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ADAPTIVE INSTRUCTIONAL SYSTEMS:

SOME ATTEMPTS TO OPTIMIZE THE LEARNING PROCESSl

Richard C. Atkinson

Stanford University

INTRODUCTION

One cannot help but question the significance of psychology's con-

tribution to the development of effective instructional procedures. On

the one hand, psychology has been very influential in the field of

education. In the last twenty-five years almost every major innovation

in education--programmed textbooks, behavioral objectives, ungraded

SChools, individually prescribed instruction, computer managed and

assisted instruction, token economies, and tailored testing to name a

few--can be traced to psychology. In many cases these innovations have

not been due to psychologists primarily identified with education, but

rather to laboratory scientists whose research has suggested new

approaches to instruction. Psychology can be prOUd of that record of

accomplishment. But upon closer examination, it is evident that these

accomplishments are not as closely linked to psychological research as

many might believe. Psychology has suggested new approaches to education,

but these suggestions have not led to sustained research programs that

have the promise of producing a truly effective theory of instruction.

Rather, psychology seems to provide the stimulus for innovation, but

lTo be published in Klahr, D. (Ed.), Cognition and Instruction. Hillsdale,
New Jersey: Erlbaum Associates, 1975.
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innovation that has not in turn led to a deeper understanding of the

lea;ming process'.,

Why has psychology not had a more substantial impact? There are

several reasons. The brightest and ab,lest young psychologists usually

are not attracted to educational research, and the research that has

been done tends to be piecemeal, not p;rsuing problems in real depth.

This picture may change in the near future due to the limited number of

jobs for new Ph.D. '.8 and to society's increasing emphasis on, applied

research. The more serious problem, however, is that psychologists know

a great deal about the acquisition of ,individual facts and skills, ,bu~

very little about how ,these combine to form a meaningful ment~l structure.

Effective methods for acquiring skills and facts are important, but the

major problem is the development of knowledge structures that are more

than the sum of individual facts. In order to deal effectively with

educational, problems, we need theories that tell ,us how knowledge is,

represented in memory, how information is retrieved from that knowledge

structure, how new information is added to the structure, and how the

system can expand that knowledge structure by self-generative processes.

The development of such theories is under way, and increasingly work in

cognitive psychology is moving ill that direction. The contributions of

Anderson and Bower (1973), Newell and Simon (1972), Rwnelhart and Norman

(1973), and Schank (1974) are examples of substantial efforts to develop

comprehensive theories of cognition, and it is already evident that this

work will have implications for education. Such theories will not simply

add another wrinkle to educational research, but will lay the foundations
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for research encompassing a larger set of educationally significant

problems than has been considered in the past,

In this paper I want to review the ongoing work in my laboratory

that has implications for instruction. Some of that work represents

attempts to deal with the issue of complex knowledge structures, whereas

some is more restrictive dealing with the acquisition of specific skills

and facts. All of the work involves computer-based programs of instruc­

tion used on a daily basis in schools and colleges. These programs can

best be described as adaptive instructional systems. Elf that term I

mean two things: (1) the sequence of instructional actions taken by the

program varies as a function of a given· student's performance history,

and (2) the program is organi.zed to modify itself automatically as more

students complete the course and their response records identify defects

i.n instructional strategies.

Our work on adaptive instructional systems has three foci. One is

the development of a course in computer programming for junior college

and college students; the second is a course for teaching reading in the

first three grades of elementary school; and the third is a foreign­

language vocabulary program being used at the college level. Thi.spaper

will review research on each of these projects.

INSTRUCTION IN COMPUTER PROGRAMMING

Our first efforts to teach computer programming involved the

development of a computer-assisted instruction (CAI) curriculum to teach

the AID programming language; this course has been used extensively in

colleges and junior colleges as an introduction to computer programming

4



(:Beard, Lorton, Searle, & Atkinson, 1973), However, it is a linear,

"frame-oriented" CAI program and does not provide individualized instruc­

tion during the problem-solving activity itself, After working through

lesson segments on syntax, expressions, etc" the student is assigned a

problem to solve in AID. He must then leave the instructional program,

call up a separate P~D interpreter, perform the required programming

taSk, and return to the instructional program with an answer, As the

student writes his program with AID, his only sources of assistance are

the error messages provided by the non-instructional interpreter,

An inadequacy of the AID course, especially for research purposes,

is its limited ability to characterize individual students' knowledge

of specific skills, and its inability to relate students' skills to the

curriculum as anything more than a ratio of problems correct to problems

attempted, The program cannot make fine distinctions between a stUdent's

strengths and weaknesses, and cannot present instructional material

l?pecifically appropriate to that student beyond "harder" or "easier"

lessons, In order to explore the effects of different curriculum selec­

tion strategies in more detail, we developed another introductory

programming course, capable of representing both its SUbject matter and

student performance more adequately. The internal representation of

programming skills and their relationships to the curriculum is similar

in some ways to the semantic networks used in the "generative" CAI programs

developed by Carbonell and others (Carbonell, 1970, and Collins, Carbonell,

& Warnock, 1973) ,
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The BASIC Instructional Program

An important feature of a tutorial CAl program is to provide assi,,~

tance as the student attempts to solve a problem. The program must

contain a representation of the subject matter that is complex ,enough

to allow the program to generate appropriate assistance at, any st~g~of

the student's solution attempt. The BASIC Instructional Program CW:p)

contains a representation of information appropriate to the teaching of

computer programming that allows the program both to p;rovide h",lp to

the student and to perform a limited but adequate analysis of the cor­

rectness of his program as a solution to the given problem.

To the student seated at a terminal BIP looks ve;rymuch like a

typical timesharing BASIC operating system. The BASIC inte;rpreter,

written especially for BIP, analyzes each program line after the student

types it, and notifies the student of syntax errors • When the s.tudent

runs his program, it is checked for structural illeg"lities, and during

runtime "execution" errors are indicated. A file storage sYi3tem, a

calculator, and utility commands are available.

Residing above the simulated operating system is the. "tutor," or

instructional program. It overlooks the entire student/BIP dialogu",

and motivates the instructional interaction. In addition to selecting,

and presenting programming problems to the student, the IP identifies

the student I 13 problem areas, suggests simpler "subtasks," gi",,13 hcj.nti3"

or model solutions when necessa;ry, offeJ;'s debugging aids; and i3upplies

incidental instruction in the form of messages, interactive lessQni3"o,r

manual references.
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At BIP's core is an information network whose node~. arec?ncepts,

skills, problems, sub-problems, prerequisites, BASIC commands, remedial

lessons, hints, and manual references. The network is used to charac­

terize·both the logical structure of the course and our estimate of. the

stUdent I s current state of knowledge; more will be said about the network

latel;'. Figure 1 illustrates the interactions of the parts of the BIP

program.

The curriculum is organized as a set of programming problems .whose

text inclUdes only the description of the problem, not lengthy descrip-.·

tions of programming structures or explanations of syntax. There is no

fixed ordering of the tasks; the decision to move from one task to

another is made on the basis of the information about the tasks (skills

involved., prerequisites, Subtasks available) stored in BIF's network.

