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1. Introduction

This paper deals with an analysis of some simple detection experi-
ments in terms of Stimulus Sampling Theory (Estes (1950), Estes and
Burke (1953), Estes and Suppes (1959), Atkinson and Estes (1961)). The
type of study to be considered is a cholce experiment for which the
experimenter has established, and explained to the subject, a one-to-
one correspondence between the response set (Al; Ae,n.},Ar) and the -

8

stimulus presentation set (S o

19 R S,) - On cach trial a stimulus
is presented and the subject attempts. to identify the stimulus by'making
the appropriate response. For excellent reviews of theoretical and
experimental research in this area see Green (1960) or Swets (1961).

We shall only consider experiments where r =2 ; that is, on

.each trial either Sl or 5

o is presented and the subject is reguired

to make resgponse Al or A Also, the analysis will be restricted

2
to procedures where the experimenter informs the'subject at the end of
each trial which response was correct. These two restrictions are not
fuhdamental to the theory, but greatly simplify the presentation. ILater,
it Will be apparent that the model can be extended to multi-stimulus

problems and to procedures where information. feedback is manipulated as

an experimental variable.

l'./'-The ideas presénted‘in this paper have bheen mﬁch influenced by dis-

cussions with E. C. Carterette and-R. Kinchla.




Two types of experimeﬁtal proéedures are to be distinguished in
the analysis. We define these by éxample.

Yes-No Procedure: Sl is a -tone burst in. a background of white noise

and S2 is the wﬁite noise alcne. On a given triai either Sl or
S, 1s presented and the subject answers yes (Al) or no (AE)
regarding the presence of the signal.

Forced-Choice Procedures Two temporal intervels. are defined on each

trial,_exactly_one of which contains & signal; i.e., in one interval

a tope burst in.a background of white noise is presented, while in
the.other.interval only the white noise is presented. On each trial,
the subject is required to identify the interval he believes most
likely to have contained the signal. Thus, Si(i~= 1, 2) denotes a
‘trial on which the signal occurred in time interval 1 and Aj(j.=.l,2)
denotes the subjects' selection of interval j as the one containing
the signal.

In this paper we shall use the identifications given in these
examples. That is, for the yes-no procedure Sl will always denote
signal plus ﬁoise, whereag 82 will denote noise alone; for the fbrcede
cholice procedure Sl will denote signal plus noise in the first dnter- .
val followed by noise alcone in the sscond interval, and 52 indicates

noise alone in the first interval and signal plus noise in the second

interval. In addition, the following notation will be used:

Si n = The presentation of stimulus Si on trial n of the-
. .
experiment.
Aj n = The_occﬁrrence of response Aj on trial n of the experiment.




A theoretical result of particular interest in analyzing detec-

tion data deals with the relation of Pr{A. _[8
. 1,n""1,n

).

) xo -Pr(Al,n[SE,n

For simplicity we write

and when the appropriate limit exists

For the yes-no procedure 121 is the asymptotic probability of a yes
report when the signal is present (the likelihood,bf a-“hit")”and Pg
is the jrobability of a yes-feport when nolse alone is_présented (the
likelihood of a "false alarm"). Tn the literature, plots of the rela- |
tion of .p2 to Pl are commonly called ROC cufves, which stands forr.

receiver operating characteristic curves.

In terms of our notation, two classes of variables are under the

control of the experimenter: (l) the physical.parameters of the

stimulus presentation set, and (2) the trial-to-trial schedule for

. presenting stimuli. This paper deals primarily with the effects of
these variables in both the yes-no and forced-choice experiments.

Other factors, such as the use of special instructions designed to intfo-
‘duce regponse blas and differential monetary paycffs contingent bn trial
outcomes,_ére discusséd later but are nof treated in detail. The

reason .is that the study of such #ariables, within our theoretical -frame-
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work, leads to modelslfhat are ﬁathematically comélex and tﬂﬁsrwarrant

only limited investigatibn until the leés complicated cases hé§e béen

adequately explored. | |
In this paper we treat a simple probabilisite schedule for present-

ing stimuli; namely

Pr(sy ) - 7 (2)
where ¥ 1is a constant over triais. More complex stimulus schedules
can be analyzed; e.g., the stimulus presentation on trial n might
depend on the response on trial n - k¥ , or on the stimulus on trial
n -k, or both. However, an analysis-of‘this simpler schedule will
be sufficient to illustrate the basic concepts.

