
THE USE OF MODELS IN EXPERIMENTAL PSYCHOLOGY

by

RICHARD C. ATKINSON

TECHNICAL REPORr NO. 28

May 24, 1960

PREPARED UNDER CONTRACT Nonr 225(17)

(NR 171-034)

FOR

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for

any Purpose of the United Stat.es Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

Applied Mathematics and Statistics Laboratories

STANFORD UNIVERSITY

Stanford, California

•



THE USE OF MODELS IN EXPERIMENTAL PSYCHOLOGY:!

by

Richard C. Atkinson

University of California, Los Angeles

In this paper I shall not be concerned with a formal analysis of the

function of models in psychology. The problem has been considered on many

occasions by both psychologists and philosophers, and I am not inclined to

add to the voluminous literature in this area. Instead, I shall describe

a fairly simple model of behavior and illustrate the method of application

to a complex problem in decision making. By examination of this particular

case we will be able to indicate the role of mathematical models in

determining programs of psychological research and specifying the types of

empirical observations to be made.

The case to be examined deals with the psychology of learning. There

are three basic concepts in this area which play a central role in both

theoretical and experimental work; they are the concepts of stimulus,

response, and ,reinforcement. The stimulus is conceived as an environmental

event; a response is an act or movement made by the .organism exposed to

the stimulating situation; and a reinforcement is any event (experimenter

or subject controlled) which gives rise to an increment or decrement in the

This paper was presented at a colloquium entitled "La notion et le
" ,role du modele dans les sciences mathematiques, naturelles et sociales"

held at Mathematics Institute der Rijksuniversiteit, Utrecht,

Netherlands from January 4 to 8, 1960. The proceedings of the colloquium

are to be published by the North Holland Press.
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likelihood that a stimulus will elicit a particular response. One of the

principal problems of learning psychologists is to specify the relations

between stimuli and various response measures as a function of reinforcement

schedules. A major contribution of early behavioristic scientists like

Pavlov, Thorndike, Bechterev, Watson, and Guthrie was the development of

these concepts in a scientific sense, clearly disentangling them from

notions of common sense and of earlier philosophical psychology.

The introduction of mathematical formulations as a tool in the analysis

of learning has been of fairly recent origin. Some of the earlier work by

"Schukarew, Robertson, Thurstone, Woodrow and others was concerned with

finding an analytic function which was to provide a universal description

of learning. Many suggestions for the appropriate function were made and

there was much debate as to which was correct. This search for the universal

learning function began with ad hoc proposals and curve fitting to experi-

mental data. Gradually, however, these endeavors gave way to the more

constructive undertaking of providing systematic formulations of the

elementary events underlying the learning process.

One of the most noteworthy programs in constructing a ~uantitative

theory of learning was that of Clark L. Hull. In his Principles of Behavior

he presents a set of postulates designed to encompass the major aspects of

learning. From these postulates deductions were made which initiated a

great deal of empirical research. Unfortunately, Hull's work, and that of

his contemporaries like Tolman and Lewin, did not lead to a theory that was

mathematically viable. That is, in Hull's system it is possible to make

only a very limited number of derivations leading to new ~uantitative

predictions of behavior.
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However, the work of Hull, Tolman, Lewin and others emphasized the

importance of rigorous theory construction in psychology and set the stage

for recent developments in mathematical learning theory. The work by

Estes [1950], Bush and Mosteller [1950] and Estes and Burke [1953]

initiated these new developments and represented analyses of learning

which led to mathematically tractable systems. The work of these

investigators and subseQuent work of Luce, Suppes, Restle, Audley,

and many others has resulted in systematic formulations of learning which

have the same sort of feel about them that theories in physics have.

Nontrivial Quantitative predictions can be made--not only about th7 gross

phenomena of learning but also with regard to the fine structure of

the data. Once appropriate identification of theoretical terms has

been made it is usually clear how to derive predictions about responses

in a manner that is not ad hoc and is mathematically exact.

