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Application of Learning Models and Optimization Theory

to Problems of Instruction®

I. PHILOSOPHICAL APPROACH

A. "Problem Definition

Stated in its simplest form, the gquestion addressed here is how
to allocate instructicnal resources to achieve a desired objective. Breadly
interpreted, this question could include the total educational resources of

society and all possible learning situations. In practical terms, however,

: . . . N i '
the setting is restricted to the structural educational system, because

. this is the only context in which decisions om the allocation of instructional

resources may be implemented.
When the question of allocating resources is examined in this

setting, attention is usually focussed on a well-defined sub-component of

‘the problem. Once the characteristics of one of these sub-components are

understood, their implications may be extended to a larger context. 1In

general, however, the characteristics of many sub-components must be synthe-

sized before solutions canbe derived for the problem of resource allocation.
In the school setting, the primncipal resources to be allocated

are the human resources of teachers and‘students; When the teaching function

-is augmented by non-human resources, such as computer-aided instruction, then

‘the total instructional resources must be considered. The time spent by the

students also must be included because there is frequeﬁtly a trade-off
between.instrucﬁional resources to be allocated and sﬁeeq of learﬁing.'

There are two.basic questions in any resource allocation preblem:
(1) what are the alternatives and their implicationé,.and (2} which alterﬁative
is preferred? _The first gquestion concerns the ”systeﬁ'and.includes such

questions as what ts feasible, what heppens <f and what is the cost? The

- second question has to do with the goals, objectives and preferences of the
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‘ment and application of mathematical models that help the decision-maker

— o -

" decision-maker or the collection of people he represents. These are very

difficult questions to answer; but they must be answered, at least implicitly,
every time an allocation decision is made. This chapter reviews the develop—
directly with the first question and indirectly with the guestion of

identifying objectives and preferencés.:

B. Empiricai Apprdach versus Modelling Approach

| The core of aﬁy decision problem is the'detefmination of the .
implicafions or outcomes of each alternative - that ié,‘the determination of
the answers to what happens ©f? The qﬁestions of feasibility and cost ére
ancillary to this central ﬁréblem and are relatively uncompliqéted.' For
example, consider the problem of determining oﬁtimal class size.r For a
particular-situation, tﬁe questionrof féasibility might involve simply the
aﬁéilability of physical facilitiés‘and instructional resources. Analjsis

of fhe question of cost.also would be reasonably straightforward. It wohld,"
howevér, be verv difficult to determine-and quantify the expected results with

sufficient accuracy to permit assessment of the'cost—éffectiveVtrade—off.

"

.. It is the quantitative analysis of the core of the decision problem that

_can be approached with empirical or médelling techniques.

In the empifical approach, the input variables ({(class size, for

example) and the output wvariables (amount learned, say) are defiﬁéd-for.the

particular problem at hand and then empirical data relating to these

‘variables are collected and analyzed. From the analysis it is hoped that a

causal relationship can be determined and quantified.- This relationship then
_éerves to predict the output from the system for the range of aiternatives
under conéideration. Once the éﬁpectgd output has heen QUéntified-énd

once the &oéts of the alternatives have-been determinéd, the decision problem

is reduced to an evaluation of preferences.
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The empifical Approach has a natural apﬁeal for several reasons.

Fifst,'pe;haps, is its simplicity. If a particular system has only.a.few
_vériables tﬁat are amenable to ﬁuaﬁﬁifidation, then, given suffiéient ﬁata,
' thé reiationships between them can be determined. The second reason for.
its appeal is that no a priori knowledge.of the relationships among
variables is necessary; the data éimply speak for themselves. A third
reason is that daté analysis can never really be avoided completely,.what—
- ever apprbach.is employed. Thus, if the problems of daté coligction;
verification and analysis must be encountered regardless, it méy appear
expeditibus to rely on data analysis alone.

: There are, however,'many problems with the apﬁlicégion of the
empirical ;ppfoach, especially to situationsvthat are aé complicated as-
those'that'comprise the educational system. It -is extremelyrdiffiéult ;D
define.real variables precisely. Often surroga£é variables must be used.

- because the real variables cannot be suitably quantified.: For ékample,

-7

teaching ability can be represented by such quantifiable variables as years-

of-expefience and level-of-education. Even if variables can be defined, the

‘complexities of measurement introduce new problems. These problems involve

statistical sampling, measurement error and the choice of survey and inter- .

view techniques.

- In addition to definitional and measurement problems, difficulties

arise in controlling multiple variables and long time constants or reaction

times. Within a system of many variables, the relationships between only a

few of them may be impossible to extract empirically because of the in-
fluence of other uncontrolled or unquantified variables. Moreover, the
fact that educational systems have long time constants introduces complic-

- ations when more than "snapshot" data analysis is required. " “Time series or
‘ - . . _ ysis 1

"
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- Mlongitudinal" data analysis is particularly important when the objective

"~ is to study the effects resulting from a change in the system, whether it .

be an expe?imental change or a permanent change. Because of the long time
constants in education, the effects of change are manifested very slowly
and the detection of the change througn data analysis requires the main— -
tenance of high qualityrdata over a reiative1y l0ng time period.

