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1. INTRODUCTION

Stimulus sampling theory is concerned with providing a mathematical

language in which may be expressed assumptions about learning and

performance in relation to stimulus variables. A special advantage

of the formulations to be discussed is that their mathematical properties

permit application of the simple and elegant. theory of Markov chains

(Feller, 1957; Kemeny, Snell, and '['hompson, 1957; Kemeny and Snell, 1959)

to the tasks of deriving theorems and generating statistical tests of the

agreement between assumptions and data. This branch of learning theory

has developed in close interaction with certain types of experimental

analysis; consequently it will be both natural and convenient to organize

this presentation around the theoretical treatments of a few standard

reference experiments.

At the level of experimental interpretation, most contemporary

learning theories utilize a common conceptualization of the learning

situation in terms of stimulus, response, and reinforcement. The stimulus

term of this triumvirate refers to the environmental situation with respect

to which behavior is being observed, the response term to the class of

observable behaviors whose measurable properties change in some orderly

fashion during learning, and the reinforcement term to the experimental

operations or events believed to be critical in producing learning. Thus,
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in a simple paired-associate experiment concerned with the learning of

English equivalents to Russian words, the stimulus might consist in

presentation of the printed Russian word alone, the response measure in

the relative frequency with which the learner is able to supply the English

equivalent from memory, and reinforcement in paired presentation" of the

stimulus and response words.

In other chapters of this volume, and in the general literature on

learning theory, the reader will encounter the notions of sets of responses

and sets of reinforcing events. In the present chapter, mathematical sets

will be used to represent certain aspects of the stimulus situation. It

should be emphasized from the outset, however, that the mathematical models

to be considered are somewhat abstract and that the empirical interpreta-'

tions of stimulus sets and their elements are not to be considered fixed

and immutable. TWo main types of interpretation will be discussed: in

one of these the empirical correspondent of a stimulus element is the full

pattern of stimulation effective on a given trial, in the other the

correspondent of an element is a component, or aspect, of the full pattern

of stimulation. In the former case, we speak of "pattern models" and in

the latter of "component models" (Estes, 1959b).

There are a number of ways in which characteristics of the stimulus

situation are knOwn to affect learning and transfer. Rates and limits of

conditioning and learning generally depend upon both stimulus magnitude,

or intensity, and upon stimulus variability fr9m trial to trial. Retention

and transfer of learning depend upon the similarity, or communality, between

the stimulus situations obtaining during training and during the test for
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retention or transfer. These aspects of the stimulus situation can be

given direct and natural representations in terms of mathematical sets

and relations between sets.

The basic notion common to all stimulus sampling theories is the

conceptualization of the totality of stimulus condi tionsthat may be

effective during the course of an experiment in terms of a mathematical

set. Although it is not a necessary restriction, it is convenient for

mathematical reasons to deal only with fini.te sets, and this limitation

will be assumed throughout our presentation. Stimulus variability is

taken into account by assuming that of the total population of stimuli

available in '3-11 experimental situation, generally only a part actually

affects the subject on anyone trial. Translating this idea into the

terms of a stimulus sampling model, one may represent the total popula-

. tion by a set of "stimulus elements" and the stimulation effective on

anyone trial by a sample from this set. Many of the simple mathematical

properties of the models to be discussed arise from the assumption that

these trial samples are drawn randomly from the population, with all

samples of a given size having equal probabilities. Although it is

sometimes convenient and suggestive to speak in such terms .• one should

not assume that the stimulus elements are to be identified wi.th any

simple neurophysiological unit, as, for example, receptor cells. At

the present stage of theory construction, we mean to assume only that

certain properties of the set-theoretical model represent certain

properties of the process of stimulation. If these assumpti,ons prove

to be sufficiently well substantiated when the model is tested against



A. and E. -4-

behavioral data, then it will be in order to look for neuro­

physiological variables whi.ch might underlie the cor'respondences.

Just as the ratio of samp.le size to population size is a natural

way of representing stimulus variability, sample size per se may

be taken as a correspondent of stimulus intensity, and the amount

of overlap (i.e., proportion of common elements) between two stimulus

sets may be taken to represent the degree of communality between

two stimulus situations.

Our concern in thi s chapter is not to survey the rapi<ll.y

developing area of stimulus sampling theory, but simply to present

some of the fundamental mathematical techni~ues and illustrate their

applications. For general background, the reader i.s referred to

Bush (1960)" Bush and Estes (1959)" Estes (1959a, 1962), and Suppes

and Atkinson (1960). We shall consider first, and in some detail,

the very simp.lest of aU. learning models - the pattern model for

simple learning. In this model, the population of available

stimulation is assumed to comprise a set of distinct stimulus

patterns, exactly one of which is sampled on each trial. In the

important special case of the one··element mod.el, it is assumed. that

there is only one such pattern and that it recurs intact at the

beginning of each experim.ental. tri.al. Granti.ng that the one-element

model represents a radical idealization of even the most simplified

condi.tioning situations, we shall find. that it is worthy of study

not only for exposi.tional purposes but also for its value as an

analytic device in relation to certain types of learning data.
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After a relatively thorough treatment of pattern models for simple

acquisition and for learning under probabilistic reinforcement schedules,

we shall take up more briefly the conceptualization of generalization

and transfer; the component models in which the patterns of stimulation

effective on individual trials are treated, not as distinct elements, but

as overlapping samples from a common population; and, finally, some

examples of the: more complex multiple-process models which are becoming

increasingly important in the analysis of discrimination learning, concept

formation, and related phenomena.

2. ONE-ELEMENT MODELS

We begin by considering some one-element modelS which are special

cases of the more general theory. These examples are especially simple

mathematically and provide us with the opportunity to develop some

mathematical tools which will be necessary in later discussions.

Application: of these models is appropriate if the stimulus situation

is sufficiently stable from trial to trial that it may be theoretically

represented to a good approximation by a single stimulus element which

is sampled with probability 1 on each trial. At the start of a trial

the element is in one of several possible conditioning states; it mayor

may not remain in this conditioning state, depending on the reinforcing

event for that trial. In the first part of this section we consider a

model for paired-associate learning which has been intensively analyzed

by Bower (1961, 1962). In the second part of this section
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we consider a one-element model for a two-choice learning situation

involving a probabilistic reinforcement schedule. The model generates

some predictions which are undoubtedly incorrect, except possibly under

ideal experimental conditions; nevertheless it provides a useful intro­

duction to more general cases which we pursue in Section 2.