A student progresses through the curriculum by writing, and running,

s: program that solves the problem presented on his terminal. Virtually

no limitations are imposed on the amount of time he spends, .the number

of lines he writes, the number of errors he is allowed to make, the

number of times he chooses to execute the program, the changes he makes

within it, etc. The task on whJ.ch he is working is stored on a stack­

like structure, so that he may work on another task, for whatever reason,

and return to the prevJ.ous task automatically. The currJ.culum structure

can accommodate a wide variety of student aptitudes and skills. Most.

of the curriculum-related options are designed with the less competent

stUdent in mind. A more independent student may simply ignore the

options. Thus, BIF gives students the opportunity to determin<, th<'ir

own "chall<,ng<, l<,vels" by making assistanc<, available but not in<,vitable.

7



CURRICULuM
DRIVER

SOLUTION
ANALYZER

PROBLEM
SELECTOR

INSTRUCTIONAL
PROGRAM

BASIC INTERPRETER-
SYNrAX AND EXECUTION

ERROR DETECTION

PROGRAM ANALYZER

LOGICAL
ERROR DETECTION

BASIC
MANUAL

HELP
ROUTINES

STUDENT
HISTORIES

PROBLEMSMODEL
SOLUTIONS

...---';... ' ----·.,,·4·I .
I
I

i

co

I INFORMATION NETWORK, .. I
. . DATA BASE I~ .~ ~_~ ~~~ ~ ~ J

Figure 10 BrP's Information'Flow Diagram



BIp offers the student considerable f.lexibilLty in making his own

task-related decisions. He may ask for hints and subtasks to help him

get started in solving the given problem, or he may ponder the problem

on hills own, using only the manual for additional information. He may

request a different task by name, in the event that he wishes to work

on it immediately, eIther completing the new task or not, as he chooses.

On his return, BIp tells him the name of the again-current task, and

allows him to have its text printed to remind him of the problem he is

to solve. The student may request the model solution for any task at

any time, but BIp will not print the model for the current task unless

the student has exhausted the available hints and subtasks. Taken to­

gether, the curriculum options allow for a wide range of student

preferences and behaviors.

Ell" s InformatIon Network

Task selectIon, remedIal assistance, and problem area determination

require that the program have a flexible information store interrelating

tasks, hints, manual references, etc, This store has been built using

the associative language LEAP, a SAIL sub-language, in which set, list

and ordered triple data structures are available (Feldman, Low,Swinehart,

&.Taylor, 1972; Swinehart & s.proull, 1971; VanLehn, 1973). Figure 2.

presents a simplified relationship among a few programming concepts,

specific observable skills that ~haracterize the acqUisition of the

concepts, and programming problems that require the use of those skills.

The network is constructed using the associative triple structure, and

is best described in terms of the various types of nodes:
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TASKS

SKILLS

CONCEPTS

OPERATORS

HINTS

ERRORS

All cU~~iculum elements exist as task nodes in the network.
They are linked to each other as subtasks, prerequisite
tasks, or "must follow" tasks.

The skill nodes are intermediaries between the concept nodes
and the task nodes (Figure 2). Skills a~e very specific,
e ogo, "concatenating string: variables ll or l1incrementing a
counter variable." By evaluating success on the individual
skills, the p~ogram estimates competence levels in the con­
cept areas. In the netwo~k, skills a~e related to the tasks
that ~equire them and to the concepts that embody them.

The principal concept a~eas cove~ed'by BIP are the following:
inte~active p~ograms; variables and literals; expressions;
input and output; program cont~ol - branching; repetition ­
loops; debugging; subroutines; and arrays.

Each BASIC operation (PRINT, LET, ••• ) is a node in the
network. The operations are linked to the tasks in two
ways: either as elements that must be used in the solution
of the problem, Or as those that must not be used in the
solution.

The hint nodes are linked to the tasks for which they may
be helpful. Each time a new skill, concept or BASIC operator
is introduced, there is an extra hint that gives a suitable
manual reference.

All discoverable syntax, structural, and execution errors
exist as nodes in the network, linked to the relevant "help"
messages, manual references and remedial lessons.

Clearly, in some cases, a hierarchy among skills or problems is

implicit; more frequently, however, such a relationship cannot be assumed.

By imposing only a very loose hierarchy (e.g., requiring that all students

begin the course with the same problem), it is possible to select curric-

ulum and provide assistance on the basis of a student's demonstrated

competence level on specific skills, rather than on the basis of a pre-

determined, nonindividualized, sequence of problems. Students who acquire

competence in skills in SOme manner other than that assumed by subject-

matter experts to be standard should benefit most from this potential

for individualization.

11



Upon completion of a task, the student is given a "post task inter­

view" in which BIP presents the model solution stored for that problem.

The student is encouraged to regard the model as only one of many possible

solutions. BIP asks the student whether he has solved the problem, then

asks (for each of the skills associated with the task) whether he needs

more practice involving that skill. In addition to the information

gained from this student self-analysis, EIP also stores the result, of a

comparison between the student's program and the model solution, based

on the output of both programs when Iun on a set of test data. The

student's responses to the interview and the results of the program

comparison are used in future BIP-generated curriculum decisions. BIP

informs the student that he has completed the task, and either allows

him to select his next task by name (from an off-line printed list of

names and problem texts), or selects it for him.

An example of the role of the Information Network in EIP's tutorial

capabilities is the BIP-generated curriculum decisions mentioned above.

By storing the student's own evaluation of his skills, and by comparing

his solution attempts to the stored models, BIP can be said to "learn"

about each .student as an individual who has attained a certain level of

competence in the skills associated with each task. For example, BlP

might have I'ecorded the fact that a given student had demonstrated com­

petence (and confidence) in the skill of assigning a Iiteral value to a

variable (e .g., N ~ 1), but had failed to master the skill of incrementing

a counter variable (e.g., N ~ N-rl). BlP Can then search the network to

locate the skills that are appropriate to each student's abilities and

present tasks that incorporate those skills. The network provides the
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base from which BIP can generate decisions that take into account both

the sUbject matter and the student, behaving somewhat like a human tutor

in presenting material that either corrects specific weaknesses or

challenges and extends particular strengths, proceeding into as yet un­

encountered areas.

The BIP program has been running successfully with both junior

college and university students. However, the program is still very

much in an experimental stage. From a psychological viewpoint, the

principal research issues deal with (1) procedures for obtaining on-line

estimates of student abilities as represented in the information network,

and (2) alternative methods for using the current estimates in the in­

formation network to make instructional decisions. Neither of these

issues is restricted to this particular course, and a major goal in the

development of BIP is to provide an instructional model suitable to a

variety of different SUbject areas. Two topics must be discussed in

relation to this goal: the nature of appropriate subject areas and the

general characteristics of the BIP-like structure that makes it particu­

larly useful in teaching such subjects.