The second method of analyzing thé system is the modelling
appfoach. This approach is characterizéd by SOmé assumptions about the
_structufa of the system - that is, it aséﬁmes a particﬁlar form for
ielationships among some of tﬂe variables. It encompasées a'spéctfum of.
technlques ranging from struétured data analysis to abstract ;ﬁeory. |

In its most abstract form, the modelling approach offers_the
power of méthematical analysis witﬁ the'qapaﬁility of examining a wide
‘range of alternatives or parameter values. The models that result from
fitting mathematical eguations fo empirical data aléo may be aﬁenable to
mathematical analysis; but often, becauée of their complexity,rthey require
thg power of computers toanalyze the effécfs of ‘various altgrngtives and
parameter valueé.. It is, of course, possible to combine the éﬁstract

model form with extensive data analysis. Indeed, the optimal balance of model

abstraction and data analysis is the goal of any model builder. This balance

depends upon many factors, including the pﬁrpose of the model, the qvail;
abilitylof appropriate data and the characteristics of the decision-maker
as well as the apalyst. A good model is characterized by providing
sufficient Aetail'for therdecision—maker while_fetaining no more complexity
fhan is requiréd‘to portray adequateiy'relationshiﬁs within the real en—

vironment.
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C. Mathematical MModels and Oprimization Theory B

A particularly usefu; form of the modelling approach is one
in which the probient is formulated within the frameﬁork of comtrol and
optimization. theory. At the heart of this framework is fhe mathematical
model.that is a dynamic'description of the fundamental variables of the
systém, For any alternative under consideration, the model determines
all the implications of outcomes over time resulting from the implementation
of that partibular.alternative or policy.

Once the implications of each altérnativé are kﬁown and ﬁhe
" costs have been evaluated,. preferences can be assigned to the various
alternatives. In the framework of control and optimization theory, these
alternatives for resource ailocation are associatéd with settings of the.
_ control variables. The preferences over allepossible élternatives are
é;ecified by an_objecﬁive function that measures the trade-off between
benefifs and costs, which are defined in the mﬂdel.by the values of the
" eontrel variables and the state variablés. The control and state variables
' define; generzlly speaking, the inputs and outcomes of z system, réspectively.
The problem of optimal resource allocation is thus the problemof cheoosing
feasible control variable settingé that.maximize {or miniﬁizej the ébjective.
functioﬁ.. |

The central dynamic behavier that must be modelled when éonsidering
problems of resource allocation in the educational setting is the iﬁteraction
batween thé instructor - whether it be teacher, comﬁuter*aésisted instruction
or programﬁed instruction - and the individual learner.‘ The effects of the
-environment {(for example, the classroom) also are_important. Models of these
interactions are essential in order to predict the outcomes of alternative
instructional policies. Once the cost compbﬁeﬁts of the various a%ternatives

have been evaluated, the optimization problem may take one of three forms.

e e 1

-




« 8
-_If the quantity of resources is fixed, then benefits can be maximized subjeqt
to this resource constraint. If there is a miﬁimum level of perfbrmance to
"be achieved, then the aporopriaic objective is to minimize cést subject to.
this performance 1evei. Finally, if-perfﬁrmanéé and'cos£ are hoth flexible
~and if the trade~off of beqefit and cost can be quantified in an objective
.function, then both the optimal qﬁanfity of resources and the level of per-—

formance can be determined.

IT. PREVIOUS RESEARCH

A, Overview - ’ o ' .

The épplications of learning mddels and optimization.theory_toi
problems of instfuction fall into two categories: (1) individual learner
orienﬁed, and (2) group pf learners (claééroom) ériented.' Inicategory (1)
applications, instruction is given to one learner éompletely independently.of
other learners. These applications are typical of cémpuéer~as§iéted instruction
.énd programﬁed instruction and also include the_one—teacher/one—stﬁdeut situvation.
Wi#hiu this catégpry, many $ituations can @e adequately descri%ed by an aép—
.ropriate existing model from mathematical learning thecry. In such caéés,
as outliﬁed be10w,.the results of applying matheﬁatical modélsyhéve been
encouraging.' In other more complex situations, existing modelé must be

modified or new models must be developed to describe the instructor/learner

interaction.

- In categdry (2) apﬁlications; instruction is given simgltaneausiy
to two or more learners., This characteristic is typical of classroom-oriented
. instruction and also includes other forms of instruction, such as films and
mass media, where two or more learners may be receivigg instruction but there is
'no‘feedback frem learner to instructor. In contrast to cétegory (l) situations,

where mathematical learning theory provides suitable models of instructor/

e
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“ learner interaction, there,;is no comparable theory for the group of learnars

‘environment. Category (2) applications must therefore include model develop-

Most applications, whether in category (1) or in category (2),

- follow a fourﬂstep procedure.

Step ¢me is to isolate a particular learning situation. 1In this

step, the 1earning'situation is classified as category (1) or (2), the method
~of instruction is defined and the material to be learned is specified.' : !

Step two is to acquire a suitable model to describe how in-

struction affects learning. This step may be as simple as the selection of an

-
-

appropriate model from mathematical learning theory, és mentioﬁed above, or
as difficult as the develépment of.a new model for the particulaf situation.
-Step three is to define an éppfopriate criterion for comparing
the various instruction possibilities, taking account of benefits and costs
as . determined by the model. ' S ' ' ._L _ ' : | ;
Step four is to perforﬁ the optimizatibn and analyze the

characteristics of the optimal solution. These'characteristics may include

ey

.the sensitivity of the optimal solution to key variables of the model and

the comparisqn of its results relativé to-tﬁose of other sclutions. 1In

some situations the optimization problem may be very difficult or impossible“‘
to solve. 1In this.case, various subwoptimél solutions may be idéntified

whose results represent improvements over those of previcus solutions.

