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1. Introduction

This paper deals with an analysis of some simple detection experi­

ments in terms of Stimulus Sampling Theory (Estes (1950), Estes and

Burke (1953), Estes and Suppes (1959), Atkinson and Estes (1961)). The

type of study to be considered is a choice experiment for which the

experimenter has established, and explained to the subject, a one-to­

·one correspondence between the response set (Al'~'" .,Ar ) and the

stimulus presentation set (Sl' S2"",Sr)' On each trial a stimulus

is presented and the subject attempts to identify the stimulus by making

the appropriate response. For excellent reviews of theoretical and

experimental research in this area see Green (1960) or Swets (1961).

We shall only consider experiments where r = 2 ; that is, on

each trial either Sl or S2 is presented and the subject is required

to make response Al or A2 . Also, the analysis will be restricted

to procedures where the experimenter informs the subject at the end of

each trial which response was correct. These two restrictions are not

fundamental to the theory, but greatly simplify the presentation. Later,

it will be apparent that the model can be extended to multi-stimulus

problems and to procedures where information feedback is manipulated as

an experimental variable.

1/ The ideas presented in this paper have been much influenced by dis­

cussions with E. C. Carterette and R. Kinchla.



Two types of experimental procedures are to be distinguished in

the analysis. We define these by example.

Yes-No Procedure: 8
1

is a tone burst in a background .of white noise

and 82 is the white noise alone. On a given trial either 81 Or

82 is presented and the subject answers yes (Al ) or no (~)

regarding the presence of the signal.

ForCed-Choice Procedure: Two temporal intervals are de~ined on each

trial, exactly one of which contains a signal; i.e., in one interval

a tone burst in a background of white noise is presented, while in

the other interval only the white noise is presented. On each trial,

the subject is required to identify the interval he believes most

likely to have contained the signal. Thus, 8. (i = 1, 2) .denotes a
J.

trial on which the signal occurred in time interval i and A.(j= 1,2)
J

denotes the subjects' selection of interval j as the one .containing

the signal.

In this paper we shall use the identifications given in these

examples. That is,~orthe yes-no procedure 81 will always denote

signal plus noise, whereas 82 will denote noise alone; for the ~orced-

choice procedure 81 will denote signal plus noise in the first inter-

val followed by noise alone in the second interval, and 82 indicates

noise alone in the ~irst interval and signal plus noise in the second

interval. In addition, the following notation will be used:

8. = The presentation of stimulus 8. on trial n of the
~,n J.

experiment.

A. = The OCCurrence of response A. on trial n of the experiment.
J,n J
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A theoretical result of particular interest in analyzing detec-

tion data deals with the relation of

For simplicity we wri.te

Pr(Al [Sl ),n ,n to

Pl n ; Pr(Al [Sl )
, J n J n

and when the appropriate limit exists

(1)

For the yes-no procedure Pl is the asympt.otic probability of a yes

report when the signal is present (the likelihood of a "hit") and P2

is the probability of a yes report when noise alone is presented (the

likelihood of a "false alarm"). In the literature, plots of the rela-

tion of to are commonly called ROC curves, which stands for

receiver operating characteristic curves.

In terms of Our notation, two classes of variables are under the

control of the experimenter: (1) the physical parameters of the

stimulus presentation set, and (2) the trial-to-trial schedule for

presenting stimuli. This paper deals primarily with the effects of

these variables in both the yes-no and forced-choice experiments.

other factors, such as the use of special instructions designed t.o intro-

duceresponse bias and differential monetary payoffs contingent on trial

outcomes, are discussed later but are not treated in detail. The

reason is that the study. of such variables, within our theoretical frame-
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work, leads to models that are mathematically complex and thus warrant

only limited investigation until the less complicated cases have been

adequately explored.

In. this paper we treat a simple probabilisitc schedule for present-

ing stimuli; namely

Pr(Sl ) = y,n

where y is a constant over trials. More complex stimulus schedules

can be analyzed; e.g., the stimulus presentation on trial n might

depend on the response on trial n - k, or on the stimulus on trial

n - k, Or both. However, an analysis of this simpler schedule will

be sufficient to illustrate the basic concepts.