A subject well-suited to this approach generally fits the following

description: it has clearly definable, demonstrable skills, whose

relationships are well-known; the real content of the subject matter is

of a problem-solving, rather than a fact-acquiring, nature; the problems

presented to the student involve overlapping sets of skills; and a

student's solution to a given problem can be jUdged as adequate or in­

adequate with some degree of confidence. The BASIC language, as taught

by BIP,.is one such subject, but the range of appropriate curriculums
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goes well beyond the area of computer scienceo For example, elemental'Y

statistics could be taught by a similar approach, as could algebra,

navigation, accounting, or organic chemistryo All these subject areas

involve the manipulation of information by the student toward a known

goal, all involve processes that can be carried out or simulated by a

computer, and all are based on a body of skills whose acquisition by the

student can be measured with an acceptable degree of accuracy.

Because they require the development of problem-solving skills,

rather than the memorization of facts, these subject areas are frequently

difficult to master and difficult to tutor, especially using standard

CAl techniques. One limitation of such standard techniques is their

dependence on a "right" answer to a given question or problem, which

precludes active student participation in a problem-solving process

consisting of many steps, none of which can be evaluated as correct or

incorrect except within the context of the solution as a whole. In

addition, standard CAl techniques usually consist of an instructional

facility alone--a mechanism by which information is presented and

responses are jUdged. This facility can be linked to a true problem­

solving facility that allows the student to proceed through the steps

to a solution, but the link does not allow the transfer of information

between the instructional and the problem-solving portions of the program.

The complete integration of the two parts is a key feature of BIP, making

it appropriate to instruction in subject areas that have been inadequately

treated in CAl.

The most general characteristics of the "network" structure include

a representation of the curriculum in terms of the specific skills
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r~quir~din itsmast~ry and a repres~ntation of the student's CUrrent

levels of competence in each of the skills he has been required to use.

Individual record-keeping relates each student's progress to the cur­

riculum at all times, and any number of schemes may be used to apply

that r~lationship to the selection of tasks or the presentation of

additional information, hints, advice, etc.

An important element of our network structure is the absence of an

established path through the curriculum, providing the built-in flexi­

bility (like that of a human tutor) to respond to individual students'

strengths and weaknesses as each student works with the course. This

can only be accomplished through a careful analysis and precise specifi­

cation of. the skills inherent in the subject matter, the construction of

a thorough curriculum providing in-depth experience with all the skills,

and a structure of associations among elements of the curriculum that

allows for the implementation of various instructional strategies.

Instructional flexibility is complemented by research fleXibility in

such a structure, because the nature of the associations can be modified

for different experimental purposes. Once the elements of the network

have been established, it is easy, for example, to change the prereq­

uisite relationship between two problems, or to specify a higher level

of·competence in a given skill as a criterion measure.

The considerable complexity j,nvolved in programming this kind of

flexible structure imposes a certain limitation. Standard CAl "author

·languages" are not appropriate to this network approach, and constructing

a CAl course on BIF's pattern is not a task to be undertaken by the

educator (oJ;' researcher) who has no programming support. The usefulness
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of author languages is their simplicity, which allows subject-matter

experts to prepare course material relatively quickly and easily. Most

author languages provide for alternative paths through a curriculum, for

alternative answer-matching schemes, and so forth; considerable complexity

is certa.inly possible. However, the limits, once reached, are real, and

the author simply cannot expand the sophistication of his course beyond

those limits.

The programming support required by the network approach, on the

other hand, implies (1) the use of a general, powerful language allowing

access to all the capabilities of the computer itself, and (2) a pro­

gramming group with the training and experience to make full use of the

machine. It has been our experience that the flexibility of a general

purpose language, while expensive in a number of ways, is worth the costs

by virtue of the much greater freedom it allows in the construction of

the curriculum and the implementation of experimental conditions. For

a more complete description of BIP and a review of our plans for further

research see Barr, Beard, and Atkinson (1974).

INSTRUCTION IN INITIJ\L READING (GRADES 1-3)

Our first efforts to teach reading under computer control were

aimed at a total curriculum that would be virtually independent of the

classroom teacher (Atkinson, 1968). These early efforts proved reason­

ably successful, but it soon became apparent that the cost of such a

program would be prohibitive if applied on a large-scale basis. Further,

it was demonstrated that some aspects of instruction could be done very

effectively using a computer, but that there were other tasks for which
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the computer did not have any advantages over classroom teaching, Thus,

during the last four years, our orientation has changed and the goal now

is to develop low-cost CAl that supplements classroom teaching and con­

centrates on those tasks in which individualization is critically imP9rtant,

A student terminal in the current program consists only of a Model-33

teletypewriter with an audio headset, There is no graphic or photographic

capability at the student terminal as there was in our first system, and

the character set of the teletypewriter includes only uppercase letters,

On the other hand, the audio system is extreme.l;y- flexible and provides

virtually instantaneous access to anyone of 6,000 recorded words and

messages~

Reading Curriculum

Reading instruction can be divided into two areas which have been

referred to. as lldecodi.ng ll and "comrnunicat.iono Ij Decodi,ng is the rapid,

if not automatic, association of phonemes or phoneme groups with their

"respective graphic representations 0 Co.mmunication involves reading for

meaning, aesthetic enjoyment, emphasis, and the like, Our C_~ program

provides instruction in both types of tasks J but focuses pr:lmarily on

decodingQ The program is divided into eight parts or strands 0 Af.:;

indicated in Figure 3, enTry into a Btrand is determi.Eed by the student's

level of achievement in the other strands, Instruction begins in Strand

0, which teaches the skills requir'ed to interact with the program, Entry

into the other strands is dependent on the stUdent's performance in

earlier strands, For example, the letter identifica.tion strand starts

with a subset of letters used in the earliest sight words, When a

stUdent reaches a point in the letter identification strand where hc has
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Figure 3, Schematic presentation of. the strand structure, (Entry
into each strand depends on a student's pe.rfonnance in
earlier strands, The vertical dotted lines represent

. maximal rate contourS which control the student's progress
in each strand relative· to the other strands,)
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exhibited mastery over the letters used in the first words of the sight­

word strand, he enters that strand, Similarly, entry into the spelling

pattern strand and the phonics strand is controlled by the student's

placement in the sight-word strand, On any given day, a student may be

seeing exercises drawn from as many as five strands, The dotted vertical

line s in Figure 3 represent "maximal rate contours," which control the

student's progress in each strand relative to his progress in other

strands, The rationale underlying these contours is that learning par­

ticular material in one strand facilitates learning in another strand;

thus, the contours are constructed so that the student learns specific

items from one strand in conjunction with specific items from other

strands,

The CAr progJ;'am is highly individuali.zed so that a trace through

the curriculum is unique for each student. Our problem is to specify

how a given subject's response history should be used to make instruc­

tional decisions, The approach that we have adopted is to develop

mathematical models for the acquisition of the various skills in the

curriculum, and then 'Qse these models to specify optimal sequencing

schemes, Basically, this approach is what has come to be known in the

engineering literature as "optimal control theory," or, more simply,

"control theory," Precisely the same problems are posed in the area of

instruction, except that the system to be controlled is the human learner

rather than a machine or group of industries, If a learning model can

be specified, then methods of control theory can be used to derive

optimal instrQctional strategies,
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Some of the optimization procedures will be reviewed later, but in

order for the reader to have some idea of how the CAl program operates,

let me first describe a few of the simpler exercises used in Strands II,

III, and IV. Strand II provides for the development of a sight-word

vocabulary. Vocabulary items are presented in five exercise formats;

only the copy exercise and the recognition exercise will be described

here. The top panel of Table I illustrates the copy exercise, and the

lower panel illustrates the recognition exercise. Note that when a

student makes an error, the system responds with an audio message and

prints out the correct response. In earlier versions of the program,

the student was required to copy the correct response following an error.