2.1 Learning of a Single Stimulus-Response Association

Imagine the simplest possible learning situation. A single stimulus

pattern, S ,is. to be presented on each of a series of trials and each

trial is to terminate with reinforcement of some designated response, the

"correct response" in this situation. According to stimulus sampling

theory, learning occurs in an all-or~none fashion with respect to S

This means that:

1. If the correct response is not originally conditioned to

("connected to") S, then,until learning occurs, the probability of the

correct response is zero.

2. There is a fixed probability c that the reinforced response

will become conditioned to S on any trial.

3. Once conditioned to S ,the correct response occurs with

probability one on .every subsequent trial.

These assumptions constitute the simplest ·caseof the "one-element pattern

model." Learning situations which completely meet the specifications

laid down above are as unlikely to be realized in psychological experi­

ments as perfect vacuums or frictionless planes in the physics laboratory.

However, reasonable apprOXimations to these conditions can be attained.
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The requirement that the same stimulus pattern be reproduced on each

trial is probably fairly well met in the standard paired-associate

experiment with human subjects. In one such experiment, conducted in

the laboratory of one of the writers (W. K. E.), the stimulus member of

each item was a trigram and the correct response an English word, e.g.,

S R
xvk house

On a reinforced trial the stimulus and response members were exposed

together, as shown. Then, after several such items had received a

single reinforcement, each of the stimuli was presented alone, the

subject being instructed to give the correct response from memory, if

he could. Then each item was given a second reinforcement, followed by

a second test, and so on.

According to the assumptions of the one-element pattern model, a

subject should be expected to make an incorrect response on each test

with a given stimulus until learning occurs, then a correct response on

every subsequent trial; if we represent an error by a 1 and a correct

response by a 0, the protocol for an individual item over a series of

trials should, then, consist in a sequence of O's preceded, in most

cases, by a sequence of lIs. Actual protocols for several subjects are

shown below:
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a 0 0 0 0 0 0 0 0 0 0

b 1 .1 1 1 1 1 1 1 1 1

c 1 0 0 0 0 0 0 0 0 0

d 0 0 0 0 0 0 0 0 0 0

e 1 1 0 0 0 0 0 0 0 0

f 1 1 0 0 0 0 0 0 0 0

g 1 1 1 1 1 0 0 0 0 0

h 1 0 0 0 0 0 0 1 0 0

i 1 1 1 1 0 1 1 0 0 0

The first seven of these correspond perfectly to the idealized theoretical

picture; the last two deviate slightly. The proportion of "fits" and

"misfits" in this sample is about the same as in the full set of 80 cases

from which the sample was taken. The o.ccasional lapses, i.e., errors

following correct responses, may be symptomatic of a forgetting process

which should be incorporated into the theory or they may be simply the

result .of minor uncontrolled variables in the experimental situation

which are best ignored for theoretical purposes. Without judging this

issue, we may conclude that the simple one-element model at least merits

further study.

Before we can make ~uantitative predictions we need to know the

value of the conditioning parameter c. Statistical learning theory

includes no formal axioms specifying precisely what variables determine

the value of c, but on the basis of considerable experience we can

safely assume that this parameter will vary with characteristics of

the populations of subjects and items represented in a particular

experiment. An estimate of
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the value of c for the experiment under consideration is easy to come by.

In the full set of 80 cases (40 subjects, each tested on two items), the

proportion of correct responses on the test given after a single

reinforcement was .39. According to the model, the probability is c

that a reinforced response will become conditioned to its paired stimulus;

consequently, c is the expected proportion of successful conditionings

out of 80 cases, ahd therefore the expected proportion of correct responses

on the subsequent test. Thus we may simply take the observed proportion,

.39, as an estimate of c

In order to test the model, we need now to derive theoretical

expressions for other aspects of the data. Suppose we consider the

sequences of correct and incorrect responses, 000, 001, etc., on the

first three trials. According to the model, a correct response should

never be followed by an error, so the probability of the sequence 000 is

simply c , and the probabilities of 001, 010, 011, and 101 all zero.

Tb obtain an error on the first trial followed by a correct response on

the second, conditioning must fail on the first reinforcement but occurs

on the second, and this joint event has probability (l-c)c Similarly,

the probability that the first correct response occurs on the third trial

is given by (1_c)2c and the probability of no correct response in

three trials by (1_c)3. Substituting the estimate .. 39 for c in each

of these expressions, we obtain the predicted values which are compared

with the corresponding empirical values for this experiment in Table 1.

Table 1 about here
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Table 1

Observed and predicted (one-element model) values for response sequences

over first three trials of a paired associate experiment.

Observed Theoretical
Sequence* Proportions Proportions

000 .36 ·39

001 .02 0

010 .01 0

011 0 0

100 .27 .24

101 0 0

no .11 .14

111 .23 .23

* 0 _ correct response

1 = error
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The correspondences are seen to be about as close as could be expected

with proportions based on 80 response .jsequences.

2.2 Paired-Associate Learning

In order to apply theone-element mpdel to paired-associate

experiments involving fixed lists of items, it is necessary to adjust

the. "boundary conditions" appropriately. Consider, for example, an

experiment reported by Estes, Hopkins, and Crothers (1990). The task

assigned their subjects was to learn associations between the numbers

1 through 8, serving as responses, and eight consonant trigrams, serving

as stimuli. Each subject was given two practice trials and two test

trials. On the first practice trial, the eight syllable-number pairs

were exhibited singly in a random order. Then a test was given, the

syllables alone being presented singly in a new random order and the

subjects attempting to respond to each syllable with the correct number.

Then four of the syllable-number pairs were presented on a second

practice trial and all eight syllables were included in.a final test trial.