B. Individual Learner Setting _ = _ o | : o
1. Quantitative Approach for Automated Tgaching Dévices | . Z

“An important application of mathematical modelling and cptimiz— :

ation theory was the development of a decision structure for teaching wachines

by Smallwood (1962). Smallwood's goal was to.produce a framework for_the
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_design of teaéhing machineg that would emulate the two most important
- qualities of a good human tutor: (1) the ability to adjust instruction

“to the advantage of the learner, and (2) the ability to adapt imstruction

based on his own experiencé.: The decision system within this framewofk.
must tﬁerefore maﬁe use of the iearner's response history, not Dniy to the
benefit,of the current learner, but also for future learmers.

The learning situation considered by Smallwood has three basic

elements: (1) an ordered set of concepts that are to be taught, (2) a set

of test questions for each concept to measure the learner's understanding,

and (3) an array of blocks of material that may be presented to teach the
concepts, Two additional elements are reQuired to complete the framework

for the design of a teaching machine: (4) a model with which to estimate the

. probability that a learner with a particular respoﬁse history will respond

with a particular answer to each que;tion, and (53) a criterion for choosing
which block to present to a learner at any given time.
‘Having defined his model requirements in ‘probabilistic terms,

Smallwood considered three modelling approaches: correlation, Bayesian

and intuition. He discarded the correlatioﬁ model approach as not'uSE;

ful in this;context. Then he developed Bayesian models, based on the tech—
niques of ﬁaﬁimum likelihocd aﬁd Bayesian estimation (these modeis are too .
complex to review here), His intuition approach led to a relatively simple

quantitative model based on four desired properties: representation of

question difficulty and learper ability, together with model simﬁlicity

‘and experimental performance.

[
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-The model is - ' .

be . b<a

1-(1-b) (1-¢) b>a

(l—a)

where P is the probability of a correct response, 3 measures the aﬁilitylof
the learner, ¢ measures the difficulty of the question and @ is an average of
the fraction of correct responses. All parameters are between zero and one.
" As an obje;tive fuhétion for deterﬁining optimal block presentation
strategies, Smallwood Suggesfed two possibilities with variafions. One was .
an émoun;—learned criterion, which measured the difference before and after
‘instruction, and the other was a learming-rate criterion, which essentially
normalized the first priterionlover time. 1In the optimization process, these

criteria are used to choose among altermative blocks for presentation in a

local, rather than global sense.

A simple teaching machine was constructed based on the concepts of this.

decision struétufe. The experimental evidence verified that the machine distin—
guished between learners and presented them with different combinatioﬁs of blocks
of material. It also verified thatr different decisions Qere_taken at different
fimes under similar eircumStances, indicating that the machine was adapﬁive.

2, Order of'Presenﬁationrof'Items Ffrom a List o :

The- task of learning =a list oflpaired—associate items has pragtical
.applications in.ﬁany areas of.education,. ﬁotably'in readiﬁg and foreign
‘language instruction {Atkinson, 1872). It is also a learning task for which
- models of matﬁématical learning theory have.been very successful at describing
empiricﬁl data. 1Is is therefore not surprising that the earliest and most en-

couraging results of the application of optimizaticn techniques have come in

‘this area. Although the learning models employed in these studies are extremely

g e e
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.simple, the results are vé;uable for three reasons: (1) the applicationd
'are prattical, {2) these résultsllead to further critical assessment of the
basic learning models, and (3) theAgenefal-analytical pfocedure is transfer—
able to more complex situatiops. |

The épplication of mathemétical models and optimizatioﬁ theory to.
the prpblém of presenting.items from a list can be illustrated by three
examples from the literature. The first is a short paper by Crothers (1965) '

that derives an optimal order of item presentation when two modes of

pregentation are available. The second is an in-depth study by Karush and

 Dear (1966) of a simple learning model that leads to an important decomposition

_result. ‘The third eﬁample is a paper by Aﬁkinson and Paulsoh (1972) that
‘derives optimal presentational strategies f?om three differént learﬁing
models and presents some EXperimeﬁtal results. These three.papers are .
‘described bfiefly.

In the Crothers paper thefe are two-modes of presentation of
‘the items from the list; the total number of presentatioﬁs using eagh~ﬁode
is fixed, but tﬁe order of presentation is to be chosen. Since the'crdér
of presentation does not affect the cost of the instruction, the objective f
.ié éimply to maximize tﬂe expected prpportion'of:correct items Qn_a test
after all presentatipns have been-madel

Two modeis of the learning pfocess are studied in this papef{
The mndoﬁ trial increment model (which is described in detail lai:e_;: in this

section) predicts that the expected proportion of correct'items is independ-

ent of the order of presentation of items; thevrefore, any order is an optimal

'solution.  The second learning wodel, the long-short learning and retention
model, predicts different results from different presentation orders, and so

a meaningful application of optimization exists. This model depicts the learner
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'.as being in one of three states: a learned state, a partial 1earning stafe
iand an uﬁlearned state. -The learner responds with a correct respose with
-probability I, p or g, respectively, depending upon his state of learming,
and his transition from state to state is defined by the probabilistic