The theory generates predictions for alisaspects_of the subjects®
response protocol (mean response probabilities, assoclated variances,
sequential predictions such .as autccorrelations, énd S0 forth) gnd
thereby permits a detailed treatment of individusl trial-by-trial data.
Most .of the predictions depernd on estimétes of parameters thaﬁ describe
the stimulus situation an@,the hypothesized deteétion proéeséu Scme |
readers may feel that we have been tco liberal in postulating para-
meters; however, for most applications, restrictions are appropriate
that markedly_redl_zce the number of Ffree parameters. Further, some
predictions such as the ROC curve regulre that only twolparamete;s be
estimated.

2. Axioms and Identification Rules

Readers familiar with recent developments in stimulus sampling

theory will recognize that our axioms are a schematic statement of a




more general thecry. In this paper, we offer a simple analysis of
the stimulus presentation set and postulate a learning process

defined on the set of background stimuli (denoted s, ). In addi-

o)

tion, .two perceptual states (H and L) are assumed to exist and are

'@ifferentiéted in terms of the signal parameteré associated with these
states. Roughly speaking, the subject is more "alert" or_"aftentiveE
to the stimulus in state H than in state. L . The particular
pe;ceptual state of the subject on any trial is a function of his
lhistory of detections-an&,the.difficulty of fhe task. Only two
-perceptual. states are postulated but it will be obvious that these
notions.can be generalized t0 an n~-state process.g/

The axioms for the model fall into twb groups: The first group
deals with the stimulus situation. and changes in perceptu&llstatesg

the second group, with the response mechanism.

Stimulus Axioms

. §l. If the subject is in state H and Si(i = 1,2) 1is

presented then either stimulus element S5 will be sampled (with

probability h, :), or stimulus element 54 will be sampled.

82. If the subject 1s in state L and Si(i'= 1,2) is

presented then either element si will be sampled (Mith_prdbabilityj

_ ﬂi ),‘22 element 55 will be sampled.

§3. n, >4, and h

2>y -

2 .
-~/ For an application of similar concepts to diserimination learning,

see Atkinson (1960) and Atkinson (1961).




sl If the-subject makes a response that is designated ag incorrect

by the experimenter, then with probsbility p he moves ﬁg state H for

the next trial; -if he ig already in state H he remains so.

85. If a subject makes g response that is designated as correct by

the experimenter, then with probability & he moves to state L on the

next trial; if he is already ;E'state L he remains so.

Responge Axioms

Rl. If Si(i‘= 1,2} is sampled on trial n then the A, respomse

will occur with probabilifty 1

R2. If s, is sampled on trial n then the A

i s, responsgse will

1

occur with probebility 7 where

7,=7 - by -l - ot
‘We distiﬁguish between yes-no and forced-choice methods in terms of
the signal parameters.hi and ﬂi . Consider first the case where the
~subJect is in perceptual state H (i.e., ;Sl and 82 are specified by
hl and - hg). When & signal is presented in noise we assume that . the
subject either detects the signal (with probability ¢) or is uncertain
-ag to whether or not the signal occurred. ©Similarly, when noise aldne 1is
presented we assume that the subject. elther detects the absence of a
signal-(with probability_n)'or is uncertain whether or not the signal .
occurred. The three events will be denoted as follows: s = detected signal;
5 = detected omission of signai; and u = uncertain. For the-yes-no method
the occcurrence of event s 1is identified with the sampling of element.sl;
5 with the sampling of 52;.and the event u with the sampling of element

5o Hence, for the yes-no procedure

hl'= o and hy =7 . -(3)

_.; 6 .
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For the forced-choice procedure the analysis is different. .Consider

an Sl trial--sigral plus noise in the first interval followed by

noise alone in the second intervai. The following event sequences
can .occur: |

.(l)J.event s occurs in the first interval and is followed by

~ _event =& in the second interval--with probability on

(2) s followed by u =-with probability o(l - n)

(3) u followed by & --with probability (1 - o)n.