In writing an expression for the probability of a correct response

on the first test in this experiment, we must take account of the fact

that after the first practice trial, the subjects knew that the responses

were the numbers 1 - 8, and were in a position to guess at the correct

answers when shown syllables that they had not yet learned. The mini­

mum probability of achieving a correct response to an unlearned item by

guessing would be 1/8. Thus we would have for PO' the probability of

a correct response on the first test,
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Po = c + (l-c)/B .,

Le., the probability c that the correct association was formed plus the

probability (l-c)/B that the association was not formed but the correct

response wa.s achieved by guessing. Setting this expression equal to the

observed proportion of correct responses on the first trial for the twice

reinforced items, we readily obtain an estimate of c for these ex-

perimental conditions,

.404 = c + (l-c)( .125)

"c .32.

Now we can proceed to derive expressions for the joint probabilities of

various combinations of correct and incorrect responSes on the first

and second tests for the twice reinforced items. For the probability

of correct responses to a given item in both tests, we have

With probability c, conditioning occurs on the first reinforced trial,

and then correct responses necessarily occur on both tests; with probability

(l-c)c(.125) , conditioning does not occur on the first reinforced trial

but does on the second and a correct response is achieved by guessing on

the first test; with probability (l_c)2(.125)2, conditioning occurs on

neither reinforced trial but correct responses are achieved by guessing

on both tests. Similarly,we obtain
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(1_c)2 (.875) (.125)

- (1-c)(.875)[c + (1-c)(.125)]

and

Substituting for c in these expressions the estimate computed above, we

arrive at the predicted values which we compared with the corresponding

observed values below.

Observed Predicted

POO .35 '35

POl .05 .05

PlO .27 .24

Pn .33 ·35

Although this comparison reveals some disparities which we might hope

to reduce with a more elaborate theory, it is surprising, to the writers

at least, that the patterns of observed response proportions in both

experiments considered can be predicted as well as they are by such

an extremely simple model.

Ordinarily, experiments concerned with paired-associate learning

are not limited to a couple of trials, like those just considered, but

continue until the subjects meet some criterion of learning. Under these

circumstances it is impractical to derive theoretical expressions for all

possible sequences of correct and incorrect responses. A reasonable goal

is, instea.d, to derive expressions for various statistics which can be
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The probability of the correct response when the element is in state C

depends on the experimental procedure. In Bower's experiment the subjects

were told the r responses av.ailable to them and each occurred equally

often as the to-be-learned response. Therefore, we may assume that in the

1
uncondi tioned state the probability of a correct response is , where

r

r is the number of alternative responses.

The conditioning assumptions: can.,TeadilY' be. 'restated .in' terms of the

conditioning states:

1. On any reinforced trial, if the sampled element is in state C,

it has probability. c of going into state C.

2. The parameter c is fixed in value in a given experiment ..

3. Transitions from state C to state C have probability zero.

We shall now derive some predictions from the model and compare these

with observed data. The data of particular interest will be a subject's

sequence of correct and incorrect responses to a specific stimulus item

over trials. Similarly, in deriving results from the model we shall only

consider an isolated stimulus item and its related sequence of responses.

However, when we apply the model to data we assume that all items in the

list are comparable, i.e., all items have the same conditioning parameter

c and all items start out in the same conditioning state (C).

Consequently the response sequence associated with any given item is

viewed as a sample of size 1 from a pOpulation of sequences all generated

by the same underlying process.

A feature of this model which makes it especially tractable for

purposes of deriving various statistics is the fact that the sequences
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of trans;Ltions·between states lC and ,C •constitutes a Markov chain. '.,']his

means that, given the state on anyone .trial, we can specifY the proba-

bility of each state on the next trial without regard to the previous

history. If we represent by C and
n

C the events that an item is in
n

the conditioned or unconditioned state, respectively, on trial n, and by

and ~l. the probabilities of transitions from state Cto state C

and from C to C, respectively,the conditioning assumptions lead

directly to the relation
2

2 See Feller (1957) for a discussion of condition!l,l probabiliti.es. In

brief, if H
l

, ... ,En are a set of mutually exclusive events of which

one necessarily occurs, then any event A can occur only in conjunction

with some Since the are mutually exclusive, their probabi-

l;i,ties add. Applying the well-known theorem on compound probabilities., we

obtain Pr(A) =~ Pr(AHj ) ~ pr(AjHj)pr(H)
_______--".1---------JL..-

,

,
..and

l:J ,

where Q is the matrix of one-step transition probabilities, the first

row and column referring to C and the second row and column to C. Now

the matrix of probabilities for transitions between any two states in n

trials is simply the nth power of Q, as may be verified by mathematical
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induction (see, e.g., Kemeny, Snell,and Thompson, 1957, p. 327),

[
1Qn = .. n
l-(l-c) o nJ( l-c)

Henceforth we shall assume that all stimulus elements are in state C .at

the onset of the first trial of our experiment. Given that the state is

C on trial 1, the probability of being in stateC at the start of trial

(l_C) n-l, f 0n is which goes to 0 as n becomes large, or c > .

Thus, with probability 1 the subject is eventually to be found in the

conditioned state.

Next we prove some theorems about the observable sequence of

correct and incorrect responses in terms of the underlying sequence of

unobservable conditioning states. We define the response random variable

A =
~n

if a correct responSe occurred on tria.l ·n

if an error occurred on trial n

By our assumed response rule, the probabilities of an error given that

the subject is in the conditioned or unconditioned state, respectively,

are

Pr(A = 11 Cn) 0
~n

and

Pr(A = lie)_n n
1

1 - ­
r

To obtain the proba.bility of an error on trial n, namely

Pr~n = 1), we sum these cOnditional probabilities weighted by the

probabilities of being in the respective states:
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Pr(A '" 1) '" Pr(A ",lIe .}Pr(e )+ Pr(A ",lIe )Pr(e }-n -n n n -n n n

(1)

( 1 ( n-l1 - -,.) l-c)'. -r.
(2)

'" (1 - 1)/c
r

.Thus the number of errors expected during the learning of any given item

is given by Eq. 2.