Experiments demonstrated that the overt correction procedure was not

particularly effective; simply displaying the correct word following an

error provided more useful feedback.

Strand III offers practice with spelling patterns and emphasizes

the regular grapheme-phoneme correspondences that exist in English.

Table 2 illustrates exercises from this strand. For the exercise in

the top panel of Table 2, the student is presented with three words

involving the same spelling pattern and is required to select the cor­

rect one based on its initial letters. Once the student has learned to

use the initial letter or letter sequence to distinguish between words,

he moves to the recall exercise illustrated in the bottom panel of

Table 2. Here he works with a group of words, all involving the same

spelling pattern. On each trial the aUdio system requests a word that

requires adding an initial consonant or consonant cluster to the spelling

pattern mastered in the preceding exercise. Whenever a student makes a

20



Table 1

Examples of Two Exercises Used in Strand II
(Sight-Word Recognition)

______---__1 ~l::$:~ter 1-'-_m_~.,.s-=~_O-e"""-
Copy exercise

.TQe program outputs:
The student :responds by

typing: ..
The .program outpUts:
The.program outputs:
The student responds by

typing:
The program outputs:

PEN

PEN
+

:&lG .

(~ pen.)

. (Great!)
(Type egg.)

(Wo,egg.)

Recognition exercise

The. program outputs:
.. The student responds by

typing: .
The prOgram outputs:
The program outputs:
The student responds by

typing:
The program .. outputs:

PEN NET EGG (Type pen.)

Pl1lN ..
+

PEN EGG NET (Type net.)

NET
+ (FabUlous! )

.. Note: The top. panel displ!Ws the copy exercise and the
bottom. panel the recogriition exercise. Rows in the table
correspond to successive lines on the teletypewriter
printout.
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Table 2

Examples of the Recognition and Recall Exercises
Us.ed in Strand III (SpelliDgPattems) .

I Teletypewriter I AUdio
_____.....;..__. d_i_Sp_l_B:y.._---l.__me_ss_a_g_e_·._

Recognition exercise ..

The program outputs:
The student responds·. . ..

by typing:
The program oUtputs:

The program outputs:
The stUdent responds.

by typing:
The program outputs:

KEPT SUJPT CREPT

KEPT .
+

Recall exercise

CREPT
-I:

22

(Type kept.)

(Type crept.)

(That's
fabuloUSl)

.



correct response, a "+" sign is printed on the teletypewriter. In

addition, eve~ so often the program will give an audio feedback message;

these messages vary from simple ones like "great," "that's fabulous,"

"you' re doing brilliantly," to some that have cheering, clapping, or

bells ringing in the background. These messages are not generated at

random, but depend on the student's performance on that particular day.

When the student has mastered a specified number of words in the

sight-word strand, he begins exercises in the phonics strand; this strand

concentrates on initial and final consonants and consonant clusters in

combination with medial vowels. As in most linguistically oriented

curricula, students are not required to rehearse or identify consonant

sounds in isolation. The emphasis is on patterns of vowels and con­

sonants that bear regular correspondences to phonemes. The phonic strand

is the most complicated one of the group and involves eight exercise

formats; two of the formats will be described here. The upper panel of

Table 3 illustrates an exercise in which the student is required to

identify the graphic representation of phonemes occuu'i.rg at the end of

words. Each trial begins with an audio presentation of a word that

includes the phonemes, and the student is asked to identify the graphic

representation. After masteri.ng this exercise, he is transferred to

the exercise illustrated in the bottom panel of Table 3. The same

phonemes are presented, but now the student is required to construct

words by adding appropriate consonants.

Optimal Sequences for Individual Students

This has been a brief overvie'w of some of the exercises used in the

curriculum; a more detailed account of the program can be found in
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Table. 3

Examples of Two Exercises from Strand IV (Phonics)

Teletypewriter
display

Audio
message

Recognition ~xercise

.
The program outputs:

The. student respongsby
,typing:

The 'program outputs:
The program outputs ,:

The studentrespolids by
typing:

The program outputs:
.'

-IN -IT -IG

IG
+

-IT -IN -IG

IT
+

(Type/In/ as
in fig.)

(Good!)
(Type /IT/ as

in fit.)

Build-a-word exercise

24



Atkinson, Fletcher, Lindsay, Campbell, and Barr (1973). The key to the

curriculum is the optimization schemes that control the sequencing of

the exercises; these schemes can be classified at three levels. One

level involves decision making within each strand. The problem is to

decide which items to present for study, which exercise formats to pre­

sent them in, and when to schedule review. A complete response history

exists for each student, and this history is used to make trial-by-trial

decisions regarding what to present next. The second level of optimiza­

tion deals with decisions about allocation of instructional time among

strands for a given student. At the end of an instructional session,

the student will have reached a certain point in each strand and a

decision must be made about the time to be allocated to each strand in

the next session. The third level of optimization deals with the dis­

tribution of instructional time among students. The question here is

to allocate computer time among students to achieve instructional

objectives that are defined not for the individual student but for the

class as a whole. In some global sense, these tbree levels of optimiza­

tion shcmld be integrated into a unified program. However, we have been

satisfied to work with each separately, hoping that latex' they can be

incorporated into a single package.

Optimization within a strand (what has been called Levell) can be

illustrated using the sight-,rord strand. The strand comprises a list

of about 1,000 words; the words are ox'dered in terms of their frequency

in the student I s vocabulary, and words at the beginning of the list have

highly regular grapheme-phoneme correspondences. At any point in time

a student will be working on a limited pool of words from the master
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list; the size of this working pool depends on the student's ability

level and is usually between 5 and 10 words. When one of these words is

mastered, it is deleted from the pool and replaced by the next word on

the list or by a word due for review. Figure 4 presents a flow chart

for the strand. Each word in the working pool is in one of five possible

instructional states. A trial involves sampling a word from the working

pool and presenting it in an appropriate exercise format. The student

is pretested on a word the first few times it is presented to eliminate

words already known. If he knows the word, he will pass the pretest and

the word will be dropped from the working pool. If the student does not

pass the pretest, he first studies the word using the recognition exercise.

If review is required, he studies the word again in what is designated

in Figure 4 as Exercises 4 and 5.