:(._h) u followed by u --~with probability (1 - o)(1 - n) -
. Information transmitted by either outcome 1, 2, or 3 is adequa%e to
identify the trial, and hence the occurrence of any one of these events

is associated with the sampling of element s If the fourth outcome

1
occurs, we assume that element 54 is sampled.é/ Therefore,

hy =1 - (L - 6)(1 -1n) 2 by a similar argument for S, trials it can

be shown that _h2.= hl . Hence, for the forced-choice method

mo=by=1-(1-o)1-n) - ()

Note that the signal parameter 'hl =h for the forced-choice methed

2

and h2 for the yes-no proce-

is always. greater than or equal to hl

dure.

é/ In formulating a model that also treated choice Eiég it would be
natural to-distinguish between oﬁtcomés 1 to'j. However, for an analysis
of response selection, such a distinction is not necessary. Also, note
that the assigmment of probabilities to the four outcomes assumes no
time-order effect; i.e., no interaction between events in one -temporal
interval and the next. For a given experimental situation, the pfeci-w
slon -of the comparison betweer the forced-choice and the yes-nc method

will depend on the accuracy of this assumption.

.."T...




By similar:argUments'WE may express El and £2‘ in terms of
g' and %' . These later parameters describe the signal when the
subject is in perceptual state L .

It should be noted that the learning preccess postulated in
Axiom R2 is highly artificial and represents only & gross approxi-
~mation to current stimulus sampiing models for learning. Further,
for stimulus schedules other than those given by Eq;f2;'it will De
necessary -to postulate other learning functions. For example, if
we employ a aontiﬁgent stimulus schedule where

Pr(sl,n+l[si,9 - ?(l)

B8y ne1 [ S5 )= s

_then the function 7 =IT(Al;nls
,2)
limit approach (1) 44( y The details of how to specify a

L=y +
more general learning functlon can be obtained in Estes (1959), or

o n) given in Axiom R2 would in the
, ’ .

Atkinson and Estes (l96l)n The Justlflcatﬂon for our present formu-
lation of the learning pfocess is that it greatly siﬁplifies.fhe

.model. ‘We return to this point later.

3. -Asymptotic Response Probabilities and ROC Curves

Let Cl 0 denote the event Where the subJect is in perceptual
R

state H .at the start of trial n ; and 02 » the event of being

in state L at the start of trial n . Further, we introduce the

notation




From axioms 81, .52, Rl, and R2 it follows that

(A M8y € ) =+ ()7

pr(a) 18 50 4

[P
—
Il

(1'h2)7n

Pr(%l S C

,1’1[ "l,l‘l 2,.1’1

—
[}

ﬁl + (1-£1)7n

Pr(Al,n{SQ,n 2,n

o
S
i

= (1_32)7n

Hence, for p; ~ and p, (as defined by Eq. 1) we obtain
» > _

v [h + (1;hl)7n] +.(1—vh)[£l + (l—ﬂl)yn]

b=
(R
I

S
(5)
:Pe;n = vn(l"hg)yn + (1_vn)(l_£2)7n
‘Tq obtain an expression for D, , W need first to write v
2 .
By axloms 5S4 and S5 we may prove that
v = v (1-8a ) + (1-v Ju b, (6)

Where

o
I

7y + (_l-hl)7ﬁ.] + (1-7)[n, + (‘l'hg)(l—yﬁ')] .