Equation 2 provides an easy method for estimating c. For.any

given subject we can obtain his average number of errors over stimulus

items, equate this number to the right-hand side of Eq. 2 with r = 2 ,

and solve for c. We thereby obtain an estimate of c for each subject,

and inter-subject differences in learning are reflected in the variability

of these estimates. Bower, in analyzing his data, chose to assume that c

was the same for all subjects; thus he set E(K) equal to the observed

number of errors averaged over both list items and subjects and obtained

a single estimate of c. ·This group estimate of c simplifies the

computations involved in generating predictions.. However, it has the
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disadvantage that a discrepancy between observed and predicted values

may arise as a consequence of assuming equal c's wheno in fact, the

theory is correct but c varies from subject to sUbject. Fortunately,

Bower has obtained excellent agreement between theory and observation

using the group estimate of .c and, for the particular conditions he

investigated, any increase in precision that might be achieved by

individual estimates of c does not seem crucial.

For the experiment described above, Bower reports 1.45 errors per

stimulus item averaged over all subjects. Equating E(A) in Eq.2-
to 1.45, with r = 2 , we obtain the estimate c = ,344. All predictions

that we derive from the model for this experiment will be based on this

single estimate of c. It should be remarked that the estimate of c

in terms of Eq. 2 represents only one of many methods that .could have

been used. Which method one selects depends on the properties of the

particular estimator (e.g., whether the estimator is unbiased and effi-

cient relative to other estimators). Parameter estimation is a theory in

its own right, and we shall not be able to dis.cuss the many problems

involved in the estimation of learning parameters. The reader is referred

to Suppes and Atkinson (1960), and Estes and Suppes (1962), for discus-

sions of various methods and their properties. Associated with this

topic is the problem of assessing the statistical agreement between data

and theory, once parameters have been estimated; that is, the goodness-

of-fit between predicted and observed values. In our analysis of data in

this chapter we shall offer no statistical evaluation of the predictions
.~

but shall simply disPlay the results for. the reader's inspection. Our

reason is that we present
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the data only to illustrate features of the theory and its application;

these results are not intended to provide a test of the model. However,

in rigorous analyses of such models the problem of goodness-of-fit is

extremely important and needs careful consideration. Here again the

reader is referred to Suppes and Atkinson (1960) for a discussion of

some of the problems and possible statistical tests.

By using Eq. 1 with the estimate of c obtained above we have

generated the predicted learning curve presented in Fig. 1. The fit is

sufficiently close that most of the predicted and observed points cannot

be distinguished on the scale of the graph.

Insert Fig. 1 about here

As a basis for the derivation of other statistics of total errors,

we require an expression for the probability distribution of To

obtain this, we note first that the probability of no errors at all

occurring during learning is given by

c(l/r) + (1-c)(1/r)2c + .•.

00

= clr ~ [(l_c)/r]i
i=O

c
r[l-(l-c)!r] blr ,

This event may arise if a correct response occurs
cwhere b = l-(l-c)!r'

by guessing on the first trial and conditioning occurs on the first

reinforcement, if a correct response occurs by guessing on the first two

trials and conditioning occurs on the second reinforcement, and so on.

Similarly, the probability of no additional errors following an error on

any given trial is given by
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c + c (l-c)/r+ •••

ro .
= c ~ [(l_c)/r]l = ~.,,:c,-:-;;,= - b

L- l-(l-cJ/r - •
i=O

To have exactly k errors, we must have a first error (if k> 0),

which has probability 1 - b/r, k - 1 additional errors, each of which

has probability 1 - b, and then no more errors. Therefore the re~uired

probability distribution is

Pr(A: = 0) = b/r,...

(- / k-lPr A = k) = b(l-b r)(l-b) ,,.,... for k> (3)

E~uation 3 can be applied to data directly to predict .the form of the

fre~uency distribution of total errors. It may also be utilized in

deriving, e.g., the variance of this distribution.

computing the·variance, we need the expectation of

Preliminary to

00 2 k 1
= L k b(l-b/r)(l-b) -

k=O

00

= b(l-b/r) L [k(k_l)+k](l_b)k-l
k=O

ro
= (l-b)b(l-b/r) ~ [k(k_l)+k](1_b)k-2 ,

k=O

where the second step is taken in order to facilitate the summation.

Using now the familiar expression,

k 1
(l-b) = b '

for the sum of a geometric series together with the relations
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and

1
2'
b

2

3'b

we obtain

and

- -2 - 2
VariA) = E(A ) - [E(A1],..,.... __ :.;.i.

1 . 1 2 2
+ -] - (1 - -) / c

b2 r

(r-l) (2c-cr+r-l)=--
rc rc

= E(A)[1+E(A)(1~2c)]..........

(r-l) (cr+2c-2cr+r-l) = (r-l)[l+ (2C-l)(1-r)]
rc rc rc rc

(4)

Inserting the estimates E(A) = 1.45- and c = .344 from Bower's data

in Eq. 4, we obtain 1.44 for the predicted standard derivation of total

errors, which may be compared with the observed value of 1.37.

Another useful statistic of the error sequence is E~+k);

namely, the .expectation of the product of error random variables on

trials nand n+k. This quantity is related to the autocorrelation
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between errors on trials n+k and trial n. By elementary probability

theory,

: PrlA,+k : 1~ : l)Pr(~ : 1) •

But for an error to occur on trial n+k it must be the case·that

conditioning has failed to occur during the intervening k. trials and

that the subject guessed incorrectly on trial n+k. Hence

Substituting this result into the preceding expression, along with the

result presented in Eg. 1, yields the following expression:

A convenient statistic for comparison with data (directly related to the

average autocorrelation of errors with lag k, but easier to compute)

is obtained by summing the cross product of ~ and .h.n+k over all

trials. We define ck as the mean of this random variable, where

(6)

To be explicit, consider the following response protocol running in time

from left to right: 1101010010000. The observed values for are

and so on.
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The predictions forc
l

, c2' and c
3

computed from the

given above for Bower's experiment were .479, .310, and .201. Bower's

observed values were .486, .292, and .187.

Next we consider the distribution of the number of errors between

the kth and k+lst success. The methods to be used in deriving this

result are general and can be used to derive the distribution of .errors

between the kth and k+mth success for any non-negative integer m

The only limitation is that the expressions become unwieldy as m

increases. We shall define lk as the random variable for the number

of errors between the kth and k+lst success; its values are 0,.1,2, ...