"transition matrix

b ¢ I-b-c

.This-model siﬁplifies inté the.two-elément model by setting b equal to zero
and further into the all-or-none model by dropping the partial igarning state.
This model is agsumed to describe the learning process for each modé of
presenta£ion,‘so that the response proéabilitiés for eacﬁ state are identical
for all modes but the parameters g, b and ¢ are different fof_each mode .
- For a discussion of these models; see Atkinson, Bower and_Qrothe;s (1965).
The result'of the optimization sfep in this application is
Fontained in two theorems. The first theorem_states that the ranking of
‘presentation schedules based on the expected proportién of correct responses
. (which is the defined objectivé) is identical to the ranking based on the
probability of oceupying the learned s£ate. Thé second.theorem states that
, tﬁe rankiﬁg of tﬁo presentation schedules is préserved if the schedules are
eithef prefixed or suffixed by identical strings éf preseqtations. Theée
theorems are sufficient to conclude that moving one presentation mode to
the right of another in s schedulg always has the same'(qualitafive) effect
on thé terminéi propﬁrtion correct and, hence, that Optimal presentatioﬁ
schedqles have all pfesentations of one mode together.

In the learning situvation described by Xarush and Dear, -thers are

R
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n items of equal difficultxto be lesamed, and the problem is to determine
“which item out of the n to present for study at any given time. Tha

strategy for chodsing items for presentation is to take into account the

learner's response history ﬁp to the current time. The all-or-ncne model -
is used to de;cribe the leafning process, and it is assumed that the single
model parameter has the_same value for each_item.

In order to formulate an objective function, it is assumed that
all presentational strategies have the éame cost’ 50 that:the objeétive‘can .
be—defiﬁed in terms of the state of learning at the termination of the
stratégy; .Assuming thaf all items aré weighted equally, an expected loss
function 1is deﬁined in termsiof the probabilities Pk that at ;Ee términal T i

node exactly k items are still unlearned. The expected loss for a partiﬁular .

terminal node is given by : ‘; ' o IR
n
b :
2. Py
k=0
. . .
where bk is the wvalue (weight) of the loss if k items are still unlearned. :
The overall expected loss, which is to be minimized, is therefore ;
. ' r
Dath) D B (h)by
n k :
.
where g{h) is the probability of occupying terminal node h and the first
summation is over all possible terminal nodes. For the ?articular values . ;
: ka i,the cbjective function above is eguivalent to the maximization of the ' o
probability that all items are learned; and for bk'= k it is equivalent '
' ¥

to the maximization of the expected sum of the prbbabilitiés of being in the

iearned state for each item. All of the results that are derived in the paper are

w-
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"not'depénﬁént on the‘values for the bk’ and so they are quite general.

"The optimization is accpmplished using thé recursive formula;ion
of dynamic programming. _The principal result is tﬁat, fof arbifréry initial
prbbabilities of being in the learnéd state ﬁor-each item, an optimal’ .
strategy 1s to pfésent the item for which the éﬁrrent probability of
:learning is the 1east; .The most practical application of the results is for
the case Whgre these initial probabilities are zéro, in which case the optimal
strategy can be implemented simply by maintaining counts‘of correct an&.in—
correct respomses on each item. Also in this case, the optimal sﬁrategy
is independent of both modelrparameters: the probability of transition
and the probability of guessing. |

Atkinson and Paulson report empirical reéults empioying_therall-or—
none based.optimal stfategy derived by karush and Dear an& dompared'it Witﬁv
strategles based on other learning models. In one experiment, the allwﬁr—ﬁone—
'-based sfrategy is compared with the cptimal strategy derived from the linear
model. In the derivation of this latter optimai strategj, it is assu@ed that
the model parameters are identical for all items. Fo; the objgctive.of
maximizing the expecfed number of correct responses at the terminatioh of
the expgfiment, it is shown that all items should be presented the Same.
‘number of timeé. Consequently, a rand§m~order strategy is employed in which
all items are presented once, then randoml§ rebrdered_for.the neﬁt présentation

and so on. The experimental results show that during the learning experience

the all-or-none-based strategy produces a lower proportion of correct respornses

than the linear-based  (random) strategy,_bﬁt that on two separate post-—
experiment fesﬁs, the all-or-none-based strategy yields a . higher proportion
of correct responses. Frdm these'resuits-it can be concluded that in this
1earning situation and for the stated objective the éll—or—none model

described the learning process more accurately than the linear model.

e
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" In another experiment, the all-or-none-based strategy and the

linear-based strategy are compared with a strategy based on the random

) trial increﬁent (RTI) model. The RTI model is a compromise between the
all-or-none and the linear models. Defined in terms of the probability

- p of an error response, at trial n this probability changes {rom p(n) to
p(n + 1) according to

‘ .p{n) with probability 1 - ¢
pln + 1) = {

ap(n) with probability c

where g is a patameter between zero and one and ¢ is a parameter that measures
the probability that an ”incr;ment" of leamming takes place on apf trial.
This model reduces to the‘all—or—none quel ifa= 0 or.to the-iinear
model if ¢ é-l. ‘
This applicatiqn of the RTI ﬁddél differs in two ﬁays ffom the
.garlier studies outlined above. _First, because of the complekity of the
optimizatioﬁ problem, only an approximation to the optimal strategy is used.
The items ﬁo be presented at any particular sesﬁion areé chosen to maximize
the gain on that session 5nly, rather than to anélyze ;ll possible future
occurrences.in the legrning encounter. Second, the pérametérs of the model
are.not assumed to be the saﬁe for all times. These parameters are estimated
in a seqﬁential manner, as described in the Atkinson and Paulson paper; gé
“the experiment.progresses and more data becoms available regérdiné the
relative difficulty of learning each iltem, refined estimates of the éarametef
values are calculated.
The-results of the experiment show that. the RTI-based strétegf
_produces_arhigher proporticn of correct responses on post—tests tﬁan-either

the all-or-none-based or linear-based strategies. = The favoraBle results

are due partly to the more complex model and partly to the parameter .