%J
]

(-8 (17) + (=0)(-25)7,




A solution for this difference eﬁuation can bé given but it is
rather lengthy. For the moment we shall confine our attention
to asymptotic-predictiOns and therefore fequire only -the limiting
expression of v, o Following the convention intrpduced earlier,
let v = lim v . Then, from Eq. 6 and Axiom R2,

n— o

b
V= b | (7a)

where

P = 8/u : (T0)

o
n

ylny + (1071 + (17) Iy + (15) (-] (Te)

b= ¥(1-7) (2L ~4,) - (74)

Substituting these results in Eq. 6 and letting Yy =7 the following

expressions are obtained for pl and Py :

[l

py = vib + (1-hy)y] + (1-v)[£, + (1-4,)7]

(8)

22 7[V(l'h2)'+ (l"v)(l“ﬂz)] M
If r = Pr(Sl n) 1s permitted toc vary between O and 1 , then the
IR . : o i
ROC curve defined by'the above equations is, in general, a convex
function. that originates at point (O,-El) and terminates at point
(1—32, 1) . However, .it is necessary to be more precise and distinguish

three cases:

- 10 -




(1) If ® =0, u> 0, then asymptotically the subject is
absorbed in state H and the ROC curve is given by the

-linear functicn

l—hl
PL= T, B2t Ry )

(2) If 8> 0, p =0, then asymptotlcally the subject is
absorbed in state L and the ROC curve is

1-2.

Equation 9 is represented by the upper stralght lire in
Figure 1, and Eg. 10 by the lower-line.

‘(5) JFor the gengral case where | , 8 > 0, the ROC curve is &
convex function bounded between Egq. 9 and Egq. 10 that ori-
ginates at point (0, gl) and terminates st {1-2, , 1) .
Figure 1 gives several ROC curves for the case where hl = .9,

h2 = .5, & = .2 and £, = -1 3 .the curves are distinguished

1
by the value of @ = 8/ . -Successive points on each curve
were generated by varying 7 , the siggal—presentation proba-
bility. The quantity @ is a ratio of twe non-zerc probabil-
ities and hence takes any positive number greater than zero.
For @ close to zero the ROC curve tends toward the line
given by Eq. 9 in Figure 1l; for large @ the curve approaches
the line given by Eg. 10.-

For most experiments involving variations in ¥ , it seems reason-

able to assume that the observed values for both Py and Ps will be

- 11 -






1 2 2
l |
0 | 1 T | i r I I 1
.2 A .6 .8, 1.0
Pr(4, [S,)
Figure 1. ROC Curves for the Case where hl = .9, h2 = .5,
ﬂl = ,2, and 122 = .1 . '
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1 when =1 and © when 7 = 0 . In theory, the prediction

1, 1f vy

1l
~

pl = P2 =
O, if 7y

I}
<

requires that ﬂl = ﬂg = 0 . G@Given this restriction the ROC curve
tracez out & convex function running from 0 %o 1 on both coordi-
nates.

Mest of the experimental work on éignal detection suggests that
the ROC curve originates at. 0 .and terminate at 1 . Consequently,

.in the remainder of this paper we require £, = £2 = 0 . Glven this

1

assumption Eg. 7 and 8 may be rewritten as follows:

7[hl + (l"hl)y] + (1"7)[h2 + (l_hg)(l'7)] |

27(1-7)

< I+

=1 +@

]

vh, + y(1-vh

By 1 (11)

1)

]

¥(1-vh

Py o)

We now compare ROC curves for the forced-choice method and the
yes-no method. By an earlier argument we established that, .for the

yesg=no method

- 12 -







While for the forced-choice method
hy %Lh2 =, 0 + n(l-0) .

Thus, to fit an RCC curve for the forced-choice procedure only two
parameters are needed (h and ¢ ); for the yes-no experiment three
parameters are required (hl R h2 and @) . If the same physical
stimuli are used in a yes-no experiment end in a forced-cholce experi-
ment (i.e., o and 1 are the -same for both experiﬁents) and we
. asgume that variables related to 9 are held constant for both
procedures, then the theory predicts that the ROC curve generated by
" the forced-choice group will be above the ROC cufve for the yes-no
group (except at (0,0) and (1,1) where they are equal). Also, ,the'
‘ROC curve for The Torced-checice methed is symmetric about the main
diagonal from point (0,1) to (1,0); for the yes-no method the ROC
curve may be symmetric about the main diagonal (if o = 1) ; skewed
to the left (if o > 1) .; or skewed to the right (if o < 7) .