An errqr following the kth success can only occur if the kth success

itself occurs as a result of guessing; that is, the subject necessarily

is in state C when the kth success occurs. Letting gk denote the

probability that the kth success occurs by guessing, we can write the

probability distribution

1 - a gk for i ~ °
Pr(:!.k ~ i) ~ (7)

(i_a)ai
gk for i > °

where 1
a~. (l-c)(i- 1') . To obtain we note that ° errors

can occur in one of three ways: (1) The kth success occurs because the

subject is in state C (which has probability l-g )
k

and necessarily a

correct response occurs on the next trial; (?) the kth success occurs

by guessing, the subject remaining in state C and again guessing cor-

rectly on the next trial [which has probability

(3) the kth success occurs by guessing but conditioning is effective
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on the trial (which has probability gkc). Thus

1
+ gk(l-c)(;::) + gkc = 1 - a gk. The event of i

Pr(h =0) =1 - gk

errors (i > 0) bet-

ween thekth and k+lst successes can occur in one of two ways:

(1) The kth and k+lst successes occur by guessing [with probability

g (l_c) i+l(l· _ ~)i ~] or (2) the kth success occurs by guessing and
k r r

conditioning does not take place until the .trial immediately preceding

the k+lst success [with probability Hence

From Eq. 7 we may obtain the mean and variance of ,;!k ' namely

(8)

and
00

var0!k) = L i2pr~k
i=O

2 2
a gk

2(I-a)
(9)

In order to evaluate the quantities above we require an expression

for Consider gl ' the probability that the first success occurs

by guessing. It could occur in one of the following ways: (1) The

subject guesses correctly on trial 1 (with probability ~) or (2)
r

the subject guesses incorrectly on trial 1, conditioning does not occur,

and the subject guesses successfully on trial 2 [this joint event having



A. and E. -25-

probability (1 - l)(l-c) l] or (3) conditioning does not occur on trials
r r

1 and 2, and the subject guesses incorrectly on both of these trials but

guesses ~orrectly on trial 3 (with probability

so forth. Thus

1 2. 2 1(1 - -) (I-c) -)
r r

1 00

=-2::
r i=O

1 . i
(1 - _)l.(l_c) = l/(l-o:)r

r

Now consider the probability that the kthsuccess occurs by guessing for

k > 1. In order for this·event to occur it must be the case that (1)

the k-lst success occurs by guessing, (2) conditioning fails to occur

on the trial of the k-lst success, and (3) since the sUbject is assumed

to be in state C on the trial following the k-lst success, the next

correct response occurs by guessing with probability gl' Hence,

Solving this difference equation3 we obtain

3 The solution of this equation can quickly be obtained. Note that

g2 =gl(l-c)gl = (l-c)gi Similarly, g3 =g2(1-c)gl; substituting

the above result for g2 we obtain g3 = (l-c )gi(l-c )gl = (l-c )2gr .

If we continue in this fashion it will be obvious that gk = (l_c)k-lg~.

( )k-l k
gk = l-c gl

Finally, substituting the expression obtained above for gl yields
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We may now combine Eqs.,7and 10, inserting our original. estimate

of c ,to obtain predictions about the.number of errors between the

kth and k+lst success in Bower's data. Tb illustrate, for k = 1,

the predicted mean is .361 and the Observed value is .350.

Tb conclude our analysis of this mood, we consider the probability

Pk that a response sequence to a stimulus item will exhibit the property

of no errors following the kth success. This event can occur in one

of two ways: (1) The .kth, success occurs when the subject is in state

C [which we have already calculated to be l-gk1, or (2) the kth

success occurs when the subject is in state C and no errors occur on

subsequent trials. Let b denote the probability of no more errors

following a correct guess. Then

Pk = (l-gk) + gkb

= 1 - gk(l-b) (11)

But the probability of no more errors following a suc~essful guess is

simply

c---ex + c

ex(l_c)k-l
= 1 _ _ ~_-=-:::..J._---

',ex + c)(r - ex r)k

(12)
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Observed and predicted values of Pk for Bower's experiment are shown

in Table 2.

Insert Table 2 about here

We shall not pursue more consequences of this model. 4 The particular

4 Bower also has compared the one-element model with a comparable

single-operator linear model presented by Bush and Sternberg (1959).

The linear model assumes that the probability of an incorrect response

on trial n is a fixed number where PI = (l-c)p* n
and

The one-element model and the linear model~nerate many

identical predictions (e.g., mean learning curve) and it is necessary to

look at the finer structure of the data to differentiate models. Of the

20 possible comparisons Bower makes between the two models, he finds

that the one-element model comes closer to the data on 18.

results we have examined were selected because they illustrated

fundamental features of the model and also introduced mathematical

techniques which will be needed later. In Bower's paper, more than 30

predictions of the type presented here are tested, with results comparable

to those exhibited above. The goodness-of-fit of theory to data in these

instances is quite representative of that which one may now expect to

obtain routinely in simple learning experiments when experimental

conditions have been appropriately arranged to approximate the simplifying

assumptions of the mathematical model.
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Table 2

Observed and predicted values for Pk' the probability of no errors

th
following the k success. (Interpret PO as the probability of no

errors at all during the course of learning).

k Observed Pk Predicted Pk

0 .255 .256

1 .628 .636

2 .812 .822

3 .869 .912

4 .928 .957

5 .963 .979

6 .973 .990

7 ·990 .995 ,

8 . .990 .997

9 .993 .. 998

10 .996·· .999

11 1.000 1.000
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concepts of the sort developed in this section can be extended to

more traditional types of verbal learning situations involving stimulus

similarity, meaningfulness, and the like. For example, Atkinson (1957)

has presented a model for rote serial learning which is based on similar

ideas and deals with such variables as intertrial interval, list length,

and types of erros (perseverative, anticipatory, or response-failures).

Unfortunately, theoretical analyses of this sort for traditional

experimental routines often lead to extremely complicated mathematical

models with the result that only a few consequences of the axioms can be

derived. Stated differently, a set of concepts may be very general in

terms of the range of situations to which it is applicable; nevertheless,

in order to provide rigorous and detailed tests of these concepts, it is

frequently necessary to contrive special experimental routines where the

theoretical analyses generate tractable mathematical systems.