The theory generates predictions for all aspects of the subjects'

response protocol (mean response probabilities, associated variances,

sequential predictions such as autocorrelations, and so forth) and

(2)

thereby permits a detailed treatment of individual trial-by-trial data.

Most of the predictions depend on estimates of parameters that describe

the stimulus situation and the hypothesized detection process. Some

readers may feel that we have been too liberal in postulating para-

meters; however, for most applications, restrictions are appropriate

that markedly reduce the number of free parameters. Further,some

predictions such as the ROC curve require that only two parameters be

estimated.

2. Axioms and Identification Rules

Readers familiar with recent developments in stimulus sampling

theory will recognize that our axioms are a schematic· statement of a
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more general theory. In this paper, we offer a simple analysis of

the stimulus presentation set and postulate a learning process

defined on the set of background stimuli (denoted so) • In addi­

tion, .two perceptual states (H and L) are assumed to exist and are

differentiated in terms of the signal parameters associated with these

"States. Roughly speaking, the subject i.s more "alert" or "attentive"

to the stimulus in state H than in state L. The particular

perceptual state of the subject on any trial is a function of his

history of detections and the difficulty of the task. Only two

perceptual states are postulated but it will be obvious that these

notions can be generalized to an n-state process.V
The axioms for the model fall into two groups: The first group

deals with the stimulus situation and changes in perceptual states;

.the second group, with the response mechanism.

Stimulus Axioms

81. If the sub,iect is in state Hand S.(i ~1,2)
J.

is

presented then either stimulus element s. will be sampled (with
J. ---

probability h. ), .£E. stimulus element So will be sampled.
J. ---

S2. If the sub,iect is in state Land S. (i~ 1,2) is
J.

presented then either element si ~ be sampled (with probabilit;t-

.£i .), £E. element So will be sampled.

gj For an application of similar concepts to discrimination learning,

see Atkinson (J960) and Atkinson (1961).
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s4" If the subject makes §: response that is designated as incorrect

~ the experimenter, then wi.th probability he moves to state--------- H for

the next tri1J.l; if he is already in state H he remains so.

S5, If §: subject makes §: response that is designated as correct ~

the experimenter, then with probability on the

next trial; if he is already in state L he remains so,

Response Axioms

will occur with probability 1 ,

occur with probability

responseA.
l

response will

then then

then then

where

is sampled ~ trials.(i= 1,2)
l

If

If

Rl.

H2,

)n-l
y = y - [y - Y ](1 - cn 1 .

We distinguish between yes-no and forced-choice methods in terms of

Consider first the case where thethe signal parameters hi and $i

subject is in perceptual state H (i,e., Sl and S2 are specified by

hl and h2 ), When a signal is presented in noise we assume that the

subject either detects the signal (with probability <r) .or is uncertain

as to whether or not the signal occurred, Similarly, when noise alone is

presented we assume that the subject either detects the absence of a

signal (with probability 11) or is uncertain whether or not the signal

occurred, The three events will be denoted as follows: s = detected signal;

s = detected omission of signal; and u = uncertain, For the yes-no method

the occurrence of event s is identified with the sampling of element sl;

s with the sampling of s2; .and the event u with the sampling of element

so' Hence, for the yes-no procedure
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For the forced-choice procedure the analysis is different. Consider

an 8
1

trial--signalplus noise in the first interval followed by

noise alone in the second interval. The following event sequences

can.occur:

·Information tra~smitted by either outcome 1, 2, or 3 is adequate to

identify the trial,and hence the occurrence of anyone of these events

i.s associated with the sall1pling of element sl. If the fourth outcome

occurs, we assume that element So is sampled.21 Therefore,

hl = 1 - (1 - 0 )(1 - n) ;by a similar argument for 82 trials it can

be shown that ~= hl • Hence, for the forced-choi.ce method

1 - (1 - 0)(1 - n) (4)

Note that the signal parameter hl = h2 for the forced-choice method

is always greater than or equal to hl and ~ for the yes-no proce­

dure.