C vt e
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differences for each'ifem., This conclusion is supported by the fact that
the relative perfdrmance of the RTI—based'strategy improves with successive
groups of learmers aé.better éﬁtimaﬁes of the itemérelated parameters are‘1
calculated. |

3. Ihterrelatgd Learning Material

In many learning environments, the amount of maferiél that has
been ﬁastergd in oﬁe area of study affects thg learning rate in another
distinct but related area - for eXampie, the cufriculum subjects of

mathematics and engineering. In situations such as this, the material

in two related areas may be equally important, and the problem is to allocate

instructional resources in such a way that the maximum amount is learned

in both areas. In other situations, the material in one area may be a

prerequisite for learning in another rather than a goal in itself. Here,

even though the objective may be to maximize the amount of material learned -

in just one area, it may be advantageous Iin the long run to allocate some
instructional resources to the related area. This problem of allocating

instructional effort to interrelated areas of learning has been studied

by Chant and Atkinson (1973). 1In this application, a mathematical model of

the learning process did not exist, and so one had to be developed before
o@timization theory could be applied.
The learning experience from which the model was,developed was

a computer-assisted instructional program for teaching reading (Atkinson,

1974). This program involved two basic interrelated areas (célied strands)

of reading, one devoted to instruction in sight-word identification and the

other to instruction in phoniecs. It has been observed that the‘instantaneous-




learning rate on one strand depended on the student's position on the
- other strand. : ! |
In the development of the learning model, it was assumed that
-the interdependence of the two Qtrands was such that the instantaneous
learning rate on either strand is a‘functioﬁ of'fhe difference in achiéve—
ment levels on both strands. Typical learning rate characteristics are

shown in Figure 1. 1If the achlevement levels on the two strands at time
R : : ‘ ' ANSERT
t are represented by xlft) and xz(t), then the instantaneous learning FiGg 1

rates are the derivatives of x and P with respect to time; these rates - _ M

are denoted as &, and &

7 g+ By defining u(%) as the relative amount of

instructional effort allocated to strand one, the model of learning can : - o
be expressed in differential equation form as ' T R o

B (E) Z ult)f (m (8) — x,(E)),

5:2({5) (1 _ﬂ'u(t)] fz(xlé;)'-; 0, (£)), | o . |
where f} and fé are the 1ea;niﬁg ratercharacteristic functions depictéd

in Figure 1. In this formulation of the problem, the totél time, T,:of _ 8]
-‘tﬁe learning encounter is fixed and the objective'is'to maximize a weighted

: . . I
- sum of the achievement levels on the two strands at the termination of

the encounter. The objective is therefore to maximize
cex (T) + e x (T : : o ' R

12107+ egumy (1), | | 20

where'cz and cz'are given non-negative weights. This maximization is - o

with respect to u subject to the constraint 0 < u(%) < I for all ¢ such

that @ _<_t <T.

R T

The optimization is carried out, net for the nonlinear learning

rate characteristic functions of Figure 1, but for linearized approximations




" to them. From the,fbrm of the optimal sclutions, 1t is clear that the
 analysis applies equally well to the nonlinear functions, The'optimization
is performed by means cf the Ponfrvagin Maximum Principle. It is shown
that the optimal solution is characterized by a "turnpike' path in.the

L2y plane. On the turnpike path the difference x, - x, between the

1 2 _
' achievements levels on the two strands remains constaﬁt. Optimal tra-
jeétﬁries are such.tﬁat initialiy all of the instructiomal effort is
allocated to one of the strands until the tufnpike path is yeaﬁhed.

.-Then the instructional effort is apportioned so as to maintain a constant
differgnce between strandsrj that is, so as to remain.onlthe turnpike
path. Near the end of the learning'encounter,'the instructional effort
is again allocated to just one strand, depending bn the relative ﬁalﬁes

of the weights ey and ¢, of the objective function. Figure 2 shows the

INSERT

turnpike path and typical optimal trajectoriés starting from two different F‘§= Z

initial points and terminating accerding to two different valﬁes of
objective function weights.

It is also shown that of all the sfable paths, thg‘turnpike"
path.is the one on which the average iearﬁing rate is méximized. A |
stable path ié the steady state path that is approacﬁed if the relétivé
allocation of instructional effort between strands is héld constant.
It.can be shown that stable paths are such that the difference bé;ween

achievement levels onr the two strands is constant.
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C. Group of Learners Setbing

1. 4 Descriptive Model Structure
Carroll (1965) developed a structure for describing iearning_
in the school or classroom setting. This modei involveg five variébles;
. four are defined in a quantitative sense, but one is difficult to
quantify. The relationships among these variables are not'precisely
defined, but the potential interactions are identified and described.
The five variables are aptitude, perseverance, ability to
.cqmprehend instruction, qﬁality of dinstruction and opportuﬁity to learn.
fhe aptitude varizble is defined as a reférence learning raﬁe for é
learner for a given task. Aﬁtitude is to.be measured by the reciprocal
of fhe time required to master the given task to a given criterioﬁ'undef
optimal learniﬁg conditiogs. . The perseverance Va?iable is defined Ey
the length of time tﬁat the iearner is willing to spend learning tﬁe
task involved. Carroll suggests-tha£ this'variablé will change signi—
'ficantly over time and that it can be affected byrexternal factors.