To 1llustrate these remarks we compute some ROC curves for the
forced-choice. and the yes-no method. Iet c“= <75 , and 1 = .50 .

Thern, for the forced-choice condition h, = h2 = .875 , whereas for

1
the yes-no condition hl = .7% , ha = .50 . Figure 2 gives the ROC
curves for the forced-choice and yes-no methods for several different
values of @ . As noted before, when @ — 0 the ROC curve approaches
the line Py = (.50)p2 + .75 for the forced-choice method and the line
Py =Py F .875 for the yes-no method. As © — @ , .the ROC curves

for both methods approach the line P, =P -

- 13 -
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4. Sequential Predictions

It has ‘long been recognized that rather complex trial-to-trial
dependencies are involved in most psychophysical data. Recently, some
very striking sequential effects have been.re%orted by Carterette (1962)
in a signal detection experiment. In this section we derive some
Sequential predictions, having selected those quantities that are par-
ticularly useful in making estimates of p and & . The rgader is
referred to Suppes and Atkinson (1960; Chapter 2) for a discussion
of appropriate estimation procedures.

‘We shall examine predictions regarding the influence-of-stimulus
and response events on trial n s&as they affect the response on trial

n+1 . Specifically,

Pr{A ) i, 3=-1, 2 .

1ne1 51, a1 A4 0 855
That is, the probability of an Al response to Sl conditionalized

on the variocus outcomes of the preceding trial. Conslder first

Pr(Al,n+llSl,n+l Al,n'sl,n) vhich, by elementary probability consi-

derations, .can be written as follows:

B A8 )= Pr(gl,n+1'81,n+1 Al,n'sl,ﬁ)_ . (12)
1,0+l"1,n+1 “1,n "1,n P?(gl,n+l Al’n sl,n) :

‘Pr(A
JNow, we need expressions for the numerator and denominator on the right-

‘hand side of the above equation. First, note -that the denominator may

be expanded:

- 1h -







Pr(s A 8, ) =Pr(s {4

1o+l P10 Syn 1,0+l o) Prlhy 18 1) Pr(sy ) -

1,n 3.11

‘But Pr(s1 n+l|A1,nf31,n) =-Pr(§lyn),= y and by Eq. 1
Pr(A [ l n) =Py g Hence
Pr'(s-l,n.+.l Al,n S‘l,r_l') =7 Py {13)
Similarily, for the numerator of Eq. 12 we write
(14)

Zl 3 Pr(Al n+l Sl n+l 1,n+1 l n l n CJ, )
P . o _

= lZJ PJ:‘(‘ﬂ.*l n+llsl n+l C:|. n+3.)7 Pr(cl,nﬂ.[Al n l,n CJ, )
2

Pr(A [ )7Pr(c )

ln'Jn
By definition Pr(Cl Y =v_, and by Eg. 5
S N R %+ n-oo- S

h+(1h)7 ‘for i

]
=

n+l *?

C ),¥<

Pr(Al,n+l|Sl,n+l 1,0+l

It
no

n+l . s for 1.

C w15 -




Further, by Axicms Sh and S5 .