2/ In formulating a model that aLso treated choice time it would be

natura,l to distinguish between outcomes 1 to 3. However,for an analysis

of response selection, such a distinction is not necessary. Also, note

that the assignment of probabilities to the four outcomes assumes no

time-order effect; i.e., no interaction between events in one·temporal

interval and the next. For a given experimental situation, the preci­

sion of the comparison between the forced-choice and the yes-no method

will depend on the accuracy of this assumption.
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By similar arguments we may express £1 and £2 in terms of

cr' and ~' . These later parameters describe the signal when the

subject is in perceptual state L.

It should be noted that the learning process postulated in

Axiom R2 is highly artificial and represents only a gross approxi-

mation to current stimulus sampling models for learning. Further,

for stimulus schedules other than those given by Eg. 2, it will be

necessary to postulate other learning functions. For example, if

we employ a contingent stimulus schedule where

[ (1)
Pr(81,n+l 81,d = '1

r
(2)

Pr(81 1 82 )= '1,n+ . In

then the function ?' = Pr(Al IsO ) given in Axiom R2 would in then ,n,n
'1(2)

Atkinson and Estes (1961). The justification for our present formu-

lation of the learning process is that it greatly simplifies the

model. We return to this point later.

'3. Asymptotic Response Probabilities and ROC Curves

Let C denote the event where the subject is in perceptual
l,n

state H at the start of trial n,; and C2 ,the event of being,n

instate Lat the start of tri,al n. Further,we introduce the

notation
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From. axioms 81, 82, Rl, and R2 it follows that

Pr(Al [Sl Cl ) = hl + (l-hl)Yn,n .. ,u ,ll

pr(Al [82 C2 ) = (1-£2))',n ,n ,·n -n

llence,forPl and P2 (as defined by Eg. 1) we obtain
J,n ,n

To obtain an expression for p. we need first to write v
J l,n n

By. axioms 84 and 85 we may prove that

(l-v )1-1 b. n n (6 )

where

.b = y(l-£l)(l-Y )+ (1-y)(1-£2)Y
n ,n .n

- 9 -



A solution for this difference equation can be given but it is

rather lengthy. For the moment we shall confine our attention

to asymptotic predictions and therefore require only·the limiting

expression of v
n

Following the convention introduced earlier,

.let

where

v = lim
n ,~,CD

v
n

Then, from Eq.6 and Axiom R2,

b
v = --=----:-acp + b

(ia)

(ic)

.(id)

Substituting these results in Eq. 6 and letting Y
n

expressions are obtained for Pl and P2 :

Y , the following

(8)

If Y = Pr( Sl ) is permitted to vary between 0 and 1, then the,n

ROC curve defined by the above equations is, in general, a convex

function that originates at point (0'£1) and terminates at point

(1-£2' 1) . However, it is necessary to be more precise and distinguish

three cases:
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(1) If 5 ~ 0, Il > 0 ,then asymptotically the subject is

absorbed in state H and the ROC curve is given by the

linearfunctipn

(9)

(;2) .If 5 > 0 , Il = 0 , then asymptotically the subject is

absorbed in state L and the ROC Curve is

(10)

Equation 9 is represented by the upper straight line in

Figure 1, and Eq.10 by the lower line.

(3) .For the general case where Il, 5 > 0, the ROC curve is a

convex function bounded between Eq. 9 and Eq. 10 that ori-

ginates at point (0, £1) and terminates at (1-£2' 1)

Figure 1 gives several ROC curves for the case where hl .9,

h2 = .5 , £1 ~ .2 and £2 ~ .1 ; the curves are distinguished

by the value of ~ ~ 5/1l • Successive points on each curve

were generated by varying Y > the signal-presentation proba-

bility. The quantity ~ is a ratio of two non-zero probabil-

ities and hence takes any positive number greater than zero.

For ~ close to zero the ROC curve tends toward the line

given by Eq. 9 in Figure 1; for large ~ the curve approaches

the line given by Eq.10.

