for alternative paths through a curriculum, for
alternative énswerwmatching schemes, . and so forth; considerable ccmplexity
is certdinly possible. However, the limits; once reached, are real, and
the author simply cannot expand the sophistication of his course beyohd
_those limits.

The programming support required by the network approach, on the
other hand, implies (1) the:use of a general, powerful language allowing
access to all the capabilities of the computer itself, and (2) a pro-
gramming group with the training and experience to make full use of the
machine. It has been our experience that the flexibility of a general
purpose language, while expensive in a number of ways, is worth the costs
by virtue of the much greater freedom it aliows in the consﬁructioh of
the curriculum and the implementation of experimental conditions. - For
a more complete description of BIP and a review of our plans for further

‘research see Barr, Beard, and Atkinson (1974).
INSTRUCTION IN INITIAL READING (GRADES 1-3)

Cur first.efforts to teach reading under computer contgol were
aimed at a total curriculum that would be virtvally independent of thé
classroom teacher (Atkinscn, 1968). Thesé early efforts proved reason-
‘ably successful, but it soon became apparent that the cost of such a
.prOgram would be prohibitive if applied on a large-scale basis. ‘Further,
it was demonstrated that some aspects of instructioﬁ could be done very

effectively using a computer, but that there were other tasks for which
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the computer did not have any advantages over classroom teaching. : Thus,
during the last four years, our crientatiocn has changed and the goal NOW.
1s. to- develop low-cost CAT that supplements cléssroom-teaching.and—confu

- centrates on. those tasks in which individuwalization is.critically important.
A student terminal in the current.program consists only of a .Model-33 . -
teletypewriter with an audio headset. There is no graphic or photographic
capability at the student terminal as there was in ocur first system, and
the character set of the teletypewriter includes only uppercase letters.
On the other hand, the audic system is extremely flexible and provides
virtually instantaneous access %o any one of 6,000 recorded words and
messages.

Reading -Curriculum

Reading instruction can be divided into two areas which have been
referred to as "decoding" and "communication." Decoding is the rapid,.
if not automatic, association of phonemes or phoneme groups with their .
“respective graphic represemtations. Communication involves readiag for
meaning, sesthetic enjoyment, emphasis, and the Iike. Our CAL program
provides lnstruction.in both types of tasks, but focuses primarily on
decoding. The program is divided into eight parts or strands. As
indicated in Flgure 35 entry into a strand is deterﬁined'by the student’s
level of achievement in the other strands,. Instruction beginé in Strand
0, Whiéh'teaches the skills requii%d torinteract'with the program; Eﬁtry
inté the other strands is depeﬁdéni on the stﬁdent'sjperforménée in
' eariier strands. For éiampie, the letter identification stfand starts
with a subset of lettérs uéed in the earliést'sight words. When a

student reaches a point in the letter identification strand where he has
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0
Skil ‘

1
Letter .
Identification

Sight ~ Word
Recognition : _ , '
Spelling S e ' o
Patterns o ' : N _ : .

s - R | - IS S
Phonics - ; ‘ ' ‘

v
SpeHing

Word
Comprehension : .
, 81 _ .
Sentence. : Co
Comprehension.

Tigure 3. Schematic presentation of. the strand structure. {Entry
) - into each strand depends on a student's performance in
earlier strands. The vertical dotted lines represent ‘

maximal rate contours which control the student's progress

in each strand relative. to the other strands.) -
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~exhibited mastery over the letters used in the first words of the sight-
word strand, he enters that strand. Similarly, entry info the spelling
pattern strand and the phonicé strand is controlled by the student's
placement in the sight-word strand. On any glven day, a student may be
seeing exercises drawn from as many as five strands. The dotted vertical
lines in Figure 3 represent "maximal rate contours,”" which control the
student's progress in each strand relative to his progress in other
strands. The rationale underlying these contours is that learning par-

ticular material in one strand facilitates learning in another strand;

thus, the contours are constructed so that the student learns specific
items from oﬁe straﬁd iﬂ.conjﬁnction with.specific items from other
strands. | |

The CAIlprogram is highly individualirzed so that a trace th?ough;f
the - curriculum. is unigue for each student,'.Our'problem,is to Speciff‘.
how & given subject's response history should be used to make insfruc-:
tional decigions. The approach that we have adopted.is to develop

mathematical models for the acquisition of the various skills in the

currieulum, and then use these models to specify optimal sequencingl
schemes. Basically, this approach is what has come to be known in the

engineering literature as "optimsl control theory,”

or, more simply,
"eontrol theory." Precisely the same problems are posed in the area of
instructien, e#cept that thé system to be controlled.is the human. lezrner
rather than a machine or group of industries. .If a learning- model can

be specified, then methods of control theory can be used toc derive

optimal instructicnal strategies.