2.3 Probabilistic Reinforcement Schedules

We shall now examine a one-element model for some simple two-choice

learning problems. The one-element model for this situation, as

contrasted with the paired-associate model, generates some predictions

of behavior which are quite unrealistic and for this reason we defer an

analysis of experimental data until we consider comparable multi-element

processes. The reason for presenting the one-element model is that it

represents a convenient introduction to multi-element models and permits

us to develop some mathematical tools in a simple fashion. Further, when

we do discuss multi-element models we shall employ a rather restrictive

set of conditioning axioms. However, for the one-element model we may
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present an extremely general set of' conditioning assumptions without

getting into too much mathematical complexity. Theref'ore, the analysis

of' the one-element case will suggest lines along which the multi-element

models can be generalized.

The ref'erence experiment (see, e.g" Estes and Straughan, 1954;

Suppes and Atkinson, 1960) involves a long series of' discrete trials.

Each trial is initiated by the onset of' a signal. Tb the signal the

subject is required to make one of' two responses which we denote .~

and A
2

The trial is terminated with an E
l

or E
2

reinforcing event;

the occurrence of' Ei indicates that response Ai was the correct

response f'or that trial. Thus in a human learning situation the subject

is required to predict on each trial which reinf'orcing event he expects

will occur by making the appropri.ate response--an ~ if' he expects El

and an A2 if' he expects E
2

; at the end of' the. trial he is permitted to

observe which event actually occurred. Initially the subject may have no

pref'erence between responses, but as information accrues to him over trials,

his pattern of choices undergoes systematic changes, The role of' a model is

to predict the detailed f'eatures of' these changes,

The experimenter may devise various schedules f'or determining the

sequence of' reinf'orcing events over trials. For example, the probability

of' an El may be (1) some f'unction of' the trial number, (2) dependent

on previous responses of the. subject, (3) dependent on the previous

sequence of' reinforcing events, or (4) some combination of' the above,

For simplicity, we consider a noncontingent reinf'orcement schedule. The

case is def'ined by the condition that the probability of' El is constant
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over trials and independent of previous responses and reinforcements. It

is customary in the literature to call this probability n ; thus,

Fr(E
l

) = n,n
for all n Here weare denoting by E.

~,n
the event

that reinforcement

noccurs on trial

Similarly, we shallnoCCurs on trialE
i

the event that responseA.
~,n

represent by

We assume that the stimulus situation comprising the signal light

and the context in which it occurs can be represented theoretically by a

single stimulus element which is sampled with probability 1 when the

signal occurs. At the start of a trial, the element is in one of three

conditioning states: In state Cl the element is conditioned to the Al

response and in state C2 to the ~ response; in state Co the

The response ruleselement is not conditioned to either ~ or ~

are similar to those presented earlier. When the subject is in Cl or

Al or A
2

response occurs with probability 1. In state Co

we assume that either response will be elicited e~uiprobably; that is,

For some subjects a response bias may exist whichI 1
Pr(Al Co) =-2,n . "n
would re~uire that we assume Fr(Al I Co ) = 13 where,n ,n .Fo.r

these subjects it would be necessary to estimate 13 in aPPlying the

model. However, for simplicity we shall only pursue the case where

responses are e~uiprobablewhen the subject is in Co

We now present a general set of rules governing changes in

conditioning states. As the model is developed it will become obvious

that for some experimental problems restrictions can be imposed which

greatly simplify the process.

If the subject is in state C
l

and an E
l

occurs (i.e., the subject
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makes an Al
response which is correct) , then he will remain in Cl

However, if' the sUbject is in: Cl
and an E2 occurs, then with

probability c the subject goes to C2
and with probability c' to

Co Comparable rules apply when the subject is in C2 Thus, if the

subject is in Cl or C2 and his response is correct, he will remain

If, however, he is in C
l

or C2 and his response is

not correct, then he may shift to one of the other conditioning states,

thereby reducing the probability of repeating the same response on the

next trial.

finally, if the subject is in Co and an El or E2 occurs,

then with probability c n the subject moves to Cl or iC2 ' respectively.5

5 Here we assume that the subject's response does not affect the change.

That is, if the subject is in Co and an El occurs, then he moves to

C
l

with probability c n independently of whether A
l

or A
2

occurred.

'[his a.ssumption is not necessary and we could readily have the actual

for example, we might postulateresponse affect change.

combination, and ell
2

for the

c·1I for an
1

or ~El

combination; that is, Pr(Cl,n+l! E A C ) = Pr(C I EA C )l,n l,n O,n 2,n+l 2,n 2,n O,n

c n

.1
and pr(Cl,n+l. I E A C ) = Pr(C I E A C ) = c

n

l,n 2,n O,n . 2,n+l 2,n l,n O,n . 2
where

e" .I e"
1 F 2 However, such additions make the mathematical. process more

complicated and should be introduced only when the. data clearly require

them.

Thus, to summarize, for i,j = 1,2 and i I j ,
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P;r'(C. +l!E. C. ) = 1
L"n l.,n l,ll

P;r'(CO liE. C. ) = c'
,n+ J,u l,n

(13)

pr(Cj,n+lIEj,n Ci,n) = c

pr(C. +lIE. Co n) = c n

l,n l,n ,

where 0 < c" < 1 and 0 < c + c' < 1

We now use the assumptions of the preceding paragraphs and the

particular assumptions for the noncontingent case to derive the transition

matrix in the conditioning states. In making such a derivation it is

convenient to represent the various possible occurrences on a trial by a

tree. Each set of branches emanating from a point represents a mutually

exclusive and exhaustive set of possibilities. For example, suppose that

at the start of trial n the subject is in state Cl ' then the tree in

Fig. 2 represents the possible changes that can occur in the conditioning

state.

Insert Fig. 2 here

The first set of branches is associated with the reinforcing event

If the subject is in C
l

and an E
l

occurs, then he

will stay in state C
l

on the next trial. However, if an E2 occurs,

then with probability c he will go to C
2

' with probability c' he

will go to CO' and with probability l-c-c' he will remain in Cl .