For most experiments involving variations in Y, it seems reason-

able to assume that the observed values for both Pl
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1 when 7 = 1 and 0 when 7 O. In theory, .the prediction

1 , if 7 = 1

o ,if 7 0

requires that £1 = £2 = O. Given this restriction the ROC curve

traces out a convex function running from 0 to 1 on both coordi-

nates.

Most of the experimental work on signal detection suggests that

the ROC curve originates at 0 and terminate at 1. Consequently,

in the remainder of thi.s paper we require £1 = £2 = 0

assumption Eq.7 and 8 may be rewritten as follows:

Given this

1
v

+ (1-7)[h2 + (1-h2 )(1-7)] 1
27(1-7)

(n)

We now compare ROC curveS for the forced-choice method and the

yes-no method. By an earlier argument we established that, for the

yes-no method
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While for the forced-choice method

cr + 1'){l-cr)

Thus, .to fit an ROC curve for the forced-choice procedure only two

parameters are needed (h and <:p) ; for the yes-no experiment three

parameters are required (h
l

,h2 and <:p) • If the same physical

stimuli are used in a yes~no experiment and in a forced-choice experi­

ment (i.e., cr and 1') are the ·samefor both experiments) and we

assume that variables related to <:p are held constant for both

procedures, then the theory predicts that the ROC curve generated by

the forced-choice group will be above the ROC curve f.or the yes-no

group (except at (0, 0) and (1,.1) where they are equal). Also, the

ROC curve for the forced-choice method is symmetric about the main

diagonal from point (0,1) to (1, 0); for the yes-no method the ROC

curve may be symmetric about the main diagonal (if cr 1')).; skewed

to the left (if cr > 1')).; or skewed to the right (if cr < 1'))

To illustrate these remarks we compute some ROC curves for the

forced-choice and the yes~no method. Let cr = .75 ,and 1') = .50 •

Then, for the forced-choice condition hl = h2 = .875 ,whereas for

the yes-no condition hl = .75 , h2 = .50. Figure 2 gives the ROC

curves for the forced-choice and yes-no methods for several different

values of <:p As noted before, when <:p --> a the ROC curve approaches

the line Pl = (.50)P2 + .75 for the forced-choice method and the line

Pl = P2 + .875 for the yes-no method. As <:p --> (I) , the ROC curves

for both methods approach the line Pl = P2
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4. Sequential Predictions

It has long been recognized thi't rather complex trial-to-·trial

dependencies are involved in most psychophysici'l data. Recently, s.ome

"very striking sequential effects have been reported by Carterette (.1962)

in a signal detection expeTiment. In this section we derive some

~equential predictions, having selected those quantities that are par-

ticularly useful in making estimates of ~ and B. The Teader is

referred to Suppes and Atkin~on (1960; Chapter 2) for a discussion

of appropriate e~timation procedures.

We shall examine predictions regarding the influence of stimulus

and response events on trial n as they affect the response on trial

n +1. Specifically,

Pr(A Is A. S. )l,n+l l,n+l ~,n J,n i, j 1,2 .

That is, .the probability of an Al response to Sl conditionalized

on the various outcomes of the preceding triaL Consider fiTst

Pr(Al +11 Sl +1 Al 8 1 ) which, by elementary probability consi-,n. J n - J n , n

derations, can be written as follows:

Pr(A S AS)
Pr (A Is AS) = _-=-1:::.;.:;n:o-+;..:l=--..::l:.z.."'n:..;.+.;:l_l=-,'-'n::....,"'l"',.;:n:...

l,n+l l,n+l l,n l,n Pr,Sl +1 Al Sl ),n. -.,n ,n
. (12)

Now, we need expressions for the numerator and denominator on the right-

hand .side of the above equation. First, note that the denominator may

be expanded:
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But Pr(Sl +l[Al 8 1 ) =Pr(Sl, ) ~ 'I and by E'l' 1
,no . "n ,.n . J n