 The variable ability-to-comprehend-instruction is assumed to be primarily

represented by verbal intelligence, and so measures of werbal intelligence

are considered adequate for quantification.purposes. it is suggéstedr'
that this variable will deﬁonstrata less rapid changes over time tﬁan,

for exampie, persevérauce and tﬁat it is determined to a large.exte?t'
by the individual's early life environment. Caxroll's.fourth variable,
quality of instfuction, is defined imprecisely as the degree to Which

- content an& method of instruction are structurad so that materia} is

~easily learned. There is an important joint relationship between quality

R To——
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éf instructicn and abilityrto comprehend instruction on the leafning

rate. This relationship is such that low quality instruction more
severély hinders the learner Wiﬁh limited ability to comprehend imstructien
that the learner with greater ability. The final variable, opportunity
to learn, is defined as the time actually allowed for learning.in the
particular situation. It is recognized that in the classroom not all
1earne£s have a contiﬁuous opportunity to learn since the class must

- learn togéther.

Without moré explicit elaboratioﬁ of the relétibnships among
the%e vafiables, and in some cases more precise definitions, this model
cannot be used in a quantitative senée. Iﬁ hés been very ﬁsaful, neﬁer—'
theless, to help identiff the salient features of the learning process |
in.the classroom. ' |

2. N‘omativé Models

Restle (1964) made an early contribution £o tﬁé applicétioﬁ
of igarning models and optimization theory to the classroom or'grcup of
learners setting. ﬁe_has studied two sitﬁations, cach of which involves
a group ofiidentical learners. 1In the first Situation, the problem is
to aetermine the optimal class size for a large gumber of identical |
learneré. The objeétive function is expressed in cost terms, inclﬁding.
both instructor and learner costs, and the améunt-to bérlearnédris fixed.
In the éécond situation, the problem is tc determine the optimal'pa;e of
instruction for a curriculum consisting of a sequence of identical items
.in which further learning progress for any learner is terminated if an itémris
‘not mastered. The péce of instrﬁction is determined by tHe anount of

“time allocated to each item, assuming equal time for each item and a fixed

|
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total amount of time. The objective is to maximizé the expected numﬁarrx
of items liearned by fhe group or, equivalently, by any learner of the
group. | |

The continuous time all-or-none model is used to descgibe the
learning process in both'situaﬁions. This'version of the all-or-none
moﬁel is essentially the same as the discrete (learning trial) version
introduced earlier and is defined by the éumulatiﬁe distribution fuﬁction

Fi{t) = 1-e -t

which gives the probability that learning on an item takes place before
time ¢, where X is the reciprocal of the mean time until learning bc;urs.

For the optimal class size situation, Restle chooses to minimize

‘the expected total (weighted) time cost of bhoth instructors and learners,

subject to the constraint that instruction be given until all learners

have mastered the item. Based on the model, the expected time M(n) for

~a group of n learners to leamm an item is given by

R"[ (SN Y

. n
M(n) = %— Z

Letting r reﬁfeseﬁt_the fatio of the.value of instr@ctor time to the e
yalue of learner time leads to the exp%ession_

| NM(n) + rliM(n)/n , o
for expected total time cost in learner time units whgre ¥ is the total
number of learners and n the size of each sub—grouﬁ (assuﬁing that ¥ is
large enoﬁgh tﬁat the integrality error is negligiblé),' Using a continucus

approximation for M{n), this bptimization is easily performed to yield the
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~ relationship shown in Figure 3 between optimal class size and »r, the

: _ , INSERT
relative value of instructor and learner time. . : ia 3

For the situation involving optimal pace of instruction,
the totél amount of time (T) is allocated edually to each item in order
to maximnize the-expeqted number of items mastefed by a learner. TIf ¢
ﬁnits are allocated to each unit, then, based on the model, the mean

number of items learned is

At AT

e -1 -e""(1 - L

)T+ t)/t;

Rather ﬁhan calculate the maxim;m'of thisg expreséidnrwith respect to T,
Restlé.shows the function graphically for various values.of the basié
1§arametér Th. With this learning model, TX representévthe expécted
numbef of items learned for an individual.léaynerrwho iz - aliowed to -
proéeed to the next item as soon as he‘ﬁ;s mastered the current item. .

On the basis of the graphs, Restle concludes that for a short course

where TX = 3, the optimal pace for a group is instruction om 2 items.

For a medium—iength course of Th = 12, the group should receive instructionm
: : ’ _

-on & items; and for a long course with Ti = 144, the group takes 30 items.
'_Thué,.for long sequences of items in ﬁhich alleginer is blecked if he
.misSesronly one item, ﬁhe group pace must be very slow compared to the
tutored pace.