Each path of a tree, from a beginning point to a terminal point,

represents a possible outcome on a given trial. The probability of each
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Cl,n+l

C2,n+l

c

"'L..---'''----- Co, n+1

Cl,n+l

Fig. 2. Branching process, starting from state C
l

on trial n,
for one element model in two choice, noncontingent case.
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path is obtained by multiplying the appropriate conditional probabilities.

Thus, for the tree in Fig. 2 the probability of the bottom path may be

represented by P.i{E
2

IC
I

) Pr(C
l

llE
2

C
l

); (l-:Jl)(l-c-c'). Of the
,n ,n ,n+ ,n,n

four paths, two lead from C
l

to C
l

; hence

Similarly, PIO ; (l-:Jl)c' and P12; (l-:Jl)c , where Pij denotes ·.;the

probabili ty of a one-step transition from C.
~

to

For the Co state we have the tree given in Fig. 3. On the top

branch an E
l

event is indicated and by Eq. 13 the probability of going

Insert ~ig. 3 here

to Cl is C" and of staying in Co is l_c"

holds for the bottom branches. Thus we have

Pm ; :Jl COl

P02 ; (l-:Jl)c ..

POO ; I_cit

A similar analysis

Combining these results and the comparable results for C
2

yields the

following transition matrix:

Cl Co C2

Cl 1 - (l-:Jl)( c '+c) c '(I-:Jl) c(l-:Jl)

p ; Co C"1t I_en c"(l'-:Jl) (14)

Ci2 C:Jl C':Jl l-:Jl(c'+c)
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"c

CO,n

C
2,n+l

"c

Fig. 3. Branching process, starting from state C on trial n,
for one element model in two choice, noncontingent 2ase.
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As in the case of the paired-associate model, a large number of

predictions can be derived easily for this process. However, we shall

only select a few which are useful in clarifying the fundamental properties

of the model. We begin by considering the asymptotic probability of a

particular conditioning state and, in turn, the asymptotic probability of

an ~ response. The following notation will prove useful: Let

be the transition matrix and define as the probability of

being in state j on trial r+n, given that at trial r the subject

was in state i. The quantity is defined recursively:

Moreover, if the appropriate limit exists and is independent of i ,we

set

lim p~n)
n -> 00 ~j

The limiting quantities u
j

exist for any finite-state Markov chain

that is irreducible and aperiodic. A Markov chain is irreducible if there

is no closed proper subset of states; that is, no proper subset of states

such that once within this set the probability of leaving it is a For

example, the chain whose transition matrix is

1 2 3

1 3/4 1/4 a

2 1/2 1/2 a

3 1/3 1/3 1/,3
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is reducible because the set (1, 2) of states is a proper closed subset.

A Markov chain is aperiodic if there is no fixed period for return to

any state, and periodic if a return to some initial state j is impossible

except at t, 2t , 3t, .•• trials for t > 1. Thus the chain whose

matrix is

1 2 3

1 0 1 0

2 0 0 1

3 1 0 0

has period t ~ 3 for return to each state.

If there are r Btates, we call the vector u =[ul'~'" .,ur ] the

stationary probability vector of the chain. It may be shown [Feller (1957),

Kemeny and Snell (1959)] that the components of this vector are the solutions

of the r linear equations

r

LU~vl
v=l

r
such that ~ u = 1 Thus to find the asymptotic probabilities

v=l v
Of the states, we need find only the solution of the r equations.

(15 )

intuitive basis of this system of equations seems clear. Consider a two-

state chain. Then the probability Pn+l of being in state 1 on
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·trial n+l is the probability .ofbeing in state 1 on trial n and going

to 1 plus the probability of being in state 2 on trial n and going to 1;

that is

But at asymptote Pn+l

which is the first of the two equations of the system when r = 2 .

It is clear that the chain represented by the matrix P of Eq..14

is irreducible and aperiodic; thus the asymptotes exist and are indepen-

dent of the initial probability distribution on the states. Let

numbers u. such that u. = L uvPvj and LUj = 1
J J v

solution is given by u. = DiD where
J

Dl = P31(1 -P22) + P21P32

D2 = P31P12 + P32 (1 - Pll)

D3 (1 - Pll)(l - P22) - P21P12

(16)

Inserting in these equations the equivalents of the Pij from the

transition matrix and renumbering the states appropriately we obtain

D . = rtc"(c +c'rt)1 .

DO =rt(l - rt)c'(c' +2c).

D2 = (1 - rt)c"[c + c' (1 - rt)J
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Since·D is the sum of the D 's
j

and sinceu.= D./D we may divide
J J

thenumeratoT and denominator by .(c,,}2 and obtain

re[p+€re]u

l
= -"-~:.=:.L. _

re[p+€:n:] +re(1-1t)€[€+2p] + (l-re)[p+€{l-re)]
(l7)

re(1-re)€[<;+2p]
U o = ------~=--=.:..==="'-------

re[p+€re] + re(1-re)€[€+2p] + (l-re)[p+€(l-re)]

cwhere p = --;; and
c

,c..
€ =-"

C

By our response axioms We have

forall n

Pr(A
l

)
,n

Hence

1
Pr(cl' ) + -2 Fr(Ca ))n ,n

lim Pr(Al n)
n....-? .CD '

122 12
re[p+€p + 2:10 ] + re [€-€P- 2:'€ ]

222
re[€ +2€p-2€] + re [2€-€ -2€p]+p+€

(18)

An illspection of Eq..18 indicates that the asymptotic probability of

an Al response is a function of re, p, and €. As will become clear later

the value of Pr(Al , 00 ) is bounded in the open interval from ~ to

l+ {l-rel

values of p and e.

2
re ; whether Pr(Al ) is above or belowre

,00
depends on the
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We now consider two special cases' of our one-element model. The first

case is comparable to the multi-element models to be discussed later, whereas

the second case is, in some respects, the complement Of ,the first case.