As indicated in Figure 4, a given word passes from one state to the

next when it reaches criterion. And this presents the crux of the opti­

mization problem, which is to define an appropriate criterion for each

exercise. This has been done using simple mathematical models to describe

the acquisition process for each exercise and the transfer functions that

hold between exercises (Atkinson & Paulson, 1972). These models are

simple Markov processes that provide reasonably a~curate accounts of

performance on our tasks. Parameters of the models are defined as

functions of two factors: (1) the ab:i..l1ty of the particular student,

and (2) the difficulty of the particular word. An estimate of the

student's ability is obtained by analyzing his response record on all

previous words, and an estimate of a word's difficulty is obtained by

analyzing performance on that particular word for all students on the
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Transfer Into working pool
words that were in use
when student was last"in '­
strand

yes

Is
working

pool
full?

yes

Has
time elapsed
for tooay's
session?

no

no Add new word or word
from. review pool to ,
working pOO~

Update slat.
ot word to

53

Update ,state
of word to.

52 '

n.

Present
.word iii
Exercise 1
IPretesU

Delete word
froin working

pool

Exit
to next
strand

Present
word In
Exercise 2
ICopy)

Hasyes time etaj)sed
for strand?

no

Samphl one word
from the workirlg
pool and note tts
slate

5\ 5S
state ,= ?

52 53 54

Present
word In
Exercise 3_
(Recognition)

yes

Transfer word
to review pool
and update
-state of word to 54'

Present
word In
Exercise 4
ICopyl

Update state
Of ,word to

5S

Delete Word
from. working

pool

Present
word in
Exercise S
(Recognition)

Delete word
from working

pool

Figure 40 Partial flow chart for Strand II (sight~word recognition).
The various decisions represented in the 1;>ottom vart of
the chart are based on fairly complicated.computations that
make use of the student's response histor~o The same
recogni t:i.on exercise is used in both state 8

3
and 850
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program. The student records are continually updated by the computer

and are used to compute a maximum likelihood estimate of each student's

ability factor and each word's difficulty factor. Given a well-defined

model and estimates of its parameters, we can use the methods of control

theory to define an optimal criterion for each exercise. The criterion

will vary depending on the difficulty of the item, the student's ability

level, and the precise sequence of correct and incorrect responses made

by the student to the item. It is important to realize that the optimi­

zation scheme is not a simple branching program based on the student's

last response, but depends in a complicated way on his complete response

history.

Optimization between strands (what has been called Level II) was

mentioned earlier in the description of maximum-rate contours. In some

respects this optimization program is the most interesting of the group,

but it cannot be explained without going into considerable mathematical

detail. In essence, a learning model is developed that specifies the

learning rate on each strand as a function of the amount of material that

has been mastered in each of the other strands. Using mathematical

methods of control theory, an optimal instructional strategy is determined

based on the model. This strategy defines a closed-loop feedback con­

troller that specifies daily instructional allocations for each strand

based on the best current estimate of how much the student has mastered

in each strand. An account of the theoretical rationale for the program

is presented in Chant and Atkinson (1973).
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Optimizing Class Performance

Next let us consider an example of optimization at what has been

called Level IlL The effectiveness of the CAl program can be increased

by optimally allocating instructional time among students, Suppose that

a school has bUdgeted a fixed amount of time for CAl and must decide how

to allocate that time among a class of first-grade students, For this

example, maximizing the effectiveness of the CAl program will be inter­

preted as meaning that we want to maximize the class performance on a

standardized reading test administered at the end of the first grade,

On the basis of prior studies, the following equation has been

developed to predict performance on a standardized reading test as a

function of the time a student spends on the CAl system:

P(t;i) ~ A(i) - B(i)exp[-tC(i)] ,

The equation predicts Student i's performance on a standardized test as

a function of the time, t, spent on the CAl system during the school

year, The parameters A(J.), B(i)., and C(i) characterize Student i, and

vary from one student to anothero These parameters can be estimated

from scores on readi.ng read.iness tests and from the student t s performance

during his fir2t hour of CAl, After estimates of these parameters have

been made, the above equation can be used to predict end-of-year test

scores as a function of the CAl time allocated to that student,

Let us suppose that a school has budgeted a fixed amount of time T

on the CAl system for a first-grade class of N students; further, suppose

that students have had reading readiness tests and a preliminary run on

the CAl system so that estimates of the parameters A, B, and C have been

made for each student, The problem then is to allocate time T among the
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N student!3 so as to optimize learning. In order to do this , it is first

necessary to have a model of thelearni.ng process. Although the above

equation does not offer a very detailed acoount of learning, it suffices

as a model for purposes of this problem. This is an important point to

keep in mind; the nature of the specific optimization problem determines

the level of complexity that needs to be represented in the learning

model. For some optimization problems, the model must provide a rela~

tively detailed account of learning to specify a viable strategy, but

for other problems a simple descriptive equation may suffice.

In addition to a model of the learning process, we must also specify

an instructional objective. Only three possible objectives will be

considered here:

I. Maximize the mean value of P over the class of students.

110 Minimize the variance of P over the class of students.

III. Maximize the mean value of P under the constraint that the
resulting variance of P is less than or equal to the
variance that would be obtained if no CAl were administered.

Objective I maximizes the gain for the class as a whole; Objective II

reduces differences among students by making the class as homogeneous

as possible; and Objective III attempts to maximize the class performance

while insuring that differences among students are not amplified by CAL

If we select Objective I as the instructional objective, then the problem

of deriving an optimal strategy reduces to maximizing the function

f[t(l),t(2), .•• ,t(N)] ~ ~ {A(i)-B(i)exp[-t(i)C(i)]l
i

t(l) + t(2) + ••. + t(N) ~ T
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where t(i) is the time allocated to Student i. This maximization can be

done using the methods of dynamic programming. To illustrate the approach,

computations were made for a first-grade class for which the pa.rameters

A, B, and C had been estimated for each student. Employing these esti­

mates, computations were carried out to determine the time allocations

that maximized the above equation. For the optimal policy, the predicted

mean performance level of the cl.ass on the end-of-year tests was 14%

higher than a policy that allocated time equally among students (i.e.,

an equal-time policy where t(i) = T!N for all i). This gain represents

a substantial improvement; the drawback is that the class variance is

roughly 15% greater than the variance for the class using an equal-time

policy. This means that if we are only interested in raising the cla.ss

average, we will have to give the rapid learners substantially more time

on the CAl system and let them progress far beyond the slow learners.

Although a time allocation that compli.es with Objective I does

increase overall class performance, other objectivBs need to be considered.