19



Some of the optimization procedures will be reviewed later, but in
order for the reader to have some ldesa of how the CAL program cperates,
.let me first describe a'few of- the simﬁlef-eXerciéés.ﬁsed in Strands II,
CITT, and IV. Strand IT provides for the development of a sight-word
vocabulary; 'voéabulary items are presented in five exercise formats;
only the copy-exercisé and the fecognition exercise will be described
here. hfhe tép pénel of-Table.l. illust;étes-the copy exereise, and the
lower panél.illﬁs££étes thé‘feCOgnition eﬁéreise, thé.thaf_when a
-8tudent mekes an erycr, the sysﬁém responds with an audio message and
prints out the correct response. Intearliér versibns.of thgfprogram,
the student was reqﬁired tc copy the correct responselfgilOWing ¥ error.
Experiments demonstrated tﬁat the ovért correctionaprocedﬁre was not
particularlﬁ effécfive; sim@ly‘displaying the correct word following an
errcr provided more useful feedback. |

Strand ITI offers practicecwith spelling.pattefnslahd emphasizes
the regular grapheme-phﬁneme correspondences that exist?in.Englisha
Table 2 illusfrates exeféisés from thig stranda' Fdf the.exefcise in
the top panel of Téble 2, tﬁe student is presented with three'words
involving the same"spelliﬁg pattern and is required to-select the cor-
rect oﬁe'bésed on itS initiaiilefferéu }Oncé the studentihas_learned to
use the iﬁitiai;létter of letter sequence to disfinguiéh_beiﬁeen words,
‘he moves to the recall exercise illugtrated in the bottom panel of
Table 2. Here he works with a group of words; all invelving the same
spelling pattern. On each trial the audio system requests a word that
requires adding an initial consonant cr consonant cluster to the spelling

pattern mastered in the preceding exercise. Whenever a student makes a
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Table 1

Examples of Two Exercises Used in Strand II :
_ (Sight-Word Recognition)

' - ' . Teletypewriter| = Audio
‘display - message.

Copy exercise

-The program ocutputs: PEN . ¥ (Type pen.)
- The student responds by . | : A
typing: B . PEN : :
The program outputs: + .| - (Great!)
The program outputs: - EGG | (Type egg.)
The student responds by - '
_ typing: EFF o S
The program outputs: . SR (No, egg.)

Récognitioﬁ exe réisé

* The program outputs: . PEN NET EGG | (Type pen.)
" The student responds by | - ' S
typing: g - PEN
- The program outputs: o B ' .
~ The program ocutputs: PEN EGG NET- (Type net.)
The student responds by S : '
typing: . s NET :
.- The program outputs: - + o (FabulOus!)

‘Note: Tbe top panel d:l.spla,ys the copy exercise and the
bottom panel the recognition exercise. Rows in the table
correspond to successive l:.nes on the teletypewriter ‘
printout, ,
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Table 2

Examples of the Recqgn:l._ti_on‘ and;Recall Exercises
' Used in Strand IIT (Spelling -Patterns)

Teletypewriter

fudio

display ‘message-
‘Recognition exéi‘cise'_ o
‘The program outputs: | KEPT SIEPT CREPT (Type kept.)
The student responds. -
by typlog: o KEPT .
. The program cutputs: +
Recall exerclise
The program outputs: |- (Type orept.)
The student responds . -
by typing: CREPT - ‘
The program outputs: * (That's _
- ]  fabulous!)
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correct response, a "+" sign is printed on the teletﬁpewritefa In
Iaaditiony every so often the program will give an audio feedbaék message ;
‘these messages vary from simple ones like “great," "that's fabulous,"
"you're doing brilliantly," to some that have cheering, clapping, or
bells'ringing in:the'background; Thése.messages aré.ﬁét generated at
rendom, but depend on the student's performance on that particular day.

| When the‘sfudent has mastéfed'a speéified nmumber of words in the
gight-word strand, he bégins_éxeféises in the phonics sirand; this strand
concentrafes.oﬁ initial and final conSonants.and consonant c¢lusters in
combination with medial vowels. As in most linguisticelly oriented
curriculé, students are not reguired_to rehearse or-identifj‘éonsonant
sounds in isolation. The emphasis is on.patterns of vowels and con-
rsonénts that beaf regﬁlér-correspondénces tc phonemes. The phoniec strand
is the moét complicated one of the group and invelves eight exercise
formats; two of the formats will_be.described h:ere° The-upper-panel of
Table 3 illﬁstrates an. exercise in which the student is required to
identify the graphic representation of phonemes. occurining at the end of
words. Bach trial begins with an audio presentation of s word that
ineludes the phonemes, and the student is asked to identify the graphic
- representation. After masfering this exersise, he is trensferred to
the exercise illustrated in the bottom panel of Table 3. The same
phonemes are presented, but now the student is reguired to construct
words by adding eppropriate consonants.

. Optimal Sequences for Individual Students

This has been a brief overview of some of the exercises used in the

curricudun; a more detalled account of the program can be found in
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Table 3

' Examples of Two Exercises from Strand IV (Phoﬁics)'"

Teletypewriter . Audio
display message
Recognition e,Xe:r.cise
The program outputs: IN -IT -IG (Type-/IG/ as
- DA i ' . in fig.) .
The student responds by ' . :
‘typing: o IG | - _
The program outputs: + (Good?)
The program outputs: - ~IT -IN -IG (Type /IT/ as
o : . in fit.)
‘The student respords by | 3 _
. The program outputs: + K
Build-a-word exercise
. The program outputs: “IN -IT -IG |
o _ . - P~ | - (Type pin.) .
The student responds by ; :
typing: PIN - -
The program outputs: + : (Great!)
The progrem outputs: - =I¢ -IN -IT : '
, o Fo- | (Type fig.)
The student responds by: _ . ‘
typing: ) FIN o
The program outputs: ////FIG (No, we wanted
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Atkinson, Fletcher, Lindsay, Campbeil, and Barr (1973). The key to the
curriculum.is the optimization”schemes that control the sequencing of
the exercisésg these échemes can be classified af three.levelsn One
level inveclves decision maeking within each strand. = The problem is to
decide which items to present'for study, which exercise formats to pre-
gent them in, and when to schedule review. A complete response history
exists for each student, and this history is used to make trial-by-trial
decislions regéfdiﬁg what fo present next. The second levéi offopiimiza-
tion deals with decisions about allocation of instructionél'time‘among
strands for-a given student. Al the end of an iﬂstrucfiénai session,
the student will have reached a certain boint in each strard and a