In a paper by Chant and Luenberger (1973}, a mathemaﬁicgl_
theory of ipsﬁruction has been develcped that deScribes ceftain aspects
of the classroom environment. This model is developed in twa stages;

the first models the instructor/learner interaction for an individual
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measure of the intensity of instruction in the sense that the larger

~ 24 =

" learner situation, and the' second extends this model to a group of

learners situation. In the first stage, the prineipal problem under

investigation is the optimal matching of instruction to the character-

istjcs of the learner. In the second stage, the analysis is concerned

with the problem of instructicn pacing, which is an important question

in the classroom situation.

Motivated by a differential equation formulation of the
learning-curve by Thurstone (1930), Chant and Luenberger assume that
the relationship between learnihg rate, instructional input and state

of the learner can be represented by

p(t) = ultlglp(t))

_where pft) is the achievement level of the learmer at time & relative to

total learning. In this equation p{t) represents learning rate, u(#) is
an instructional input variable and g, the characterisﬁic Learning

funetion, describes how learning rate depends on the achievement. level

for a particular learner in a particular situation. Restrictions are

.placed on the function g, so that for a constant instructional input

u(t) the learning curve has the familiar S-shape.

'The instructicnal input variable u(#) is thought of as a

the value of u({t/, the greater the learning rate and the cost of in-

struction. The relationship between instruction cost and. learning

rate {for a given achievement level) forms the basis of the precise

definition of u(%) such that the total cost of instruction for

t =0 tot=1T1is
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‘where %(u(%)) defines the rate of expenditure of instructional resources

- for instruction of intensity u(t), 0 <& < T.

In formulating an objective function,.both the leérner's
achievement level and the cast of the learming encounter are considered.
The learnef*s achieﬁementrlevel at the end of the encounter is represented
-by p(T) and fhe cost of the learmer's time by bT. The objective function -

is defined as the net benefits; that is

p(T) - BT - fz(u(t))dt.
s

The relative importance of achievement level and instruction cost is assumed

to be included in the loss function LL

" The optimization problem is to choose the instructional input
u(t) for 0 < ¢t < 7 and the duration 7 of the learning encounter so as

to maximize ths sbove cbjective function. Tt is shown in the paper that

the optimal instructional input function u is constant throughout the

learning encounter and is determined by the solution of

ul'(w) - Lu) - b = 0:

“The optimal value of T is given by the larger of the two values that

safisfy
glp(T)) = el
The result that the optimal instructional input is constant throughout

the learning encounter is gquite general in that it does not deperd on
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the particular characteristic learning function or the particular loss
~ function. |

In the second stage of their development of'armaﬁhematical
theory of inétruction, Chant and Luenberger first define a learner
. aptitude éarametér that is used to characterize the.diversé nature of
a nonhomogeneous groﬁp of learners. Aﬁtiﬁude isrdefined in a relative
sense.by comparing the learning times of two learners under idéntical
_situations. One learner is said to have an aptitude twice as great.
as another if he learns the same amounﬁ in half the time. This defin-

dtion is similar to Carroll's mentioned zbove. Using this concept of

aptitude, the characteristic learning function g is redefined such that

the aptitude component is separated from the other components. The

r

basic instructor/learner model now becomes

plE) = ultlag(plt)).

The above optimization is unchanged with this.modification, so that the
optimal instructionél'input ig still constant over time, |

The developﬁent of the group learning model for the purpose
-of détermining the optimal pace begins with an analysis o£ the relation-
ship between pace and aptitude for an individual learner. To model the
.effect of instruction pacing, é body of sequential.learning materiél is.
&ivided into a seqqence of blocks. The basic instructﬁr/leérner model m
outlined above is used to describe the learning process on ea;h.block.
The sequential nature of the material is captured by specifying how the
learner's perfgrménce on one block depends on his achievement on pfe~

ceding blocks. This interblock dependence is defiﬁed by the block inter-

S




—277

- action'fhnctién h;\which r%iates the initial state on a block to the

‘Vfinal.achievement level on the ﬁrecediqg block. For amalytical purposes,
an.infinite.sequence of similar blocks is considered. BRlocks are .
similar if the learning performance for them cén be described with
identical characteristic learning functions and block interacﬁioﬁ

_ functions. The infinite sequehce is considered in order to eliminéte
transient effects and.to cﬁncentrate_on steady state relationships;
An infinite sequence of similar blocks is illustrated in Figure 4.

The steady state learning behavior ofla learner on an infinite

sequence of similar blocké is characterized by allocating an'équal amount
of_instructioqai time to each block'and'determining thé achievement level -

that the learner approachés on each block as the number of blocks in-~

creases towards infinity., The pace of instruction is defined as the amount

of time t that is épent on each block, In the limit; the initial state
on each block is the same, the final achievement level oﬁ‘each block is
- the éame_and the pace isrsﬁch that the learner progresses from this-
.initiél state to. this final le?el. This steady state conditioh is 111~
ustrated in Figure 3, | |

For an individual learﬁe; with a paréiculér S—éhaped learning
curve and block interactiog function; tﬁe correspondence between pacing t
én& the éteady state final achievement levei is defiﬁed as the steady
state response funetion ps; With suitable'assumptions, it can be shown
tﬂat PS(T)AiS zero fﬁr T <.Tc, where T, is defined as the cfitical‘pa@e,

that*ps is concave and increasing for T > T, and has infinite slope at

ST = T .
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For determining the optimal pace of instruction, the objective
function of steady state achiesvement level on a block per unit of time on

the block is defined. This ratio, called gain and denoted y, is given by

y(it) : pS(T)/T.
The maximization of gain implies that

p (1) = wp (t).

