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THE USE OF MODELS IN EXPERIMENTAL PSYCHOLOGY—/
by

Richard C. Atkinson

University of California, Los Angeles

In this paper I shall not be concerned with a formal analysis of the
funetion of models in psychology. The problem has been considered on many
occasiong by both psychologists and philosophers, and I am.not inclined to
add to the voluminous literature in this érea. Instead, I shall describe
a'fairly simple model of behavior and illustrate the method of application
0 a complex preblem in decision making. By examinstion of this particular
case we will he able to indicate the role of mathematical models in
determining programs of psychological research and specifying the types of
empirical observations to be'made.

.The case to be examined deals with the psychology of learning. There
are three basic cconcepts In this area which play a central role in both
. theoretical and experimental work; they are the concepis of.stimulus,
response, and reinforcement. The stimulus is conceived as an environmental
event; a response is an act or movement made by the‘orgaﬁism exposed to
the stimulating situation; and a reinforcement is any event (experimenter

or subject controlled) which gives rise to an increment or decrement in the

f/ This paper was presented at a colloguium entitled "La notion et le
rele du modéle dans les sciences méthematiques, naturelles et sociales”
held at Mathematics Institute der Rijksuniversiteit, Utrecht,
Netherlands from January & to 8, 1960. The proceedings of the colloqqium
are to be published by the North Holland.Press.
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likelihood that a stimulus will elicit a particular response. dne of the
principal problems of learning psychologists is to specify the relations
between stimuli and varicus response measures as a function of reinforcement
.schedules. A major contribution of early behavioristic scientists like
Pavlov, Thorndike, Bechterev, Watson, and Guthrie‘was the development of
these concepts in a scientific sense, clearly disentangling them from
notions of common sense and of earlier philosophical psychology.

The intrcduction of mathematical forﬁulations as a tocl in the'analysis
of learning has been of fairly recent origin. Some of the eariier work by
Schﬁkarew, Robertson, Thurstone, Woodrow and others was concerned with
finding an analytic function which was to provide a universal description
of learning. Many suggestions for the appropriate function were made and
there was much debate as to whiéh was correct. This search for the universal
learning function began with ad hoc proposals and curve fitting to experi-
mentsl data. Gradually, however, these endeavors gave way to the more
constructive undertaking of providing systematic formulations of the
elementary events underlying the learning process.

One of the most noteworthy progfams in constructing a quantitative

theory of learning was that of Clark L. Hull. In his Principles of Behavior

he presents a set of postulates designed to encompass the major aspects of
_learning. From these postulates deductions were made which initiated a
great deal of empirical research. . Unfortunately, Hull's work, and that of
his contemporaries like Tolman and lLewin, did not lead to a theory that was
mathematically viable. Thét 1s, in Hull's system it is possible to make

' only a very limited number of derivations leading to new quantitative

predictions of behavior.
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However, the work of Hull, Tclman, Lewin and others emphasized the
importance of rigorous theory construction in psychology and set the stage
for recent developments in mathematical learning theory. The work by
Estes [1950], Bush and Mosteller [1950] and Estes and Burke [1953]
-initiated these new developments and represented analyses of learning
which led to mathematically tractable systems. The work of these
investigators and subsequent work of ILuce, Suppes, Restle, Aﬁdley,
and many others has resulted in systematic formulations of learning which
have the same sort of feel about them that theories in physics have.
Nontrivial quantitative predictions can be made--not only about the gross
phenomena of learning but also with regard to the fine structure of
the data. Once appropriate identification of theoretical terms has
been made it 1s usually clear how to derive predictions about responses
in a manner that is not ad hoc and 1s mathematically exact.

To illustrate some of these roints I would like to present a
particular set of axioms for describing learning. Only those axioms
will be presented that are necessary for the analysis of the experiment
to be considered in this paper. The reader intefested.in a more
comprehensive formulation is referred to Suppes and Atkinson [1960].