_ decision must be made about the time to be allocated_to_each strand in
the nexf session. The third level of optimizatlon deals with the dis-
tribution of instructional time among students. The question here is

to allocate computer time among students to achieve ins£ructional
objectives that are defined not for the individﬁal student but for the
class as a whole. In some global sense,.'these. three rlevels. .of optimizg~
tion should.be iﬁtegrated into a unified program. However, we have been
satisfied to work with each separately, hoping that later thgy can be
incorporated inté a single package.

Optimization within & strand (what has been called Level 1) can be
illustrated using the sight-word strand. The strand comprises a list
of about 1,000 words; the words are ordered in fexms of thelr frequency
. in the student's vocabulary, and words at the beginning of the list have
highly regular grapheme-phoneme correspondences. At any point in time

.

a2 gtudent will be working on a limited pool‘of words from the master
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"list; the size of this working pool dépends or the student's ability
level and is usually between 5 and 10 words. When one of these words is
mastered, it is deleted from the pcol and replaced by the next word on
the list or by a word due for review. Figure 4 presents a flow chart
for the strand. Each word in the Wérking pocl is in one of five possible
instructional states. A trial involves sampling a word from the working
pocl and presenting it in an appropriate exercise format. The student
.is pretested on a word the first few times it is presented to eliminate
words slready known. TIf he knows the word, he will pass the pretest and
the word will be drppped from the working pool. If the student does not
pass the pretest, he first studles the word using the recognition exercise.
If review is reguired, he Studies the word again iﬁ what is designated
in Figure LI as Exercises Lt and 5.

As iﬁdieated in Figure 4, a giﬁen word passes from one state to the
next when it reaches criterion. And this presents the crux of the opti-
milzation problem, which is to define an appropriate criterion for each
exercise. This has been done using simple mathemztical models to describe
the acquisition process for‘each exercise and the transfer funciicns that
hold between exercises (Atkinson & Paulson, 1972). These models are
simple Markov precesses that provide reagsonably accurate accounts of
performance on our tasks. Parameters of the models are defined as
functions of two factbrs} {1} the ability of the particular student,
and (2) the difficulty of the particular word. An estimate of the
student®s ability is obtained by analyzing his respconse record on all
previous words, and an estimate of a word's difficulty is ébtained by

analyzing performance on that particular word for all students on the
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Enter
strand,
initiate time-

in-strand
N tlock

Transfer inte working pool
words that were in use
when student was last'in -
strand

Add new word or word
frem review pool to . -
working pol

Has
time elapsed
\for strand?

Sample one word
- | frem the working

1 pool and hote its
“stats .

N =35> -
1 REEEER CO

S5

Present Present Present . Present - ‘| Present
word in. S| word In Cword In ’ “word in .| word in
Exarcise 1 Exgtcise 2 Exercise 3. : Exercise 4 Exartise 5 .
(Pretest) - : {Recognitiond | -~ - . - | ‘(Copy} {Recognition)

Update tate o T vpdate state

Update state
of word to. . b of word to . of word to
Sz : : 54 Should word S
. _ | - be reviewsd?
1 Delete word belete word Delete word -
froin wc;rking from. werking from working
: I I
.poo Transfer word P wo
fo review pool |
and ‘update ] o

stete of word to 54

o o - [ S o S o

Tigure 4. Partial flow chart for Strand IT (sight-word recognition}.
The varicus decisions represented in the bottom part of
the chaxrt are based on fairly complicated .computations that
make use of the student's response history. The same
recognition exercise is used in both state S, and S_.
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program. The student records are continually updated by the computer
and are used fo compute a maximim likelihood estimate of each student's
Iabiliﬁy factor and each word's difficulty factor. Given a well-defined
model and éstimateé of its parameters, we can use the methods of control
theory to define an optimal criterion for each exercise. The criterion
will vary depending on the difficulty of the item, the student's abiiity
levél, and the precise sequence of correct aﬁd incoxrect resboases'made
by the student tc the item. It is important to realize that the optimi-
zation scheme is not a simple branching program based cn the student's
last response, but depends in a complicated way on his complete résponse
history.

Optimization between strands (Wﬁat hés been called Level II) was
mentioned earlier in the description of maximum-rate contours. In some
respects this optimization program is the most interesting of the group,
but it cannot be explained without going into considerable mathématical
detail. In'essence, a learning model is developed that specifies the
learning rate on each strand as a function of the amcunt of material that
has been mastered in each of the other strands. Using mathematical =~
ﬁethods of control theory, an optimal instructional strategy is determined
based on the model. This strategy defines a closed-loop feedback con-
treller that specifies daily instructionsl sllocations for each strand
based on the best current estimate of how much the student has mastered
in each strand. An account cof the theoretical rationale for the program

is presented in Chant and Atkinson (1973).