To illustrate some of these points I would like to present a

particular set of axioms for describing learning. Only those axioms

will be presented that are necessary for the analysis of the experiment

to be considered in this paper. The reader interested in a more

comprehensive formulation is referred to Suppes and Atkinson [1960].

The experimental situation consists of a sequence of discrete trials.

There are K response alternatives, denoted A.(i ~ 1, .•. ,K) . On each
l

trial of the experiment two or more alternatives are made available to the

subject, and he is required to select one of the available responses. Once

his response has been made the subject wins or loses a fixed amount of
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money. The subject's task is to win as frequently as possible. There are

many aspects of the situation that can be manipulated by the experimenter

but in this paper we will consider only the following variables: (1) the

strategy by which the experimenter makes available certain subsets of

responses on any trial of the experiment, (2) the schedule by which the

experimenter determines whether the occurrence of a particular response

by the subject leads to a win or loss and (3) the amount of money won or

lost on each trial. The role of the model in this situation is to provide

an explicit and detailed account of a subject's responses over trials of

the experiment. One reason for investigating this particular experimental

problem is that it is a prototype of many decision making situations in

the real world. If behavior can be predicted with accuracy in our

laboratory situation, then we shall have substantially increased our

understanding of decision processes in general.

The model we shall consider assumes that (1) associated with each

response alternative there is a tendency to approach or avoid that

alternative and (2) the response which is finally made on a trial depends

on the observing or orienting behavior of the subject in the pre-decision

period of the trial. The basic notions underlying the model are similar

to those presented by Bower [1959], Estes [1960] and Audley [1960].

The axioms will be formulated verbally. It is not difficult to

state them in a mathematically exact form, but for our purposes this

will not be necessary.
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Al. On every trial each response has an approach-avoidance value

(AAV) of 1 or 0 •

A2. At the start of each trial the subject randomly observes one

of the available responses.

A3. If the AAV for a particular available response is 1 and the----
response is observed, then that response will be made. If the AAV is 0---
and the response is observed, then the subject will randomly reorient and

observe ~ of the other available response alternatives.

A4. If all available responses have been observed on ~ trial and E£

response has been selected C~..~., the~ where all available responses

have AAV' s of 0), then the subject terminates the trial by randomly

selecting ~ of the available responses.

A5. If ~ response is selected on a trial and followed by ~ win,

then with probability p' its AAV becomes 1 and with probability

1- p' its value remains unchanged. If a response is selected and followed

by ~ lOSS, then with probability p" its AAV becomes 0 and with

probability 1 - p" its value remains unchanged.Y The reinforcement

parameters p , and p" are independent of the trial number and the

preceding pattern of events.

We presume that p' and p" are monotone increasing functions of

the amount of money that can be won or lost on a trial.
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A6. The AAV associated with ~ response not selected .'2!! ~ given

Several experiments have been conducted to test the adequacy of

these axioms, but we shall restrict ourselves to one reported by Suppes

and Atkinson [l960]. Subjects were run for 360 trials. and on every

trial they won or lost a fixed amount of money. There were four responses

(A
l

, A2 , A
3

and A4) and on each trial exactly two of these responses

were made available to the subject; the six possible response pairs

occurred with equiprobability. On each trial the sUbject was required

to select between the two available responses but was given no other

information. A win or loss on a trial depended on the response selected.

If Ai was available and chosen,. then with probability si the subject

won and with probability l- s.
~

he lost. The values used were as follows:

•
*/

Sl = .2 , S2 = .4 , S3 = .6 and S4 = .8 -J Thus, if a subject is to

maximize his probability of a win, he should choose A4 whenever it is

available, A
3

when it is available and A4 is not available, and

finally '\e if neither A
3

nor A4 is available.