The experimental situation consists of a sequence of discrete trials.
There are K response alternatives,; denoted Ai(i = 1,.03,K) . On each
trial of the experiment two or more alternstives are made available to the
subject; and he is required to select one of the availsble responses. .Once

his response has been made the subject wins or loses a fixed amount of
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ﬁoney. The subject's task iz to win as frequently as possible. There are
many aspects of the situation that can be manipulated by the .experimenter
but in this paper we will consider only the following variables: (1) the
strategy by which the experimenter mekes available certain subsets of
responses on any trial of the experiment, (2) the schedule by which the
experimenter determines whether the occurrence of a particular response
by the subject leads to a win or loss and (3) the amount of money won or
lost on each trial. The role of the model In this situastion is to provide
an explicit and detailed account of a subject's responses over trials of

- the experiment. One reason for investigating this particular experimental
problem is that it is a prototype of many decision making situations in
the real world. If behavior can be predicted with accuracy in our
laborgtory situation, then we shell have substantially increased our
understanding of decision processes in general.

The model we shall consider assumes that (1) associated with each
response alternative there is a tendency to approach or avoid that
alternative and (2) the response which is finally made on a trial depends
on the observing or orienting behavior of the subject in the pre-decision
period of the trial. The basic notions underlying the model are similar
to those presented by Bower [1959], Estes [1960] and Audiley [1960].

The axioms will be formulated verbally. It is not difficult to
state them in a mathematically exact form, but for our purposes this

will not be necessary.
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Al. On every trial each response has an approach-avoidance value

(AAV) of 1 or O .

A2, At the start of each trial the subject randomly observes one

of the available responses.

A3. If the AAV for a particular avallable response is 1 and the

response is observed, then that response will be made. If the AAV is O

and the response is observed, then the subject will randomly reorient and

observe one of the other avalilable response alternatives.

Ak, If all available responses have been obgerved on & trial and no

response has been selected (i.g., the case where gll available responsges

have AAV's of 0), then the subject terminates the trial by randomiy

selecting one of the available regponses.

A5. If a response ips selected on a trial and followed by a win,

then with probability p' 1its AAV 'wecomes 1 and with probability

l-p' its value remaing unchanged. If a response is selected and followed

by a loss, then with probability p" 1its AAV becomes O and with

*
probability 1-p" its value remains unchanged —/ The reinforcement

parameters p' and p" are independent of the trial number and the

preceding pattern of events.

N .
¥ We presume that p' and p" are monotone increasing functlons of

the amount of money that can be won or leost on a trial.
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A6. The AAV associated with a response not selected on a given

trial does not'éhange on that trial.

Several experiments have been conducted_to test the adequecy of
these axioms, bulb we shall restrict ourselﬁes to one reported by Suppes
and Atkinson [1960]}. Subjects were run for 360 trials and on every
trial they won or lost a fixed amount of money. There were four responses
(Al, A2, A3 and Ah), and on each trial exactly two of these responses
.were made available to the gubject; the six possible response palrs
occurred with equiprobability. .On each trial the subject was required
to select between the two available responses but was given no other
information. A win or loss on a trial depended on-the response selected.
if Ai was available and chosen, then with probability gi the subject
won and with probability 1- gi he lost. The values used were as Follows:
£ = 2,6, = RIS §3 = .6 and £, = .8 .f/ Thus, if a subject is to
maximize his probability of a win, he should choose Ah whenever it is
available, A3 when it is aveilable and Ay is not available, and
finally A, if neither A

3

For mathematical analysis in the remainder of this paper it will

nor Ah is available.

be useful to introduce the following notation:

*
—/ A quite different model for this situation has been .proposed hy-
Suppes [1959].
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Déij)-= the experimenter controlled event of making response pair
(AiAj) available on trial n of the experiment (i # j) .

Ai,n = gselection by the subject of response Ai on trial n .

"Wn = g win on trial n .

VWA = g loss on trial -n .

In terms of the axioms we define the subject-state on any trial of

the experiment by an ordered four-tuple < ijk4 > where 1i,j,k,£=1 or 0O .

The first entry denotes the AAV assigned to response Al s the second
the value for A2 , and so on. From the axioms it can be shown that, for
our particular experimental procedure, the sequence of random variables
which take the subject-states as values 1s a Markov chain. This means,
among other things, that a transition matrix P = [Pij] may he constructed
vhere D, 1s the probabiiity of being in subject-state j on trial n+1
given subject-state i on trial =n . The learning process is completely
characterized by these transition probabiiities and the initial probability
distribution on the states.