28




: Optimizing Class Performance

Next let us consider an example of optimization at what has been
called Level ITT. The effectiveness of the CAI program cen be increased
by cptimally allocating instructicnal time among students. Suppose ihat
a school has budgeted a fixed amount of time for CAT and must decide how
to allocate that time among a class of first-grade studentsal Fpr this
example, maximizing the effsctiveness of the CAL program will be igter-

-pieted as meaning that we want to maximize the class performance on a
standardized reading test administered at the end of the first grade.

On the basis cf prio: studies, the following equation_has been
developed to predict performance on.a standardized reading test as a
funqtion of the time & student spends on the CAY system:

P(t;1) = A(L) - B(L)exp[-tc(i)] .
_The eqguation prgdicts Student i's performancé on a standardized test as
a‘funciion of the time, t, spent on the CAT system during the schéol
year. . The parameters A{i}, B(i), and C(i) characterize Student i, and
vary from one student to arother. .These parameters can be estimated
from scores on reading readiness tests and from the student's performance
during his first hour of CUAY. After estimates of these parameters have
béen made , the above gquation can be used to pradict end-of-year test
scores as a function of the CAL time allocéied to that student.

Let us suppose that a sciiccl has budgeted é Tixed amount of time T

-on the CAT system for a first-grade class of ¥ students; further, suppose
that students have had reading readines; tests and a preliminary run.on
ﬁhe CAT system sc that estimates of the parameters A, B, énd ¢ have been

made for each student. The problem then.is to allocate time T among the
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N students so as to optimize learning. In order to de this,. it is first
necessary to have a model of the learning process. Aithough the abowve
equation does not offer a very detailed account of learning, it suffices
as a model for purposes of this problem. This is an important polint to
keep in mind; the nature of the specific optimizaticn problem determines
the level of complexity that needs to be represented in the learning
model. TFor some optimization problems, the model must provide a rela-
tively detailed account of learning to spzeify a viable stirategy, but
for other problems a simple descriptive equation may suffice.

In addition to a model of the learning process, we must also specify
an instructional chjective. Only three possible objectives will be
considered here:

| I. -Maiimize the mean value of P cver the class of students.
I1i. Minimize.the variance of P over the class of studeﬂtsn'
IIT.  Maximize the mean value of P under the constraint that the

regulting variance of P is less than or egual to the
variance that would be obtained if no CAT were administered.

- Objective I maximlzes the gain for the class as a whole; Objective II
reduces differences among students by making the class as homogeneous

as possible; and Objective IIT atﬁempts to maximize the class performance
while insuring that differences amecng students are not amplified by CAI.

. IT we select Objective I as the instructional objective, then the problem

of deriving an optimal strategy reduces to maximizing the function

£lE(1),t(2) .0, t(M)] = Z {A(L)=B(ijexp[~-t(i)C(i) ]}

(1) + t(2) + oo + (M) = T
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where t(i) is the time allocated to Student i. This maximizatiocn can be
done using the methods of dynamic programming. To illustrate the approach,
computations were made for a first-grade elass for which the parameters
Ay B, and € had been estimated for sach student. Employing these esti-
‘mates, computatibns were carried cut to determine the time allocations
that maximized the above eguation. TFor the optimal policy, the predicted
mean performance level of the elass on the end-of-year tests was 14% |
higher than a policy that allocated time equally among students (i.e.,
an equal-time policy where t(i) = T/N for-all i). This gain represents
a substantial improvement; the drawback is that the class variance is
roughly 15% greater than the variance for the class using an equal-time
pelicy. This means that if we are only interested in raising the class
avergge, we will have tc give the rapid learners substantially more time
on the CAT system and let them progress far beyond the slow. learners.
Although a tinme allocation that complies with Objective I does
increase overall class performancéj other objectives need to be considered.
For comparison, time allocations also were computed for Objectives IT and
iIIu Table L presents the predicted gain in average clasas performance
.as & percentage of the mean value Tor the equal-time policy. Objective
IT yielded a negative gain ir the mean; and so it should, since its goal
was to minimize vdriabilitys which 1s accomplished by reducing the time
allocations for rapid learners and giving more ettention to the slower
ones. . The reduction in varisbility for Objective II is 12%. Cbjective
III, which strikes a balance between Objective T and Objective IL, yields

an 8% gain in mean performance yet reduces variability by &%.
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Table h_

'Predicteﬁ Percent Gain in the Mean of P.and in the
Variance of P When Compared with the Mean and -
Variance of the Equal-Time Policy

Instruqtional objective

S < SR 5
:: % gain in mean of P -1y =15 | 8 “
% gain in variance-ofVP. 5 - 412_ =6
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In view of these results, Objective IIT would be preferred by most
educators and laymen. It offers a gubstantial increase in average per-

formance while maintainirg a low level of variablility. These computations

make it clear that the selection of an instructional objective should not
be done in isclation but should involve a comparative aﬁalysis of several
objectives, takingViﬁto_account more.%han'ope dimension.of performance.
Bven . if the principal goal is to maiimizé‘the*class avéfage,_it is in-
appropriate in most educational situations tc select Objective T over

TIT if it is only slightly better for the class average, while permitting

varlabllity to m.ushr’oomu2

. Effectiveness cof the Reading Program

Several evaluation studies of the reading program have.been con-

| aucted‘in the last few yearso‘ Rather than reviéw these here, I would

" -prefer to describe one in some detaii (Fletcher & Atkinson, 1972). 1In
this particular study, 50 pairs of kindergarten students were matched on

- & number of wvariables, including sex and readiness scores. At the start
of the first grade, one member of cach palr was assigned to the experi-
mental group and the other fto the control group. Students in the
Vexperimental group recelved CAL, but only during the first grade; students
7 in the control group received no CAL. The (AL lasted approximately 15

‘minutes per day;3 during this period the control group studied reading

2For g more detailed disgcussion of some of the issues involved in
selecting objective functions see Jamison, Fletcher, Suppes, and
Atkinson (1975).