3 l=2,”.J=l

Pr(C, A .8 C, = 4 -
( 1,nil[ l,n "1,n J,n) o ; 1=1, j=2
1 : i=2,J=2

Hence, carrying out the summation in Eq. 14 we obtailn

yg{vn[h_l + (1= )y 1By g + (1-8)(hy + 7 -0y 7 0 )] (.1-vn)7n7n+l}.('.15-)

Pividing Eq. 15 by Eg. 13 yields the desired expression. for

Pr(a

._1,n+1|s A S ) .. For most appllcat;pns we ﬁeal with

I,n+l 71,n T1,n

asymptotic data; that is, for trial.sequences where n is large. Under
these conditiong 7n-a ? » V2V , and yl,n —apl 3 as a result, much
simplification is possible. We now rewrite Eq. 12 for the case where
n— < , and also present expressions for the other asymptotic sequen-
tial effects. Following our earliér”éonventibn,1the subséripts' n  and
n + 1 will be deleted to indicate limiting quantities but are implicit

in the ordering. Purther, to Simplify’thé expressions we define

X = hl_+ (1—@1)7 . Then




Pr(AlISIAiSlj =:§;<{vﬁ[67 %I(I;S)ﬁ],+.(;¥V)7é}

CPr(A,[5;8,8,) = %%i {V(J«-T}l)-ﬁ + (1) [ + (,1-u)y]}

| ST (16)
;Pr(&l{SlAlSE)-= %; {#(l‘hQ)ﬂaf(lfV)[Hﬁ +_(l+u)7]}.
Pr(A, [5)4,8,) =§5; {y['hgf (1—1;2;).(-;1_-7)_._1'[87.+ (1-8)x] + (_1-v)(_1-7_')7} ,

Any other sequential prediction can be derived but the sbove are of
particular interest with regard toc estimation methods and illustrate the
type of prediction that ‘is possible.

5. -Disﬁussion'

For our-model, the ROC curve is specified by the parameters @ ,

h) and hy , with “hy being equal to hy in the.forced-choice proce-

dure.  In theory, ‘h; ‘and 'hg ~are measures of 8 and 5, eand

depend only on the physical parameters deseribing the stimwlus presen-

tation set. It is'sssumed that other wvariables such as stimulus
presentation schedules, variatiocns. in instructions, monetary payoffs,
and experimental design have no -affect on the value of hi . Conse-
gquently, given a specific stimuius set, differences in the ROC .curves
from one experimental routine to another are to be represented in terms
of-variations in @ . Roughly speaking, one can argue that experimental
manipulations that increass a.éubject's motivation or interest in the -
deteqtionjtask‘will give rise to both an. increase in p and a decrease
in 8.3 d.e., tend to decrease the value of ¢ . It was indicated

earlier that as @ decreases the ROC curve tends to approach;the-function

ot -




Py = ;;;; by + hl ; whereas, if @ increases the ROC curve approaches
the function Py =Py - In addition, predicted differences between
the RCC curve for the forced-cholice and yes-no method.increase as ©
"~ becomes small. Consequently, by manipulating experimental variables
related to @ one should be able to modify the convexity of the ROC
curve, and also vary the amount of difference between ROC curves .o
obtained under forcedechoice and yes-ne conditions.

The use of monetary payoffs may be one technique for manipula-
ting @ but the procedure suggests certain complieations. Reecall
that we have postulated a learning function that in the 1limit matches

the likelihocd of presenting an S, stimulus; dle., Pr(A ISO n)-e ¥.
R . £

1 yn’

For verbsl learning experiments that do not involve monetary payoffs

(Estes and Straughan (1954); Detambel (1955); Grant, Hake and Hornseth
.(1951); and others) an asymptotic matching assumption gives a fairly
adequate description of the data; however, the use of monetary payoffs
may cause the subject to deviate from matching behavior in the direc-
tlon of a more optimal strategy. If the Introduction .ofimonetary
rewards In a signal detection experiment has a similar effect on the
hypothesized learning process associated with element 4 s then it
may be necessary to postulate a learning function other than the one
given in Axiom R2. There are a number of theoretical developments in
the literature that are relevant to this problem (e.g., Estes (1962),
Atkinson (1962),.-Siegel (1961)) and.any of these proposals could be

. used in place of the functions given in Axiom R2. For example,
following Atkinson's formulation one might assume that .Pr(A

l, Ill S‘Q) n)