To illustrate the application éf our axioms, we will derive one row
of the transition matrix. In making such a derivaticon it is convenient to
represent the various possible occurrences on a trial by a tree. Assume
that we are in state < 1001 > on trial n , then the appropriate tree is

given in Figure 1. As indicated on the top branch, when the response pair




1-p" <« 1001 7~ ‘

, < 1001 7 |

. 1
- 0 . ‘
‘ / oo > ‘

ry
L' *
- :
o
f v
o

A1

\% W’: . ] i
k% n 5; 1-p"  ~ 1001 7 ‘

— Py
\3,1 < 1001 >
L

/ / E:a:‘
1-p' < 1001 > '-‘

Z n 20007y

o
3 — :
~ .

: < 1101 7

p

< 1001 > & Wy
< 1001 7

27 % e o-
I, . A\ nfl-¢, 1-p" < 10017

) < 100 =

g /
- < 1001 7

ptt < 1001- b

1-p" < 1001 7

< 1001 =

1

o
1-p' « 1001 7

< 1000 7

. "
/
l-p" < 1001 7

Figare -



8-

(AlAE) or (A1A3) is made available (with probability % ) the subject
will select Al ; because the AAV dis 1 for Al and O for both

A2 and A3 . If & win follows the occurrence of the Al Tresponse
(With probability gl ) no change in the AAV‘S occurs; however, 1T a
loss terminates the trial (with probability 1- El ) then with
probability p" +the AAV associated with Al becomes O and the new
subject-state is < 0001 > . When the response pair (AlAh) is
presented (with probability % ) the subject selects the firstlresponse
observed, since the AAV for both Al and Ah are 1 . When response
pair (A2A3) is presented both available responses have AAV's of O

and by Axiom 4 the subject randomly selects either A, or A The

2 3
other paths of the tree are obtained in similar fashion.
Each path on the tree from a beginning point to a ferminal point
represents a possible outcome on a given trial. The probability of each
path is obtained by multiplication of conditional probabilities. Thus

in Figure 1 two paths lead from < 1001l > to < 000l > and the

corresponding transition probability is ]-3:(3_ - gl)p" + %]2;(1— gl)p“ .

Construction of the other trees yields a transition matrix for a
sixteen state Markov chain. {ertaln states in the chain will be transient
*
if some of the probabilities gi are 0 or 1 .—/ However, in the

experiment to be discussed this condition did not hold; therefore, our

*
~/ A state of a Markov chain is transient if the probability of ever

returning to it is less than 1 .
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comments will be confined to the case where the Ei are different from
Q and 1 . For this case, state < 1111> is transient (in fact, the
probability of re-entering it is 0} but the other 15 states form an
irreducible, aperiodic chain. Thus, the limiting quantiﬁies uijkﬂ
(i.e., the asymptotic probability of being in state < ijks > ) exist
and are independent of initial conditions. Further when p' =p" =p

it can easily be shown that u, is alsc independent of p ; that is,

ikt
uijkﬂ depends only upon the values of Ei set by the experimenter.
The data obtained in the experiment (see Suppes and Atkinson

[1960, Ch. 11] for detailed information) indicated that the observed

probability of an Ai p Tesponse approached a fairly stable value over
2

* ‘
the last 100 trials of the experiment.—/ Also the observed probabilities

of an A, response given D(lJ)
i,n n

approached stable values over the
last 10C +frials of the experiment. The corresponding theoretical
predictions for choice behavior can be readily obtained. For example,

. 12)

on 1p(12)) |
Um P(A (D) = w00 + 0500 F B0 + Bp00
n —00

+ l{u ] .

5'"1110 FM1101 ™ Y1100 * Y0011 " Yoo10 * Mooor T Poooo

*
-d/ On early trials of the experiment the observed wvalues of P(A n)
J

were approximately E which would be expected if the subject
initially had no preference among the four responses. The rate at
which P(A, ) departs from its initial value and approaches an
asymptotic ievel is of course determined by the reinforcement

parameters p' and po" .
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And
P(A; ) = 2 Plhy nl‘DI(lij))P(Dl(lij))
J 2

As noted above, u,

. . rz 'll.
1 k2 is & function only of gi when p o)

Consequently, in this special case, predictions for 1im P(Ai nlDélJ)) =
n—->oo !

P(Ai|D(l‘])) and lim P(Ai 1q) = P(Ai) are entirely a priori and do
100 ?

not make use of any parameters evaluated from the data.

Table 1 presents the observed response propertions over the last
block of 180 +trials and the predicted asymptotic values for p' =p" .
Cverall the model gives a satisfactory account of the mean asymptotic
response ﬁrobabilities when predictions are based solely on experimentally
determined parameter values. The correspondence between theory and data
could be improved of course if p’' and p" were estimated from the data
and used in generating predictions.