LSV

In this study no attempt was made to allocate time optimally among
students in the experimental group; rather, an equal-time pclicy was
employed. '
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in the classroom. Except for this lb-minute period, the school day for -

the CAI group was like that of the control group. OStandardized tests

were administered at the end of the first grade and again at the end of
the second grade. All the tests showed rdughly the same pattern of
results; to summarize the findings, bnly data from the California Cooper-
‘ative Primary Reading Test will be described. At the end of the first
gfade, the éxperimental group showed a 5.05-month gain over the control
grbup, The groups, when tested a year later (with no intervening CAI
treatment), showed a difference of 4.90 months. Thus, the initial dif-
ference observed following one year of CAT was maintained, although not
amplified, during the second year when no CAI was administered to either
group.

No definitive conciusions can be drawa from evaluation studies of
‘this sort about the specific contributions of CAL versus other aspects
of the situation. Obviously the curriculum materials used in the CAL
program are important, as well as other factors. To do the type of study
that would isclate the important variables is too large an undertaking
to be worthwhile at this juncture in the development of the reading pro-
gram, Thus, to some extent it is a matter of judgment in deciding which
variables account for the differences observed in the above study. In
my view, individualizing instruction is the key factor in successfully
teaching reading. This does nct mean that sll phases of instructicn
should be individualized, but certain skills can be mastered only if
instruction ie sensitive to the student®s particular difficulties. A

reading'teacher interacting on a one-to-one basis with a student may be

more effective than our CAT program. IHowever, when working with a group
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~of children (even as few as four or five), 1t iz unlikely that she can
match the computerts effectiveness in making instructional decisions

dverran extended period of time.
SECOND-LANGUAGE VOCABULARY LEARNING

In this section,'research on CAT programs for second-language vocab-
ulary learning will be discussed. As noted elsewhere in this paper, the
principal goal. of our research cn computerized instruction has been to
devélop adaptive teaching procedures--procedures that make moment-by-
moment decisions about which instructional acticn should be taken next
based cn the student's unigue response history. To help gulde the
theoretical aspect of this work, some years ago we initiated a series
bf experiments on the vexy restricted but well-defined problem of
optimizing the teaching of a foreign.language vocabulary. This is an
area where mathematical models provide an accurate description of
- learning, and these models can be used in conjunciion with the methods
of control theory to derive preclse algorithms for seguencing ilastruc-
tion among vocabulary items. Although.our orlgiral interest in this
-topic was primarily theoretical, the work has proved to have significant
practical applications. These applications involve computerized wvocab-
ulary learning programs designed te supplemsnt college-level courges In
second-language instruction. A particularly interesling effort involves
a supplementary Russian program in use at Stanford University. Students
are exposed to apﬁroximately 1,000 words per academic quarter using the

computer; in conjunction with normal classroom work this program enables
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them to develop a substantial vocabularyoh Many foreign language in-
Strucfors believe -that the major obstacle to succegsful instrmiction in
a second language ig not learning the grammar of the language,'but rather
in acguiring a sufficient vocabulary so that the student can engage in
meaningful conversations and read materials other than the textbook. .

Tn examining the work on vocabulary acquisition T will npt describe
the CAI programs, but will review some research on optimal sequencing
schemes that provides the theoretical rationale Tor the programs. It
will be useful te describe one experiment in some detail before con-
gidering more general issuves.

An Experiment on. Optimal Sequencing Schemes

"Inthis study a large set of German-English items are to be learned
during an instructioﬁal session that involves a series of trials. - On.
each trial, one of the German words is presented and the student attempts
to give the English translation; the correct translation is then pre-
sented for-a brief study perliod. A predetermined number of trials.is
allocated for the instructional sessiong and’ after some intervening
pericd & test is administered over the entire vocabulary. The problem
is to specify a strategy for presenting items during the instruetional

“gegslon so that performance on the delayed test will be maximized.

These. CAL vocebulary programs meke use of optimal sequencing schemes

of the sgort to be discussed in this section, as well as certain mnemonic
aids. For a discussion of these mnemonic ajds see Raugh and Atkinscon
(1975) and Atkinson and Raugh (1975). '
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Four strategies for seguencing the instructional material will be
considered. - One strategy, designed RO for random order, is to cycle o j
through the set of items randomly; this strategy 1s not expected to be
particularly effective, but it provides a benchmark against which to
evaluate other procedures. A second strategy, designated S8 for self
“selection, ig to let the student determine for himself how best to
sequence the material. In this mode, the student decides on each trial
which item is to be presented; the learner rather than an external con-

troller determines the sequence of instruction.