.. in the limit approaches

- ;8 -




Py + (1-9)¢]
7+ (1=7)7 + 7(1-7)t

_ where & ‘1s a utllltyrmeasure assoc1ated w1th the payoff functlon.
-Such modlflcatlons may ‘turn out to be necessary,_but it also may be
that the effects of monetary payoff can -be. accounted for in terms of ¢
glone. An answer to this questlon will depend on a detalled 1nspectlon
of seeuentlal data and cannot be obtalned by an analysrs of gross
-Statlstlcs llke pl and p2 . | | _
The sequentlal effects predlcted by this model are pr1nc1pally -
due -to tr1a1 to—trlal changes in perceptual statesn Another source of
'varlablllty ln slgnal detectlon experlments may result from trlal to-
'rtrlal fluctuatlons in the learnlng process assoc1ated W1th background
stlmull. In our model a learnlng process is assumedrbut we do not
-allow for trlal to-trlal learnlng effects, thls fact becomes clear when

one observes that in the 11m1t Pr(A is a fixed number 7 and

oloas)
1ot a dlstrlbutlon wath expectatlon ¥ - It is the absence of these
sequentlal effects-ln the learning processrthat elicitea our.earlier..
comment on,the.artificial nature of_this aspect oftthe.modelo If it
turas,out thatrlearning effects, other than those incorporated iﬁ

Axiom RE, are 1mportant in accountlng for sequentlal phenomena then it
will be necessary to postulate & more general learnlng process. We
.have formulated such a model.. it 1nvolves two addltlonal axioms deallng
Wlth the condltlonlng of the ;SO eiement and a restatement of Ax1om R2.
They are as follews- | o

. _._.19 -




Cl.. On every trial element s, 1s conditioned to either A

or A -

c2. If 8, is sampled on a trial, it becomesrconditioned with

1

probability c¢ 1o the responsé that was correct on the trial.

BR2.* If s, ic sampled, then the response to which s,

‘conditioned will occur.

is

‘The mathematical problems introduced by these additicnal assumptions
makes an analysis of the model more difficult. The reéponse probabi-

~lities are functions defined on a lb-state Markov chain, where the

states df the chain are unobServabie. We have investigated;ROC curves
fof,é number of cases and théy conform very cloéely tb the same func;
tions'derived from tﬁe model presentéd iﬁ this papér, In:fact; if .
seems reasbnab}eito suppose that for grosser ﬁredictions,_such a8 Py |
and Py s the agreement-between the two models willl be very:close. M
.fhus, if iﬁ becomes neceééary to modifj tﬁe axiomS—aiong these lines,.
_fhénrthe equatiéns given in this paper may be viewed as a simple
deviqe.fbr éompufing fhe grosser,predictions of the geﬁeral theory.
-Thére are é number of special topics that haﬁe not heen dis-

cussed. O interest, is the relation of our model to theories of dis-

criminétionrlearﬁing (particularly, Burke and Estes (1957), Restle

(1955) and Atkiﬁson,(l960));‘the~effect of blank trials in & forced-

choice procedure;ﬁthe effect of'ineorrect information; extensioﬁ of

:the modgl fo aécount-fbr‘choice—time measurés}iand the extension of

tﬁe ﬁodel to mﬁlti-stimulus-responée problems. These éroblems can be ' .
Tormulated and analyred within the: framework .ofiour model; and ﬁill'bé.

treated in later papers.
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in summary, it seems reaéoﬁable to describe -the model as an
example of a variable‘threshold theory of detection. We have postu-
lated not one, but two threshqldsg lThese threshqlds‘arerdefined
‘via the construct of a perceptual state. ~From trial-to-trial changes
pccur.inrthe perceptual state of a_subject,_and the changes depend in
.a rather intricatg.way'on thé_difficulty of the psychophysical task.and
the subjeqts'_short-term history:of.detectionsa‘ The pgrceptual states
are ngt observable, but they_are'functionally related to response
probgbilities and conseguently_permit the_experimenter to make a ..

detalled analysis of all aspects of a subject’s response protocol.
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APPENDIX -

For those interested;.some mathematical results will be presented
on the detection process proposed in the last section; i.e.,,resulté
for the model defined by axioms 81-85; Cl, €2, Rl and R2¥*. For
simplicity, we consider the case where £l = ﬂg = 0 anﬁ'.Pr(Sl’n)‘= 7 .