For comparison, time al.locations also were computed for Objectives II and

III. TabJ.e 4 presents the predicted gain in average class performance

as a percentage of the mean value for the equal-tLme policy. Objective

II yielded a negative gain in the mean; and so it shOUld, since j.ts goal

was to minimize variability, which is accomplished by reducing the time

allocations for rapid learners and giving more attention to the slower

ones. The reduction in variability for Objective II is 12%. Objective

III, which strikes a balance between Objective I and Objective II, yields

an 8% gain in mean performance yet reduces variability by 6%.
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Table 4

Predicted Percent Gain in the Mean Of P. and in the
Variance of P When Compared with the Mean and

Variance of the Equal-Time Policy

Instructional objective

I II III
-

"/0 gain in mean of P 14 -15 -8

"/0 gain in variance of-P 15 -12 -6
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In view of these results, Objective III would be preferred by most

educators and laymen. It offers a substantial increase in average per-

formance while maintaining a low level of variabi.lity. These computations

make it clear that the selection of an instructional objective should not

be doue in isolation but should involve a comparative analysis of several

objectives, taking into account more than one dimension of performance.

Even if the principal goal is to maximize the class average, it is in-

appropriate in most educational situations to select Objective lover

III if it is only slightly better for the class average, while permitting

variability to mushroom.
2

Effectiveness of the Reading Program

Several evaluation studies of the reading program have been con-

ducted in the last few years. Rather than review these here, I would

prefer to describe one in some detail (Fletcher & Atkinson, 1972). In

this particular study, 50 pairs of kindergarten students wer~ matched on

a number of variables, including sex and readiness scores. At the start

of the first grade, one member of each pail' was assigned to the experi~

mental group and the other to the control group. Students in the

experimental group received CAI, but only during the first grade; students

in the control group received no CAL The CAI lasted apprOXimately 15

minutes per day;3 duri.ng this penod the control group studied reading

2For a more detailed discussion of some of the issues involved in
selecting objective functions see Jamison, Fletcher, Suppes, and
Atkinson (1975).

3In this study no attempt was made to allocate time optimally among
students in the experimental group; rather, an equal-time policy was
employed.
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in the classroom. Except for this 15-minute period, the school day for·

the CAr group was like that of the control group. Standardized tests

were administered at the end of the first grade and again at the end of

the second grade. All the tests showed roughly the same pattern of

results; to summarize the findings, only data from the California Cooper­

ative Primary Reading Test will be described. At the end of the first

grade, the experimental group showed a 5.05-month gain over the control

group. The groups, when tested a year later (with no intervening CAr

treatment), showed a difference of 4.90 months. ThUS, the initial dif­

ference observed following one year of CAr was maintained, although not

amplified, during the second year when no CAr was administered to either

group.

No definitive conclusions can be drawn from evaluation studies of

this sort about the specific contributions of CAr versus other aspects

of the situation. Obviously the curriculum materials used in the CAr

program are important, as well as other factors. To do the type of study

that would isolate the important variables is too large an undertaking

to be worthwhile at this juncture in the development of the reading pro­

gram. ThUS, to some extent it is a matter of judgment in deciding which

variables account for the differences observed in the above stUdy. In

my view, individualizing instruction is the key factor in successfully

teaching reading. This does not mean that all phases of instruction

should be individualized, but certain skills can be mastered only if

tnstruct:l,on. is sensitive to the student's particular difficulties. A

reading teacher interacting on a one-to-one basis with a student may be

more effective than our CAr program. However, when working with a group
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of children (even as few as four or five), it is unlikely that she can

match the computer's effectiveness in making instructional decisions

over an extended period of time"

SECOND-LANGUAGE VOCABULARY LEARNING

In this section, research on CAr programs for second-language vocab­

ulary learning will be discussed, As noted elsewhere in this paper, the

principal goal of our research on computerized instruction has been to

develop adaptive teaching procedures--procedures that make moment-by­

moment decisions about which instructional action should be taken next

based on the student I s unique response history. To help guide the

theoretical aspect of this work, some years ago we initiated a series

of experiments on the very restricted but well-defined problem of

optimizing the teaching of a foreign-language vocabulary, This is an

area where mathematical models provide an accurate description of

learning, and these models can be used in conjunction with the methods

of contr'ol theory to derive precise algorithms for sequencing instruc­

tion among vocabulary items, Although our original interest in this

topic was primarily theorettcal, the work has proved to have significant.

pract.ical applications" These applicat.ions involve comput.erized vocab­

ulary learning programs designed to supplement college-level courses in

second-language instrueti.on, A part.ieularly interesting effort involves

a supplement.ary Russian program tn use at St.anford University. Student.s

are exposed to approxtmately 1,000 words per academie quarter using the

comput.er; in conjunction 1"ith normal classroom work t.his pr')gram. enables
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them to develop a substantial vocabulary04 Many foreign language in-

structors believe that the major obstacle to successful instruction in

a second language is not learning the grammar of the language, but rather

in acquiring a sufficient vocabulary so that the student can engage in

meaningful conversations and read materials other than the textbook,

In examining the work on vocabulary acqui.sition I will not describe

the CAl programs, but will review some research on optimal sequencing

schemes that provides the theoretical rationale for the programso It

will be useful to describe one experiment in some detail before con-

sidering more general issueso

An Experiment on Optimal Sequencing Schemes

In this study a large set of German-English items are to be learned

during an instructional session that involves a series of trialso On

each trial, one of the German words is presented and the student attempts

to give the English translation; the correct translation is then pre-

sented for a brief stUdy periodo A predetermined number of trials is

allocated for the instructional sessi.on, and after some intervening

period a test is administered over the entire vocabularyo The problem

is to specify a strategy for presenting items during the instructional

session so that performance on the delayed test will be maximized.

4These CAr vocabulary ~rograms make use of optimal sequencing schemes
of the sort to be discussed in this section, as well as certain mnemonic
aids 0 For a discussion of these mnemonic aids see Raugh and Atkinson
(1975) and Atkinson and Raugh (1975)0
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Four strategies for sequencing the instructional material will be

considered. One strategy, designed RO for random order, is to cycle.

through the set of items randomly; this strategy is not expected to be

particularly effective, but it provides a benchmark against which to

evaluate other procedures. A second strategy, designated SS for self

selection, is to let the student determine for himself how best to

sequence the material. In this mode, the student decides on each trial

which item is to be presented; the learner rather than an external con­

troller determines the sequence of instruction.

The third and fourth schemes are based on a decision-theoretic

analysis of the task. A mathematical model that provides an accurate

account of vocabulary acquisition is assumed to hold in the present

situation. The model is used to compute, on a trial-by-trial basis, an

individual student's current state of learning. Based on these compu­

tations, items are selected for test and study so as to optimize the

level of learning achieved at the termination of the instructional ses­

sion. Two optimization strategies derived from this type of analysis

will be examined. In one case, the computations for determining an

optimal strategy are carried out assuming that all vocabQlary items are

of equal difficulty; this strategy is designated OE (i.e., optimal under

the assumption of equal item diffic1ilty). In the other case, the compu­

tations take into account variations in difficulty level among items;

this strategy is called OU (i.e., optimal under the assumption of unequal

item difficulty). The details of these two strategies will be. described

later.
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The experiment was carried out under computer control; the details

of the experimental procedure are given in Atkinson (1972b). The students

participated in two sessions: an "instructional session" of approximately

two hours and a briefer "delayed-test session" administered one week later.

The delayed test was the same for all students and involved a test over

the entire vocabulary. The instructional session was more complicated.