The third and fourth schemes are hased on a decision-theoretic
analysis of the task. A mathematical model that provides an accurate .
account of vocabulary acquisition.is assumed to.hold in the present
situation. The model is used td compute, on a trial-by-trial basis, an
- dndividual student's current state of le;rning, Based con these compu-
tations, items are selected for test and study so as to optimize the
level of learning achieved aft the termination of the instructicnal ses-
sion. Two optimization gtrategies derived from this type of analysis_

will be examined. In cne case, the computetions for determining an

cptimal strategy are carried out assuming that all vocabulary items are
of equal difficulty; this strategy is designated OE {i.e., optimal under
the assumption of equal item difficulty). In the other case, the compu-
tations take into account variations in difficulty level among items;
this strategy is called OU (i,eo, optimal under the assumpiion of unequal
item difﬁiculty)a The detalls of these-twolstrategies will be described

later,
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The experiment-was carried out under ccmputer contrecl; the detaills
of the experimental procedure are given in Atkinson (1972b). The students
participated in two sessions: an ”instructionalcseséion" of approximately
two hours and a briefer ”delayed~teét sessionf adninistered one wéek later,
The delayed test was the same for all students and involved a test over
the entire vocabulary. The instrucfional segsion was more complicaﬁed°

- The . vocabulary items were divided_ihto seven liéts, each containiﬁg‘12
Gerﬁan words; the seven lists were érranged in a round-robin order. On
.each trial of the instructional session a.list was aisplayed on a pro-
jectidn screen, and the student inspected it for a'brief period of time;
the list invoelved only the 12 German Words-agd.ﬁot their_English tréns-
-lations. Then one of the items on the list was selected for test and
study. In the RC, CE, and OU conditions thé item was selected by the
—computer; in the S5 conditicn the item was chosen by the student. After
;anlitem was selected for test, the student attemﬁted to provide a trans~
Ilation by typing it on his computer console; theﬁ feedback regarding the.
cé%rect translation wasg givena The nextftrial began with the computer
displaying the next list in the round robin, and the same procedure was
:repeatedu The inétructional session continued in this fashion for 336
:trialso

The results of the expefiﬁent.are gummafized in Figure 5; Data axe
presented on the left side of the'figuré fbr‘performance on successive
bleocks of trials during the instructional session; on the right are
results from the tesgt session administered cne week after the instruc-
tional session. The data from the instructional session are presented

in successive blocks of 84 trials; for the RO condition this means that
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on the average each item was presented onece in each of these blocks.
Note that performance during the instructional session is best for the
RO condition, next best for the OF condition which 1s slightly better
than the 885 condition, ané poorest for the QU.condition. - The order of
the groups is reversed on the delayed test. {Two points are displayed
in the figure for the delayed test fo indicate that the test involved
two random cycles through the entire wvocabulary; however, the values
given are the average over the two test cycles.) The OU condition is
best with & correct response probability of .79; the 55 condition is
next with .58; the OF condition follows closely at .54 and the RO con-
dition is poorest at .38. The observed pattern of resulis is what oqe
would expect. In the SS condition; the students are trying to test
themselves on.items they do not know; consequently, during thé instruc-
© tional session, they should have a lower proportion of correct responses
than students run on the RO procedure where items are tested at random.
Similerly, the OE and OU conditions involve a procedure that attempts to
identify and test those ltems that have not yet veen mastered and should
prodice high error rates during the instructional session. The ordering
of groups on the delayed test is reversed since all words are tested in
a non-selective fashion; under these conditions the proportion of correct
responses provides a measure of -a student's true mastery of the total
gset of vocabulary items.

The magnitude of the effects observed on the delayed test are of
practical significance. The 38 condition (when compared to the RO
condition) leads to a relative gain of 53%2 whereas the QU condition

yields & relative gain of 108%. It is interesting that students were
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somewhat effective in determining an cptimal study seguence, but not so
effective as the best of the twe adaptive teaching systems.

Rationale for Sequencing Schemes

Beth the OU and COE schemes assume that vocabulary learning can be

described by a Tairly simple model. We postulate that a given item is
in one of three states (P, T, and U) at any moment in time. If the item
-is 1n State P, then its translation is known and this knowledge is
"relatively" permanent in the sense that the learning of other items
will not interfere with it. If the item is in State T, then. it is also
known but on a "temporary" basis; in State T the learning of other items
car give rise to interference effects that cause the item to be forgotten,
Tn State U the item is not known, -and the student. is unable to give a
translation.

Wnen Ttem i is presented on a trial during the instructional session,

the following trangition matrix deseribes the possible chance in its state:

P T U
P 1 0 0

CL(i) = 1 x(1) Lex(i) 0 .
Ui y(3) z(1) 1-y(i)-z(i)

" 'Rows of the matrix represent the state of the item at the start of the
trial, and columns the state at the end of the trial. On a trial when
.some item other than Item i is presented for test and study, transiticns
in the state of Ttem 1 also may take place. Such transiticns can occur
only if the student makes an error to the other item; in that case the

transition matrix applied to Item i is as follows:
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P iy U

Pl 1 0 0
i) = 1-£(1) (i) | .
Ul 0 0 1

Basically, the idea is thaf when some other item is presented that the
sfudent does.not know, forgetting may occur for Ttem i if it is'in
Stafe T,

To summarize, when Item. i is presented for fest and study, transi-

tion Matrix L(i1) is applied; when some other item is presented that

elicits an error, Matrix F(i) is applied. It is also assumed that at

the étart of the instructional session Item i ig either in State P, with
probaﬁility g{i), or-in State U, with probability 1-g(i); the student
either knows the translation without having studied the item or does
not. The above assuﬁptions provide a complete description of the learning
process. Therparaméter vector [x(1), yv(1), =(i), £(1), g(i)] charac-
térizes.the learning of Item i in the.vocabulary set. The first three
parameters govern the aéquisition process; the next parameter, forgeiting;
énd the last, the student's knowledge prior to entering the experimeﬁto