The agreement between these observed and predicted asymptotic
- response probabilities provides sufficient Jjustification for the type of
model construction considered in this paper. However, the model provides
a much richer analysis of the experiment than the above results indicate.
From the model we can predict not only average performance but also
sequential properties of the individual subject's response protocol; i.e.,

the trial to trial increments and decrements in response probabilities.
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Table 1
Predicted Asymptotic Values

and Observed Proportions

Over the Last Block of 180 Trials

Predicted Observed
r(A11D<12)) Lo 457
P(AlID(l3)) .355 JU5
P(AllD(lu)) 228 270
P(A2|D(23)) Ak .375
P(A2[D(24)) 286 273
P(A3ID(3”)) 372 368
P(Al) LA7L 195
P(Aa) 210 .199
P(A5) 267 .258
P(4),) 352 348
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It should be emphasized that one of the major contributions of mathematical
learning theory has been to provide a framework within which the sequential
aspects of learning can be scrutinized. Prior to the development of
mathematical models relatively little attention was pald to trial by trial
phenomena ; at the present time, for many experimental problems such
Phenomens are viewed as the most basic aspects of learning data.
To indicate the type of sequential predictions that can be obtained

from the model consider the probability of an A response on trial n+1

1
(12) . . ; .
on both trial n+1 and +trial n , a win on trial n , and

12) 12)
n+l nAl n ( ) -

given D

an A on trial n ; namely P(A ID To obtain this

1 1,n+1

result we proceed as follows:

(12) 12) (12) (12)
P(Al,n+1 o+l WnAl sJan ) = %EE P(A ,n+l ntl CJ,n+anAl nDn k,n)
b
where Ci N (i =1,...,16) denotes subject-state i on trial n . In terms
H
of our axioms we may rewrite the sum as
_ (12} (12) 12)
EE: P(Al,n+l[Dn+l Cj,n+l) (D nt+l )R(c ,n+llwnAl nDn k,n)P(wn'Al,n)

3,k
2 12
ey o, p@Piee, )

§l EE: P(Al n+l’D 12) J n+l)P(Cj,n+llwngl,nDilg)Ck,n)P(Al,n[Délg)ck,n)P(Ck,n)'

Jsk

#
%QF

Each of these gquantities in the summation can readily be computed in terms of

the axioms. For example, as n becomes large
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(12) (12)y =n
P(Al,n+l n+l_wnAl,nDn ) i

1 1
36 &1 {-“1011 * U010 T P001* Y000 T Fi1310 T M101 * P1100)

]_; 7 ]_‘ - 1 1
5o+ -0t ) lugg, o #8500, T o007 |

To obtain the appropriate conditicnal probability we divide this result

vy 22 6 p(a Ip02))

In terms of these sequential predictions various procedures can be
devised for estimating the reinforcement varameters p' and p" . Once
these parameters have been estimated any theoretical gquantity of interest
can be computed and goodness-of-fit evaluations made. A considersation of
these topics is not appropriate in this paper and the interested reader
is referred to Suppes and Atkinson [1960].

At this point it would be nice if we could refer to a list of
criteria and a decision rule which would evaluate the model and tell us
whether this specific development or similar mathematical models are
of any genuine value in analyzing the phencmena of interest to
psychologists. Of course;, such decision procedures do not exist. Only
the perspective gained by refinement and extension of these models with
empirical verification at critical stages will permit us to maske such an
evaluation.: .Certainly within the last decade almost all learning

rhenomena have been examined with reference to one cor more mathematical
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_models and there is no doubt thai these analyses have led . to a deeper
understanding of the empirical findings. In addition, many new lines of
experimentation have resulted directly from the work.on mathematical
models of learning. Ian spite of these developments some behavioral
gcientists maintain that psychology has not yet reached a stage where
mathematical analysis is appropriate; still others argue that the data

-of psychology are bagically different from those of the natural sciences
and defy any type of rigorous systematization. Of course, there is no
definitive answer to these critics. Similar obJjections were raised to
mathematical physics as recently as the late 10th century, and only the
brilliant success of the approach silenced opposition. A convinecing
argument is yét to be made for the possibility that mathematical models

in psychology will not enjoy similar success.
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