The vocabulary items were divided into seven lists, each containing 12

German words; the seven lists were arranged in a round-robin order. On

each trial of the instructional session a list was displayed on a pro­

jection screen, and the student inspected it for a brief period of time;

the list involved only the 12 German words and not their English trans­

lations. Then one of the items on the list was selected for test and

study. In the RO, OE, and au conditions the item was selected by the

computer; in the 88 condition the item was chosen by the student. After

an item was selected for test, the student attempted to provide a trans_

lation by typing it on his computer console; then feedback regarding the

correct translation was given. The next trial began with the computer

displaying the next list in the round robin, and the same procedure was

repeated. The instructional session continued in this fashion for 336

trials.

The results of the experiment are summarized in Figure 5. Data are

presented on the left side of the figure for performance on successive

blocks of trials during the instructional session; on the right are

results from the test session administered one week after the instruc­

tional session. The data from the instructional session are presented

in successive blocks of 84 trials; for the RO condition this means that
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on the average each item was presented once in each of these blocks.

Note that performance during the instructional session is best for the

RO condi.ti.on, next best for the OE condition which is slightly better

than theSS condition, and poorest for the OU condition. The order of

the groups is reversed on the delayed test. (Two points are displayeq

in the figure for the delayed test to indicate that the test involved

two random cycles through the entire vocabulary; however, the values

given are the average over the two test cycles.) The OU condition is

best with a correct response probability of .79; the SS condition is

next with .58; the OE condition follows closely at .54 and the RO con­

dition is poorest at .38. The observed pattern of results is what one

would expect. In the SS condition, the stUdents are trying to test

themselves on items they do not know; consequently, during the instruc­

tional session, they should have a lower proportion of correct responses

than stUdents run on the RO procedure where items are tested at random.

Similarly, the OE and OU conditions involve a procedure that attempts to

identify and test those items that have not yet been mastered and should

produce high error rates during the instructional session. The ordering

of groups on the delayed test is reversed since all words are tested in

a non-selective fashion; under these conditions the proportion of correct

responses provides a measure ofa student I s true mastery of the total

set of vocabulary items.

The magnitUde of the effects observed on the delayed test are of

practical significance. The SS condition (when compared to the RO

condition) leads to a relative gain of 53%, whereas the OU condition

yields a relative gain of 108%. It is interesting that students were
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somewhat effective in determining an optimal study sequence, but not so

effective as the best of the two adaptj,ve teaching systems.

Rationale for Sequencing Schemes

Both the OU and OE schemes assume that vocabulary learning can be

described by a fairly simple model. We postulate that a given item is

in one of three states (p, T, and U) at any moment in time. If the item

is in State P, then its translation is known and this knowledge is

"relatively" permanent in the sense that the learning of other items

will not interfere with it. If the item is in State T, then it is also

known but on a "temporary" basis; in State T the learning of other items

can give rise to interference effects that cause the item to be forgotten.

In State U the item is not known, and the student is unable to give a

translation.

When Item i is presented on a trial during the instructional session,

the following transition matrix describes the possible chance in its state:

P T U

P[ 1 0 0 ]L( i.) = T x(i) l~x(i) 0
U y(i) z(i) l-y(i)-z(i)

Rows of the matrix represent the state of the item at the start of the

trial, and columns the state at the end of the trial. On a trial when

some item other than Item i is presented for test and study, transitions

in the state of Item i also may take place. Such transitions can occur

only if the student makes an error to the other item; in that case the

transiti.on matrix applied to Item i is as follows:
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Basically, the idea is that when some other item is presented that the

student does not know, forgetting may occur for Item i if it is in

State T.

To smnrnarize, when Item i is presented for test and study, transi-

tion Matrix L(i) is applied; when some other item is presented that

elicits an error, Matrix F(i) is applied. It is also assumed that at

the start of the instructional session Item i is either in State P, with

probability g(i), or in State U, with probability l-g(i); the student

either knows the translation without having studied the item or does

not. The above assumptions provide a complete description of the learning

process. The parameter vector [x(i), y(i), z(i), f(i), g(i)] charac-

terizes the learning of Item i in the vocabulary set. The first three

parameters govern the acquisition process; the next parameter, forgetting;

and the last, the student's knowledge prior to entering the experiment.

We now turn to a discussion of how the OE and OU procedures were

derived from the model. Prior to conducting the expe.riment reported

here, a pilot study was run using the same word lists and the RO pro-

cedure described above. Data from the pilot study were employed to

estimate the parameters of the model; the estimates were obtained using

the minimum chi-square procedures described in Atkinson (1972b). ~IO

separate estimates of parameters were made. In one case it was assumed

that the items were all equally difficult, and data from all 84 items
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were lumped together to obtain a single estimate of the parameter vector;

this estimation procedure will be called the equal-parameter case (E

case). In the second case the data were separated by "items, and an esti-

mate of the parameter vector was made for each of the 84 items; this

procedure will be called the unequal-parameter case (u case). The two

sets of parameter estimates were then used to generate the optimization

schemes previously referred to as the OE and OU procedures.

In order to formulate an instructional strategy, it is necessary to

be precise about the quantity to be maximized. For the present experi-

ment the goal is to maximize the total number of items the student

correctly translates on the delayed test. 5 To do this, we need to

specify the relationship between the state of learning at the end of

the instructional session and performance on the delayed test. The

assumption made here is that only those items in State P at the end of

the instructional session will be translated correctly on the delayed

test; an item in State T is presumed to be forgotten during the inter-

vening week. Thus, the problem of maximizing delayed-test performance

involves maximizing the number of items in State P at the end of the

instructional session.

50ther measures can be used to assess the benefits of an instructional
strategy; e.g., in this case weights could be assigned to items measur­
ing their relative importance. Also costs may be associated with the
various actions taken during an instructional session. Thus, for the
general case, the optimization problem involves assessing costs and

:.benefits and finding a strategy that maximizes an appropriate function
defined on them. For a discussion of these points see Dear, Silberman,
Estavan, and Atkinson (1967), and Smallwood (1962, 19'71).
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Having numerical values for parameters and knowing a student's

response history, it is possible to estimate his current state of learn~

ing.
6

Stated more precisely, the learning model can be used to derive

equations and, in turn, compute the probabilities of being in States P,

T, and U for each item at the start of any trial, conditionalized on the

stUdent's response history up to that trial. Given numerical estimates

of these probabilities, a strategy for optimizing performance is to

select that item for presentation that has the greatest probability of

moving into State P. This strategy has been termed the one-stage opti-

mization procedure because it looks ahead one trial in making decisions.