We néw turn to é discussion of how the CF and OU procedures were
derived from the model. Prior to conducting the experiment reported
herve, a pilot study was run using the same word lisis and the RO pro-
cedure described above. Data from the pilot study were employed to

estimate the parameters of the model; the estimates were obtained using

the minimum chi-squere procedures described in Atkinson (1972b). Two

separate estimates of parameters were made, In one case 1t was assumed

that the items were all equally difficult, and data from all 8L items
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were lumped fogether tc obtain a single estimate of the parameter vector;
this estimation procedure will be called the equal-parameter case (E
case). In the second case the data were separated by items, and an esti-
mate of the parameter vector was made for each of the 84 items; this
procedure will be called the unequal-parameter case (U case). The two
éets of parameter -estimates were then used to generate the optimization
schemes previously referred to s the OF and QU procedures.

In order to formulate an instructional strategy, it is necessary to
be precise about the quantity to be maximized. TFor the present experi-
ment. the goal is to maximize the total number of items the student
correctiy translates on the delayed test.5 To do this, we need to
specify the relaticnship between the state of learning at the end of
__the instructienal'session and performance on the delayed test. The
assumption made here is that only those items in State P at the end Qf
the instructicnal session will be translated correctly on the delayed
test; an item in State T is presumed to be forgotten during fhe.inter-
yening week. Thus, the problem of maximizing delsyed-test performance
involves maximizing the number of items in State P at the end of the

instructiconal sessilon.

2

Other measures can be used to assess the benefits of an instructiocnal
strategy; e.g., in this case weights could be assigned to items measur-
ing their relative importance. Also costs may be assoclated with the
variocus actions taken during an instructicnal session. Thus, for the
general case, the optimization problem involves assessing costs and
“henefits and fianding a strategy that maximizes an appropriate function
defined on them. TFor a discussion of these points see Dear, Silberman,
Estavan, and Atkinson (1967),.and Smallwood (1962, 1971).
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Having numerical values for parameters and knowing a student's
response history, it 1s possible to estimate his current state of learn-
ing,6 Stated more precisely, the lesrning model can be used to derive
eguations and, in turn, compute the probabllities of being in States P,
T, and U for each item at the start of any trial, conditionalized on the
student's response history up to that trial. Given ﬁumerical estimates
of these probabilities, a strategy for optimizing performance is to |
select that item for presentation that has the greatest probability of
mofing into State P. This strategy has_been termed the one-stage opti-
mization procedure because it locks ahead one trisl in méking decisions.
The true optimal policy (i.e., an N-stage procedure) would consider all
-possible item-response sequences for the remaining trisls and select the
next item g0 as to maximize the number of items in State P at the ter-
mination of the instructional session. Unfortunately, for the present
cagse the N-stage policy cannot be applied because the computations.are
toe time conguming even for a large computer. Monte Carlo studies
indicate that the one-stage policy is a good approximation to the

optimal strategy; it was for this reason, as well as the relative ease

The student's "responge history"™ is a record for each trial of the
vocabulary item presented and the response that occurred. It can be
shown that there exists a "sufficient history" that contains only the
information necegsary Lo estimate the student's current state of

- learning; the sufficient history is a function of the complete histoxy
and the assumed learning model (Groen & Atkinson, 1966). For the model

~considered in this paper the sufficient history is fairly simple., It
iz specified in terms of individusl voeabulary items for each student;
we need to know the ordered sequence of correct and incorrect responses
to a given item plus the number of errors (to other items) that inter-

- vene between each presentation of the item.
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df computing, that the one-stage procedure was employed. For a discus-
sion of one-stage and N-stage policies and Monte Carlo studies comparing
them see Groen and Atkinson (1966), Calfee (1970), and Leubsch (1970).

| The optimization'procedure described above was implemented on the
- computer and permitted decisions to be made for each student on a trial-
by-trial Basis° For students in the OB group, the computations were
carried cut using the five parameter values estimated under the assump-
tion of homogeneous items (E case); for students in the OU group the
computations were based on the 420 parameter values estimated under the
assumption of heterogeneous items (U case).

- The'OU procedure is'sensitive to interitem differences and conse=~
HQuently generates a more effective optimization strategy than the OF
procedure. The OF procedure, however, is élmost ag effective as having
the student maske his own instructionazl decisions and far superior to a
random presentation scheme.

The study reported here is one in a series of experiments dealing
ﬁith optimal sequencing schemes. 1t was selected because it is easily
described and permits direct compariscn between & learner-controlled
procedure versus procedures based on a decision-theoretic analysis. For
a review of other studles similar to the one reported above see Chiang
(1974), Delaney (1974), Laubsch (1970), Kimball (1973), Paulson {1973),
and Atkinson and Paulson (1972). Seome of these studies examine pro-
cedurss that are more powerf‘ul than the ones described hereﬂ. .bu.t they
aré complicated and difficult to describe without going into mathematical
detailo -The major improvements involve two factors: (1) methods for

estimating the model's parameters during the course of instruction, and
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(2) more scphisticated ways of interpreting the model®s parameters to
take account of both differences among students and differeﬁces among
items. TFor example, let P(i,j) be a generic symbol for a parameter
vector characterizing student i learning vocabulary item j. In these
studies P(i,j) is specified as & function of a vector A(i) measuring the
ability of student i and a vector D(j) measqring the difficulty of item
Jo - The problem then is to estimate the ability level of each student
and the difficulty of each item while the student is running cn the
program. . In a study reported in Atkinson and Paulson (1972), rather
dramatic results were obtalned using such a procedure. A special feature
of the study was that students were run in successive groups, each
starting after the pricr group had completed the experiment. As would
be expected, the overall gains‘increased from one group tc the next.