For mathematical analysis in the remainder of this paper it will

be useful to introduce the following .notation:

A quite different model for this situation has been proposed by

Suppes [l959].
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the experimenter controlled event of making response pair

(A. A. ) available on trial n of the experiment (i '" j)
~ J

A. = selection by the subject of response A, on trial n.
~,n .J.

W = a win on trial n .
n

WI = a loss on trial n .
n

In terms of the axioms we define the subject-state on any trial of

the experiment by an ordered four-tuple < ijk$ > where i,j,k,£ = 1 or 0 .

The first entry denotes the AAV assigned to response Al ' the second

the value for A2 ' and so on. From the axioms it can be shown that, for

our particular experimental procedure, the se~uence of random variables

which take the subject-states as values is a Markov chain. This means,

on trial n +1j

may be constructedP = [Pi.]
. J

is the probability of being in subject-statePij

given subject-state i on trial n • The learning process is completely

where

among other things, that a transition matrix

characterized by these transition probabilities and the initial probability

distribution on the states.

To illustrate the application of our axioms, we will derive one row

of the transition matrix. In making such a derivation it is convenient to

represent the various possible occurrences on a trial by a tree. Assume

that we are in state .< 1001 > on trial n, then the appropriate tree is

given in Figure 1. As indicated on the top branch, when the response pair
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(AI A2 ) or (AI A
3

) is made available (with probability ~ ) the subject

will select AI' because the AAV is 1 for Al and 0 for both

and If a win follows the occurrence of the response

(with probability Sl) no change in the AAV's occurs; however, if a

loss terminates the trial (with probability 1- Sl ) then with

probability p" the AAV associated with Al becomes 0 and the new

subject-state is < 0001 >

presented (with probability t) the subject selects the first response

observed, since the AAV for both Al and A4 are 1. When response

pair (~A3) is presented both available responses have AAV' s of 0,

orand by Axiom 4 the subject randomly selects either A
2

other paths of the tree are obtained in similar fashion.

The

Each path on the tree from a beginning point to a terminal point

represents a possible outcome on a given trial. The probability of each

path is obtained by multiplication of conditional probabilities. Thus

in Figure 1 two paths lead from < 1001 > to < 0001 > and the

d ' l( )" 1 1 ( ) "correspon mg transition probability is 3' 1 - Sl P + 6' 2" 1- Sl P

Construction of the other trees yields a transition matrix for a

sixteen state Markov chain. Certain states in the chain will be transient

if some of the probabilities are o or
-y

1 . However, in the

experiment to be discussed this condition did not hold; therefore, our

A state of a Markov chain is transient if the probability of ever

returning to it is less than 1 •
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comments will be confined to the case where the Si are different from

o and 1 . For this case, state < 1111> is transient (in fact, the

probability of re-entering it is 0) but the other 15 states form an

irreducible, aperiodic chain. Thus, the limiting quantities uijk£

(i.e., the asymptotic probability of being in state < ijk£ > ) exist

and are independent of initial conditions. Further when p' '" p" '" p

it can easily be shown that u ijk£ is also independent of p ; that is,

uijk£ depends only upon the values of Si set by the experimenter.

The data obtained in the experiment (see Suppes and Atkinson

[1960, Ch. 11] for detailed information) indicated that the observed

approached stable values over theresponse givenof an A.
l,n

probability of an A. response approached a fairly stable value over
l,n

the last 100 trials of the experiment.:! Also the observed probabilities

D(ij)
n

last 100 trials of the experiment. The corresponding theoretical

predictions for choice behavior can be readily obtained. For example,

lim P(A ID(12)) '"1 n' n ulOll + ul010 + ulOOl + ulOOOn -700 J

On early trials of

were approximately

the
1
1+

experiment the observed values of P(A. )l,n
which would be expected if the subject

initially had no preference among the four responses. The rate at

which P(A. ) departs from its initial value and approaches an
l,n

asymptotic level is of course determined by the reinforcement

parameters pI and pI! .
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And

P(A. )
l,n

Consequently, in this special case, predictions for

As noted above, uijk£ is a function only of I;i when p' '" p" •

lim P(A In(i j )) =
i,n n

n~ro

and lim P(A. ) = P(A. )
n~oo l,n ~

are entirely ~ priori and do

not make use of any parameters evaluated from the data.