Pr(A
l

[$1 ),~ Pl . Hence
,.n"n ,n

Pr(Sl +1 A1 $1),n- .,n ,n
2

= 'I Pl ',n
(13)

8irrdlarly,for the numerator of E'l.12 we write

L :t;r(A S C. A S C.).. ,. l,n+l l,n+l l,n+l l,n l,n J,n
l,J

(;1,4)

~L Pr(Al +llsl, +1 C'+l)'IPr(C. +llAl Sl' C.).. ,n.- ,nl,n. J.,n ,n ,-ll J,n
l,J

" Pr(Al ISl C. )'IPr(C. ). ,n - ,-nJ,n J,.n

J3y definition Pr(cl • )- v ,and by E'l. 5_ ,n n

, ,for i ~ 2
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Further, by Nciollls 84 and 85

1 - 5 , for i = 1 , j = 1

5 , i = 2 , j = 1
Pr(e. +l[Al 8 e. )=l,n., ,n l,n J,n 0 i - 1 j = 2, ,

1 , i = 2 , j ,- 2

Hence, carrying out the summation in Eq. 14 we obtain

Dividing Eq. 15 by Eq. 13 yields the desired expression,for

Pr(Al +1181 1 Al 8 1 ,), For most applications we deal with
J n, ,n+ ,n ,n

asymptotic data; that is, for triaL sequences where n is large.' Under

these conditi,ons I'n .... I' , vn .... v, and Pl,n .... Pl ; as a result, much

simplification is possible. We now rewrite Eq. 12 for the case where

n .... <Xl , and also present expressions for the other asymptotic sequen-

tial effects. Following our earlier convention,the subscripts nand

n + 1 will be deleted to indicate limiting quantities but are implicit

in the ordering. Further, to simplify the expressions we define
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(16)

· l{ ..2}Pr(AlIS1A1Sl) =Pl vrr[oy + (l-o)rr] + (l-v).)' •

Pr(All Sl~Sl) =t=;l {V(l-hl)rr + (l-v)[l-Irr +(1-1-I).)']}

PrCA1 !SlA1S2 )= ;2 {V(1-h2 )rr+(1-V)[/-1rr + (1-1-I).)']}

J;'r(Al[sl~S2)= 1_lp2 {V[h2 + (1-h2)(1-y)][oy + (l-O)rr] + (l-V)(l-y).)'}

Any other sequential prediction can be·derived but the above are of

particular interest with regard to estimation methods and illustrate the

type of prediction that is possible.

5. Di scussi.on

For ourmodel, the ROC curve is specified by the parameters ~,

hl and h2 ,with hl being equaJ. to h2 in the forced-choice proce­

dure. In theory, hl and h2 are measures of Sl and 82 and

depend only on the physicaJ. parameters describing the stimulus presenc

tation set. It is assumed that other variables such as stimulus

presentation schedules, variations in instructionB, monetary payoffs,

and experimental design have no affect on. the value of h.
l

Conse-

quently, given a specific stimulus set, differences in the ROC curves

from one experimental routine to another are to be represented in terms

of variations in ~. Roughly speaking, one can argue that experimental

manipulations that increase a subject's motivation or interest in the

detection task will give rise to both an increase in 1-1 and a decrease

in . 0; i.e., :tend to decrease the value of ~. It was indicated

earlier that as ~ decreases the ROC curve tends to approachthefunct~on
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l~hl

P =-lh P21 - 2
the function

+ hl ; whereas, if cp increases tbe ROC curve approaches

In addition, predicted differences between

the ROC curve for the forced-choice and yes-no methodoincrease as cp

becomes small. Consequently, by manipulating experimental variables

related to cp one should be able to modify the convexity of the ROC

curve, and also vary the amount of difference between ROC curves ."J

obtained under forced-choice and yes-no conditions.