‘This relationship is illustrated in Figure 6.

INSERT

The steady state response reference function p, is defined as CFiG O

the function P but for a learner with unity aptitude. In view of the
definition of aptitude as the reciprocal of learning time, the response

of 2 learner with aptitude a for pacing 1 is simply pP(aT).

- A nonhomogeneous group of learners is characterized by the
aptitudes of the learners in the group with the assumption that all the

learners have identical characteristic learning functions and block

. intéraction functions. The objective funétion for the group, called

group gain and denoted T, is defined by

N
r(r) = (1/x) Eprfaz’r)'
. =1

.

where the N learners of the group have aptitudes at, i=1 toVN. The

optimal group pace is defined by the maximization of this group gain.

It is shown that for widely diverse groups, the optimal pace is such

that the lower aptitude part of the group has a zero steady state

_response; that is, these learners are dropped from the group because

~of the fast pace. In addition, for homogeneous grdups, the optimal

group. pace is the same as the optimal individual learner pace for. that

aptitude.
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IIT. AREAS OF FURTHER RESEARCH

This concluding section is intende& to highlight a few areas
-in the field of application of 1eérning models ﬁo problems of instructien
that'requife further work.' In addition, suggestions are given as to the
research dirgctions ﬁhat may be most effective for making fhese appli-

cations more practical,

A. Problems of Measurement

Problems 6f measurement exist when we cannot quantify'axactly

what we want quantified; In order to verify a quantitative model
cempirically or to apply it in real.world situations, the variables of
the model must be measurable. The measurement proceSS'cgn be complicated
at eithér of two leveis: the variabléé of thé_model mayAnot be satisg-~
factorily quantifiable of, if quantifiable, there may be estimatioﬁ
problems - that is, there may be no satisfactory method of_determining
-a'unique.value for the defiﬁed variable.

| To illustrate these two Rin&s of problems, considér a .
sitdati@n where it'is required Eo have a measurement on the state of
a learne; with respect to some sét of material;--At the outset, the
first kind oflproblem is evident siﬁce a precise definition of the
_vériable-concerned is not available. A satisfactory solution to this_m
‘proﬁlem is perhaps to define.a surrogate variable that represents thg
real variable. 1In this situation,'a proportional méasure of the learner's

knowledge of the material as indicated by his score on some test may be
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an adequate sﬁrrogate variable, The second kind of problem has to do

with the variability of tests themselves and the iearner's performance
on_tﬁem. Different tests that are intended to measure equivalently

the set of méperial invoived-will yield different results and the results
on a ?articular test are . affected by'the testing environment, by guessing

and by numerous other factors.

in experimental situations, these problems can be alleviated

to a certain extent by careful design. In these situations, the set of
material that is to be learned is chosen so that it may be described
precisely and simply - for example, in paired-associate learning experi-

ments, This simplifies both the knowledge definition problem as well

as the estimation problem. In real applications, howevér,-these problems .

can be severe.

.These_probiemsVof_measurement can best be attacked during
-the formulation and modelling phases of the analysis of problems of in-
struétion. It-is of limitéd use to have a model that cannot be invésti-
gated experimentally. It is of mo practical value to have an experi-
mentally verified iﬁstructional technique that requires such exténsive

measurement and data analysis that implementation is not cost effective, .

These measurement problems must be considered 'during the overall analysis.

“In some cases, they may be alleviated at implementation by having an

estimation model incorporated as part of the technique to be applied.

3. Individual Learner Setting
Optimizing the performance of individual learners is an area

that has tremendous potential for impact, even though it has already

-y
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~received some attention. The application ofhmathematical-ﬁédels and
optimization. theory to learning probléms in computer-~aided instruction

is likely to prove increasingly useful in the future. Complex models

of learﬁing ﬁuét be developed, and they.shculd be designed for implemen-
ﬁation in particular situaﬁions. ‘These modelsrhave to be complex so as:.
to describe adequately the particular iearning phenomena in the situation;
-but such complexity is manageabierprovidéd that the models can be
.adapted for computer implementation; What is needed, then,is a cléar
understanding of the ultimate application of the mo&el-so that its

development is guided by the requirements of implementation.

C. Classroom Setting

Developments in the class;oom Sétﬁing are muéh farther frOm_'!
implementation than those for individuélwlearner setting. = For the |
classroom, generél models must be developed that cover broad eategories
of learning end instruction. Existing models must be extended aﬁd new
msdels must be developed to account for group leafning phenomena tﬁat

_so far have-been ignored or not even idéntified. To accomplish tbis,"'
thgéretical and eampirical research must COmplement an& sﬁpplemént each
other. Similarly, work by researchefs in education and psychology must

b; ccntiﬁually synthesized. Qne promising avenue to pursue in.this :
Tespect %ould be to engage in model-directed data énalysis; that is;
either by usiﬁg.an éxistiﬁg model or byndevéloping a model appropriate

for the situation to be investigated, data gathering experiments and

analyses should be designed and carried out to verify or refute these
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models. In this appfoach,'the model direc;s the empirical research
by imposing a strucﬁure on the system or by proposing relationships
or conclusions to be tested. 1In this way, the complex relationships
that comprise an educational systeﬁmEan be moré-readily isolated, and

hence more easily understood.
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Figure 1. T;y—pical learning rate characterisfics.
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Figure 2. Op’éimal trajectories using turnpike from two possible
' initial points and with two possible objectives.
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