Table 1 presents the observed response proportions over the last

block of 180 trials and the predicted asymptotic values for p' = p"

Overall the model gives a satisfactory account of the mean asymptotic

response probabilities when predictions are based solely on experimentally

determined parameter values. The correspondence between theory and data

could be improved of course if p , and p" were estimated from the data

and used in generating predictions.

The agreement between these observed and predicted asymptotic

response probabilities provides sufficient justification for the type of

model construction considered in this paper. However, the model provides

a much richer analysis of the experiment than the above results indicate.

From the model we can predict not only average performance but also

sequential properties of the individual subject's response protocol; i.e.,

the trial to trial increments and decrements in response probabilities.
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Table 1

Predicted Asymptotic Values

and Observed Proportions

Over the Last Block of 180 Trials

Predicted Observed

P(A In(12)) .442 .4571

P(A In(13)) ·355 .4451

P(~ In(14)) .228 .270

P(A In(23 )) .414 ·3752

P(A In(24)) .286 .2732

P(A In(34 )) ·372 .368
3

P(A
l

) ·171 .195

P(A2 ) .210 .199

P(A
3

) .267 .258

P(A4 ) ·352 .348
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It should be emphasized that one of the major contributions of mathematical

learning theory has been to provide a framework within which the sequential

aspects of learning can be scrutinized. Prior to the development of

mathematical models relatively little attention was paid to trial by trial

phenomena; at the present time, for many experimental problems such

phenomena are viewed as the most basic aspects of learning data.

To indicate the type of sequential predictions that can be obtained

from the model consider the probability of an Al response on trial n+ 1

given on both trial n+ 1 and trial n , a win on trial n , and

on trial n ; namely To obtain this

result we proceed as follows:

where C. (i = 1, .•. ,16) denotes subject-state i on trial n. In terms
l,n

of our axioms we may rewrite the sum as

E P(A ID(12)C. )P(D(12) )P(C. Iw A D(12)C )P(W IA )
. k l,n+l n+l J,n+l n+l J,n+l n l,n n k,n n -"-,n
J,

E P(A !D(12)C. )p(C. jw A D(12)C )P(A ID(12)C )p(C ).
. k l,n+l n J,n+l J,n+l n-"-,n n k,n l,n n k,n k,n
J,

,Each of these quantities in the summation can readily be computed in terms of

the axioms. .For example, as n becomes .large
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To obtain the appropriate conditional probability we divide this result

In terms of these sequential predictions various procedures can be

devised for estimating the reinforcement parameters p' and pI! Once

these parameters have been estimated any theoretical quantity of interest

can be computed and goodness-of-fit evaluations made, A consideration of

these topics is not appropriate in this paper and the interested reader

is referred to Suppes and Atkinson [1960],

At this point it would be nice if we could refer to a list of

criteria and a decision rule which would evaluate the model and tell us

whether this specific development or similar mathematical models are

of any genuine value in analyzing the phenomena of interest to

psychologists, Of course, such decision procedures do not exist, Only

the perspective gained by refinement and extension of these models with

empirical verification at critical stages will permit us to make such an

evaluation, Certainly within the last decade almost all learning

phenomena have been examined with reference to one or more mathematical
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models and there is no doubt that these analyses have led to a deeper

understanding o~ the empirical findings. In addition, many new lines of

experimentation have resulted directly ~rom the work on mathematical

models of learning. In spite o~ these developments some behavioral

scientists maintain that psychology has not yet reached a stage where

mathematical analysis is appropriate; still others argue that the data

of psychology are basically di~ferent from those of the natural sciences

and defy any type o~ rigorous systematization. Of course, there is no

definitive answer to these critics. Similar objections were raised to

mathematical physics as recently as the late 19th century, and only the

brilliant success o~ the approach silenced opposition. A convincing

argument is yet to be made ~or the possibility that mathematical models

in psychology will not enjoy similar success.
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