The use of monetary payoffs may be one technique for manipula-

ting cp but the procedure suggests certain compltcations. Recall

tbat we have postulated a learning function that in the limit matches

the likelihood of presenting an Sl stimulus; i.le., Pr(Al IsO ) ..... 9<., ,on ,n

For verbal learning experiments that do not involve monetary payoffs

(Estes and Straughan (1954); Detambel (1955); Grallt, Hake and Hornseth

(1951); and others) an asymptotic matching assumption gives a fairly

adequate description of the data; however, the use of monetary payoffs

may cause the subject to deviate from matching bebavior in the direc-

tion of a more optimal strategy. If ..tbe introduction ofdIDonetary

rewards in a signal detection experiment has a similar effect on tbe

hypothesized learning process associated with element sO' .then it

may be necessary to postulate a learning function other than the one

given in AJ\:iom R2. There are a number of theoretical developments in

the literature that are relevant to this problem (e.g., Estes (1962),

Atkinson (1962),. Siegel (1961)) and any of these proposals could be

used in place of the functions given in AJ\:iom R2. For example,

following Atkinson's formulation one might assume that

in the limit. approaches

- 18 -
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2
'1 ['1 + (l-'1.)S]

where 's is a ~tiltty measure associated with the payoff function.

·Such modifications may t~rn.out to be necessary, but it also maybe

that the effects of monetary payoff can be accounted for in terms of cp

alone. An answer to this question will depend on a detailed inspection

of sequential data and cannot be ·obtained by an analysis of gross

stattstics 'like Pl

The sequential effects predicted by this model are principally

.due to trial~to~trial changes in perceptual states. Another source of

variability in signal detection experiments may result from tri~l-to~

trial fluctuations in the learning Pr-ocess associated.with background

stimuli. In our model a learning process is assumed but we do not

allow for trial~to-trial learning effects; this fact becomes clear when

one observes that in the limit Pr(Al Is.o ) ts a fixed number X and
, ,n .,n

not a distribution with expectation '1. It is the absence of these

sequential effects in the learning process that elicited our earlier

comment on the artificial nature of this aspect of the model. If it

turns out that learning effects, other than thpse incorporated in

J\.xi.om R2, are important in accounting for sequential phenomena then it

will be necessary to postulate a more general learning process. We

have formulated such a model: it involves two additional axioms dealing

with the conditioning of the So element and a restatement of Axiom H2.

They are as foll~ws:
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and

Cl.Onevery trial element So .is conditioned to either Al

or ~ .

C2. If So is sampled on ~ trial,i.t becomes. conditioned with

probability c to the response that ~ correct .2E; the trial.

R2.* If So is sampled, then the response to which So is

conditioned will Occur.-----
·The ~thematical problems introduced by these additional assumptions

makes an analysis of the model more difficult. The response probabi-

lities are functions defined on a 4-state Markov chain, where the

states of the chain are unobservable. ~e have investigated ROC curves

fora number of cases and they conform very closely to the same func-

tions derived from the model presented in this paper. In fact, it

seems reasonable to suppose that for grosser predictions, such as Pl

P2 ' the agreement between the two models will be very close.

Thus, if it becomes necessary to modify the axioms along these lines,

then the equations given in this paper may be viewed as a simple

device for computing the grosser predictions of the general theory.

There are a number of special topics that have not been dts-

cussed. Of interest, is the relation of our model to theories of dis-

crimination learning (particularly, Burke and Estes (1957), Restle

(1955) and Atkinson (1960)); the effect of blank trials in a forced-

choice procedure; ~he effect of incorrect information; extension of

the model to account for choice-time measures; and the extension of

the model to mUlti-stimulus-response problems. These prOblems can be

formulated and analyzed within, the,frameworkof;our model, and will be

treated in later papers.
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In summary, it seems reasonable to describe the model as an

example of a variable-threshold theory of detection. We have postu­

lated not one, but t~o thresholds. These thresholds are defined

. via the construct of a perceptual state. From trial-to-trial changes

occur in the perceptual state of a.subject, and the changes depend in

a rather intricate way on the difficulty of the psychophysical task and

the subjects' short-term history of detections. The perceptual states

are not observable, but they are functionally related to response

probabilities and consequently permit the experimenter to make a

detailed analysis of all aspects of a subject's response protocoL
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APPENDIX·

For those interested, some mathematical results will be presented

on the detection process proposed in the last section; i.e., .results

for the model defined by axioms 81-85, Cl, C2, ·Bl and R2*. For

simplicity, we consider the case where £1 £2; 0 and pr(81,n); r

At the start of any trial, the subject is in one of the following four

states: .1; < H, 1 > , 02 ; < II, 2 > , 3 ; < L, .1 > , 4; < L, ..2 > .