‘At the start of any trial, the subject is in one of the following four
states: 1 =<H, 1>, 2=<H 2>, 3=<L, 1>, 4=<0L,2>.
The first member of the ordered pair.indicates the perceptual state
(H or L) and the second component, the econditioning of the SO:.
element (Al or AE) . Prom the exioms, it can be shown that the
-Sequencerof random. variables that take these four states as values
over trials of an experiment is a Markov chgin. This means, among
other things, that a transition metrix P = [pij] may. be defined,
.Where Pij is the probability of being in state j -on trial n + 1
given that the subject was in state 1 on trial n . The detection
process 1is completely characterized by the transition probabilities and
the initial probability distribution on the four states. The-pij‘s
can be easily derived (see Atkinson (1960) for an illustration of the

methods involved) and are as follows:

pyq = ¥(1-8) + (1-7)[h,(1-8) + (1-hy)(1-c)]
Pyp = (1-7)(1-hy)e

Py5 =70 + (1-7)hy8

Py, = O
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7(1-hy)e

7[n (1-8) + (1=h))(1-c)] + (1-59 (1-8)

1

= 0

o

)

.P-.
i

= 78+ (1-7)8

(L-7)u(l=c)
(1=7lue
7 + (T=y}(1-p)(1-c)

(.l-'?‘).(l.-'u')—c

I

i

iy

N

=
]

Dy = 7uc

=]
)
i

= yp(l-e)

y{1-p)e

= y(1-p)(1-c) + (1-7)

g

=

=
I

Let ‘u i p be the probability of being in state 1 at the start
2 . )
of trial n and when, the appropriate limit exists, - lim. ui n =W e
- n—->o 7

Then for the row ma.trix U, = [u u), lrlA_]‘ we have that
C s .

s U~ u y
1,0’ - 2,11" 5,]:1:

Uﬁ -+i = UnP

and, .in general,

nél
,Uﬁ -UlP .

Il

-(._For a discussion of methods to cbtain an explicit expression. for u,
A

.see Suppes and Atkinson (1960)).
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"Experimentally, it is not possible to identify individual states
of the process on a given trial. That is, knowing which stimulus

(s

1 or AE) occurred does not provide

or 82) and respounse (Al

enough information to identify the state. For example, if "Sl isg
Presented and Al occurs 1t 1s possible for the subjeet tp have been
in any one of the following states: < H, 1>, <H, 2> or <L, 1>,
However, observable response probabilities are well-defined in terms

of these uncbservable states. By axioms Rl and R2* we have (for

o
I_I
1

,n ul,n + hlu2,n + g5,n

Ny
1]

,n (léhg)ulrn + u3,_n .

As indicated earlier, the ROC curve specified by these equations has the
same general properties ss our simpler model. Specificially, (i) if

5=0 s B> 0, then the ROC curve is defined by the linear .equation
1-h

Py = E:E; Py * hl 3 (14) if &8> 0, w = 0, then the curve is simply

Py = p, and (iii) for &> 0, p> O, the ROC curve is a convex
function running from O to 1 on both ccordinates and bounded between

the functions P, = By and Py =7 Pyt hl .

1-hy
To illustrate another feature of the model, some asymptotic
sequential predictions: are displayed that may be compared with Eq. 16.

Namely,

-2k -




Pf(Ai[Sl.!.&eSl)‘,.; :—L-._l'l-D.—{ua(l-hl)[c + .(,;-c_)hi] + uh[c + .p.,(hl-c)»hl]}
’ 1 ' . . d

..Pr(AlISlAISE’) = 'I;l;{ul(.l-hg)'[chl'F (1-c)] ,.4_u5[cuhl + (,l-c)]}

Pr(a [5,8,8)) = T}?z [y + up(1-8)n, ]
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