The true optimal policy (i.e., an N-stage procedure) would consider all

possible item-response sequences for the remaining trials and select the

next item so as to maximize the number of items in State P at the ter-

mination of the instructional session. Unfortunately, for the present

case the N-stage policy cannot be applied because the computations are

too time consuming even for a large computer. Monte Carlo studies

indicate that the one-stage policy is a good approximation to the

optimal strategy; it was for this reason, as well as the relative ease

6The student's "response history" is a record for each trial of the
vocabulary item presented and the response that occurred. It can be
shown that there exists a "SUfficient history" that contains only the
information necessary to estimate the stUdent's current state of
learning; the sufficient history is a function of the complete history
and the assumed learning model (Groen & Atkinson, 1966). For the model
considered in this paper the SUfficient history is fairly simple. It
is specified in terms of individual vocabulary items for each stUdent;
we need to know the ordered sequence of correct and incorrect responses
to a given item plus the number of errors (to other items) that inter­
vene between each presentation of the item.
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of computing, that the one-stage procedure was employed. For a discus­

sion of one-stage and N-stage policies and Monte Carlo studies comparing

them see Groen and Atkinson (1966), Calfee (1970), and Laubsch (1970).

The optimization procedure described above was implemented on the

computer and permitted decisions to be made for each student on a trial­

by-trial basis. For students in the OE group, the computations were

carried out using the five parameter values estimated under the assump­

tion of homogeneous items (E case); for students in the OU group the

computations were based on the 420 parameter values estimated under the

assumption of heterogeneous items (U case).

The OU procedure is sensit1.ve to interi tem differences and conse­

quently generates a more effective optim1.zation strategy than the OE

procedure. The OE procedure, however, is almost as effective as having

the student make his own instructional decisions and far superior to a

random presentation scheme.

The stUdy reported here is one in a series of experiments dealing

with optimal sequencing schemes. It was selected because it is easily

described and permits direct comparison between a learner-controlled

procedure versus procedu.res based on a decision-theoretic analysis. For

a review of other studies similar to the one repor-ted above see Chiang

(1974), Delaney (1974), Laubsch (1970), Ki.mball (1973), Paulson (1973),

and Atkinson and Paulson (1972). Some of these studies examine pro­

cedures that are more powerful than the ones described here, but they

are complicated and difficult to describe wi.thout going into mathematical

detail. The major improvements involve two factors: (1) methods for

estimating the model's parameters during the course of instruction, and



(2) more sophisticated ways of interpreti.ng the model's parameters to

take account of both differences among students and differences among

items. For example, let P(i,j) be a generic symbol for a parameter

vector characterizing student i learning vocabulary item j. In these

studies P(i,j) is specified as a function of a vector A(i) measuring the

ability of student i and a vector D(j) measuring the difficulty of item

j. The problem then is to estimate the ability level of each student

and the difficulty of each item while the student is running on the

program. In a study reported in Atkinson and Paulson (1972), rather

dramatic results were obtained using such a procedure. A special feature

of the study was that students were run in successive groups, each

starting after the prior group had completed the experiment. As would

be expected, the overall gains increased from one group to the next.

The reason is that for the first group of students the estimates of item

difficulty, D(j), were crude but improved with the accumulation of data

from each successive wave of students. Near the end of the study esti~

mates of D( j) were quite precise and were essentially constants in the

system. The only task that remained when a new student came on the

system was to estimate A(i); that is, the parameters characterizing his

particular ability level. This study provides an example of an adaptive

instructional system that meets both of the requirements stated earlier

in this paper. The sequencing of instruction varies as a function of

each student's history record, and over time the system improved in

efficiency by using data from previous students to sharpen its estimates

of the diffiCUlty of instructional materials.
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CONCLUDING REMARKS

The projects described in tills paper have one theme in common,

namely, developing computer-controlled procedures for optimizing the

instructional process. For several of the instructional tasks consid­

ered here, mathematical models of the learning process were formulated

which made it possible to use formal methods in deriving optimal policies.

In other cases the "optimal schemes" were not opt:i.mal in a well-defined

sense, but were based on our intuitions about learning and some relevant

experiments. In a sense, the diversity represented in these examples

corresponds to the state of the art in the field of instructional design.

For some tasks we can use psychologica:L theory to help define optimal

procedures; for others our intuitions, modified by experiments, must

gUide the effort. Hopefully, ourunderstandi.ng of these matters will

increase as more projects are undertaken to develop sophisticated in­

structional procedures.

Some have argued that any attempt to devise optimal strategies is

doomed to failure, and that the .learner himself' is the best judge of

appropriate instructional actions. I am not sympathetic to a learner­

controlled approach to instruction, because I believe its advocates are

trying to avoid the difficult but challenging task of' developing a viable

theory of' instruction. 'I'here obviously is a place for the learner's

jUdgments in making instructional decisions; for example, such jUdg~·

ments play an i.mportant role in several parts of our BIP course. However,

using the learner's judgment as one of several items of information in

making instructional decisions is different from proposing that the



learner should have complete controlo Results presented in this paper

and those cited in Beard, Lorton, Searle, and Atkinson (1973) indicate

that the learner is not a particularly effective decision maker in

gUiding the learning process,

Elsewhere I have defined the criter~a that must be satisfied before

an optimal instructional procedure can be derived using formal methods

(Atkinso~, 1972a), Roughly stated, they require that the following

elements of an instructional situation be clearly specified:

(1) The set of admissible instr~ctional actions

(2) The instructional objectives

(3) A measurement scale that permits costs to be assigned to
each of the instructional actions and payoffs to the achieve­
ment of instructional objectives

(4) A model of the learning process

If these four elements can be given a precise interpretation, then it is

usually possible to derive an optimal instructional policy, The solution

for an optimal policy is ~ot guaranteed, but in recent years powerful

tools have been developed for discovering optimal, or near optimal, pro-

cedures if they exist, I will not discuss these four elements here except

to note that the first three can usually be specified with a fair degree

of consensus, Issues of short-term versus long-term assessments of costs

and payoffs raise important questions regarding educational policy, but

at least for the types of instructional situations examined in this paper

reasonable specifications can be offered for the first three elements,

However, the fourth:element--the specification of a model of the learning

process--represents a major obstacle, Our theoretical understanding of

learning is so limited that only in very special cases can a model be
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specified in enough detail to enable the derivation of optimal procedures.

Until we have a much deeper understanding of the learningprbcess, the

identification of truly effective strategies will not be possible. How­

ever, an all-inclusive theory of learning is not a prerequisite for the

development of optimal procedures. What is needed is a model that

captures the essential features of that part of the learning process

being tapped by a given instructional task. Even models that have been

rejected on the basis of laboratory investigations may be usefUl in

deriving instructional strategies. Several of the learning models con­

sidered in this paper have proven unsatisfactory when tested in the

laboratory and evaluated using standard goodness-of-fit criteria; never­

theless, the optimal strategies they generate are often quite effective.

My own preference is to formulate as complete a learning model as

intuition and data will permi.t and then use that model to investigate

optimal procedures. When possible the learning model should be repre-·

sented in the form of mathematical equations, but otherwise as a set of

statements in a computer-simulation program. The main point is that the

development of a theory of instruction cannot progress if one holds the

view that a comprehensive theory of learning is a prerequisite. Rather,

advances in learning theory will affect the development of a theory of

instruction, and conversely the development of a theory of instruction

will influence the direction of research on learning.
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