. The reason is that for the first group_of students the estimates of 1tem
difficulty, D(J), were crude but improved with the accumulation of data
from each successive wave of students. Ngar the end of tThe study esti-
mates of D(J) were quite precise and were esgentially constants in the
system. The only task that remained when.a new student came on the
system was to estimate A(1); that is, the parsmeters characterizing his
particular ability level. This study provides an example of an adépfive
instructional system that meets both of the reguirements stated éarlier
-in.this paper. The sequencing cof instruction varies as a.function'of
~each student’s history record, and over time the system improved in
efficiency by using data frém previocus students tolsharpen its estimates

of the difficulty of instructionasl materials.,
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CONCLUDING REMARKS

The ?rojects described in thié paper have one theme in common,
nemely, developing compuferwcontrolled-proeedﬁrea for optimizing the
instructional proéess, Fof several of the instructional tasks consid;
ered here, ma%hematical models of the learning pfocess were formuléted
ﬁhich made it.possibie to use formel methods in deriving optimal poj_icies°
In other casesg the "optimal schEmés" were not optimal in a well-defined
sense, but were based on our intuitions about learning and some relevant
experimentsn In a sense, the diversity represented in these exam?les
corresponds to the state of the art in the field of instructional design.

. For soﬁe task# we can use psychological théory to help define optimal
procedures ; for others our-intuitions, modified by exﬁeriments, must
guide the effort. Hopefully, éﬁr‘understanding of these mattérs will
 increase as more projects are undertaken to dewvelop sophisticatéd‘inu
-structional procedurés,

Some have argued that any attempt to devise.optimal strategies is
doomea to fallure, and thét the learner hiﬁself is the best Judge of
apprbpriate instructional actions. I ém not sympathetic to a learnér-
“controllad appfoach to instructicn, because I believe its advocates are
Itrying to avoid the difficult but challenging task of developing a viable
theory of instruction. There obviously is a place for the learner’s
jﬁdgments in meking instructibnal décisidns; fof example, such judge-
ments play an . important role in several parts of our BIP course, However,

:ﬁéing the learnerfs judgment as one of several ltems of inforﬁatibn in

making instructional decisions is different from proposing that the
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- learner should have complete control. . Results presented in this paper
and those cited in Beard, Lorton, Searle, and Atkinson (1973) indicate
‘that the learmer is not a particularly effective decision maker-in
guiding the learning process,

Elsewhere T have defined the criteris that must be satisfied before
an optimael instructional. procedure can be derived using Tormal methods
('A.tkinsogl,-l972a)° Roughly stated, they reguire that the_following”
‘elements of an instructional situation be elearly specified;:

(1) The set of admissible instructional actions

(2} The instructional objectives

(3) A measurement scale that permits costs to be assigned:to

cach of the instructional actions and payoffs to the achleve-
ment of instructional ijectives

(4) A modgel of the learning processr
If these four elements can be given a precise interpretation, then it is
usually possible teo derive an optimal instructional policy. The sclution
for an optimal policy is not guaranteed, but in recent years powerful
tools have been developed for discovering.optimalg or near optimal, pro-
cedures if they exist. I wilil not discuss these four elements hererexcept
to note that the first three can usually be specified with a fair degree
Qf.cpnsensus, Issues of short-term versus long-term assessments of costs
and payoffs raise important questions regarding educational policy, but
at least for the types'pf ingtructional situations examined in this paper
reagsonable specifications can be offered for the first three elements.
However, the fourthcelement--the specification of a model of the learning
~ process--represents a major obstacle. OJur theoretical understanding of

learning is so limited that only in very special cases can a model be
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specified ih'enough detail to enable the derivation of optimal procedures.
Until we have a much deeper understanding cf the 1earningfpr0cess;ithe.
identification of truly effective strategles will not be possible. How-
ever, an all-inclusive theory of learning is not a prerequisite for the
development of optimal procedures. What is needed is a model that
captures the essential features of that part of the learning process
being'tappéd by & given instructional task. Even models that have .been
rejected on the basgis of laboratory investigations may be useful in - -
deriving -instructicnal strategies. BSeveral of the learning models con-
sidered in this paper have proven unsatisfactory when tested 1n the
laboratory and'evaluated using standard goodness-of-fit criteris; never-
theless, the optimal strategles théy generate are ofteﬁ‘quite effective.
.My own preference is toc formulate as complete a“learning model as’
intuition and data will permit and then use that model to investigéte.
oPtimalzprncedures; When possible the learning model should be repre-:
‘sented in the form of mathematical équations, but otherwise as a setiof
statements in a computer-simulation program. ‘The main point is that the
'deveiopment of é theory of instruetion cannot progress if one holds the
view that s comprehengive theory of learning is a prerequisite. = Rather,
“advances in learning thecry will affect the development of a theory of-
instruction,'and conversely the development of a theory of instruction-

‘will influence the direction of research on. learning.
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