·The first member of the ordered pair indicates the perceptual state

(H or L) and the second component, the conditioning of the So

element (Al or ~) . From the axioms, it can be shown that the

sequence of random variables that take these four states as values

over trials of an experiment is a Markov chain. This means, among

other things, that a transition matrix p; [Pij] may be defined,

where

given

Pij

that

is the probability of being in state

the subject was in state i on trial

j

n

on trial n + 1

The detection

Process i.s completely characterized by the transition probabilities and

the initial probability distribution on the four states. Thepij's

can be easily derived (see Atkinson (1960) for an illustration of the

methods involved) and are as follows:

; 7(1-5)+(1-r)[h2 (1-5) + (1-"2) (l-c)]

(1-r)(1-P2)c

15 + (1-r)h25

a
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P21 '" r(1-h1)C

P22 ; r[h1(1-0)+ (l"-hl ) (i-c)] + (1-9<) (1-0)

P
23

; 0

P24; rhlo + (1-'1).0

P31 = (l-r)~(l-c)

P32 ; (l-r)~c

P
33

= 'I 4- (l~r)(l~~)(l-c)

P
3
4; (l-r)(l~~)c

P41 = r~c

P42 ; r~(l- c)

P43 = r(l-~) c

P44 ; r(l~~)(l-c) + (1~i7-)

Let u. be the probab~11ty of be1ng ~nstate 1 at the startl,n

of tr1al n and when, ,theappropr1ai:;el:i.mH eX1sts, l:i.m u -u.i.,n ~ i
n-7O)

Then for the row matr1xU ; [ul ' u2 ' u
3

' u4 1 we have thatn ,n _, n ,0,-0

and, 1n general,

U ; U pn-l •
n 1

(Fora d1scuss~on of methods to obi:;a~n an exp11c~t express~on for

"see Suppes and AtUnson(1960)).

u.
1"n



Experimentally, it is not possiple to identify individual states

of the Process on a given trial. That is, knowing which stimulus

(81 or 82 ) and response (Al or ~) .occurred does not provide

enough information to identify the state. For example, if 8
1

is

presented and Al occurs it is possible for the subject to have been

in anyone of the following states: < H, 1 > , < H,2 > or .< L, 1 >

However, observable responseprobab~litiesare 'well-defined in terms

of these unobservable states 0 By .axioms Rl andR2* we have (for

p = {l-'h_)11.. + U2,n . -2 ;L,n 3,n

As indicated earlier, the ROC curve specified by these equations has the

same general properties as our simpler model. 8pecificially, (i) if

5 =0 , ~> 0, then the ROC curve is defined by the linear equation

l-h
1 + hl (ii) if 5> 0 0 then the is simplyPl= l-h P2 ; , ~ = , curve
2

Pl = P2 and (iii) for 5> 0 , ~>O , the ROC curve is a convex

function running from 0 to 1 on both coordinates and bounded between
l-hl

the functions Pl = P2 and Pl = l-~ P2 + hl 0

To illustrate another feature of the model, some asymptotic

sequential predictions, .aTe displayed that may be compared with Eq. 16.

Namely,

- 24 -



pr(AlIS1A1Sl);: [U1 + u
3

+ U2 (1-O)h1
2

]
1

pr(A1Isl~Sl) ; 1:P
1

{U2 (1-h1 )[C + (;J--C)h1 ]+ u4[c + 1J.(1-C)h1 ])

pr(A1 !SlA1S2) ; P~ {U
l

(1-h2)[Ch1 + (l-C)] + U
3

[ClJ.h1 + (l-C)]}
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