Case of c' = O. Let us rewrite Eq. 14 with c' = O. Then the tran-

sition matrix will have the following canonical farm:

CL ' C2 Co

Cl 1 - c(l - rt) c(l - rt) 0

P = C2 Crt 1 - Crt 0 (19)

Co cllrt C" (1 - rt) 1 - en

We note that once the subject has left state Co he can never return. In

fact it is obvious that Pr(Co,n) =Pr(CO,l)(l - c,,)u-l where Pt(CO,l) is

the initial probability of being in CO' Thus, except on early trials, Co

is not part of the process and the subject in the long run fluctuates between

Cl and C2 , being in C
l

on a proportion rt of the trials.

From Eq. 19 we have also

Pr(C
l

)[l-c(l-rt)] + Pr(C2 ) Crt + Pr(C
o

) C"rt •
,n ,n ,n

That is, the probability of being in Cl on trial n + 1 is equal to the

probability of being in Cl on trial n times the probability, Pll of

going from Cl to ,Cl plus the probability of being in C2 times P21

plus the probability of being in

x = Pr( Cl ), Y = Pr( C2 ) andn, n n ,n

z = z (l-c" )n-l
n 1

Co times POl For simplicity let

z = Pr( Co ) . Now we know thatn ,n
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and also that x
n

+ Y
n

+ zn = 1 or Y
n

= 1 - x
n

- zl(1 _ c,,)n-l.

Making these substitutions in the recursion above yields

= x [1 - c(l - rr)] + z c"rr(l - c,,)n-l + crr[l - x _ z (1 _ c,,)n-l]
n 1 n 1

This difference equation has the following SOlution6:

6
The solution of such a difference equation can readily be obtained.

Consider

Then

n-lx ax + be + d wheren+l = n a, b, c and d are constants.

(1) ax
l

+ b +.d •

Similarly x
3

= ax2 + bc + d and substituting (1) for Xl we obtain

(2) 2
x

3
= a Xl + ab + ad + bc + d •

SimilarlY x4
2

= ax
3

+ bc + d and substituting (2) for x
3

we obtain

If we continue in this fashion it will be obvious that for n > 2

x
n

n-l
= a Xl +

n-2 .
d L a

l
+

i=O
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Carrying out the summations yields the desired results. See Jordan (1950,

p. 583-584) for a detailed treatment.

)( )n-l - ( If)n-l ( )n-l]xn '" n - (n - xll- c- nZl [ 1 - c - 1 - c .

1
But N(A

l
) = x + -2z -hence

,n n . n

Pr(A
l

)
,n

- n 1
= n - [n ~ltPt(e ) - fr(e )](1 - c) -

0,1 1,1

(20)

If Pr(e )
0,1

at Br{C1,1)

= 0 then we have a simple exponential learning function starting

and approaching n at a rate determined by c. If Fr(eo 1) f 0,,
then the rate of approach is a function of both c and' c".

We now consider one simple sequential prediction to illustrate another

feature of the one-element model for c' =0. Specifically, consider the prob-

ability of an Al response on trial n + 1 given a reinforced Al response on

trial n; namely Pt(A
l

_ llE
l

A- ). Note f'irstof all that,n+ ,n -~,n

Pr(A llEl Al )pr eEl Al ) =fr( AIEl Al ). Further we may write-"J.,n+ ,n,n ,n,n -"J.,n+ ,n ,n

Pr(A 'I El A ) = 2=pt(A 1 eJ.',n+l El A- e. )-l,n+ ,n -"l,n .. -"l,n+ ,n -"l,n J,n
J.,J

~ LPr(A Ie. E A C. )Pr(e. IE A e.)i; j l,n+l J.,n+l l,n l,n J,n J.,n+l l,n -"l,n J,n

'Fr(El JA. e. )Pr(A
l

Ie. )pr(C. ).,n -""I,n J,n ,n, J,n J,n

"
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But by assumption the probability of a response is determined solely by the

is independent of other events, and hence

conditioning state, and hence

Further,

Pr(Al +1 Ie. +1 El Al C. );,u J.,n ,n ,n J"n

by assumption the probability of an

Pr(El tAl C. );:J!.,u . J n J, n

El event

Substi-

tuting these results in the above expression we obtain

; :J! ~ Pr(Al +llc. +1) Pr(e. +l[El Al C. ). . ,ll· 1,n 1,n,n ,n J,n
~,J

Pr(Al IC. )Pr(C. )
,0 J,n J,n

Both i and j run over a, 1 and 2 and therefore there are nine terms

in the sum; but note that when either i or j is 2 the terms

Pr(Al· +11C. +1·) and Pr(A
l

Ic. ) both equal a. Consequently, it
,0 J.,n ,n J,n

suffices to limit i and j to a and 1 ,and we have

Pr(Al +1 El Al ), n ,n,n

1

; :J! ~a pr(Al,n+l1ci,n+l) PreC. llEl Al Cl ) Pr(Al ICl )PreCl )
~,n+ ,n ,n ,0 ,0 ,0 ,0

1
+ :J! L Pr(Al +lle. +l)Pr(C. +llEl Al Ca )Pr(Al ICa )Pr(Ca ) .i=O ,0 1,n· 1,n ,n ,0 ,0 ,u,u ,0

Since the subject cannot leave state Cl on a trial when Al is reinforced,

we know that Precl +llEl Al C1 ); 1 and PreCa +llEl Al Cl ); a;
,0, ,o"o'.,n,o ,ll ,0 ,,0

further, Pr(Al 1 rC
l

1); 1. Therefore, the first sum is simply :J!Pr(Cl ) .
",~ ,0+ ,n
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For the second sum FreCl +llEl Al Co ),n ,ll ,n ,n

FreCO +llEl Al Co ) ~ 1 - c". Further,n ,-n, n ,n

f'or,thel.Becond sum we obtain

:::: en and

12: jhence

n[c" ~ + ~(l - c") ~]Fr(Co,n)

·Combining these results

But Pr(El Al ) = Pr(El IAl )Pr(Al ) = nPr(Al ) whence- ,n ,n ,n ,n,n ,n

We know that PreCl ) and Pr(Al ) both approach n in the limit,n ,n

and that PreC-
o

) approaches O. Therefore, we predict that
,n

This prediction provides a very sharp test for this particular case of

the model and one that is certain to fail in almost any experimental situa-

tion.That is, even after a large number of trials it is hard to conceive

of an experimental procedure such that a response will be repeated with

probability 1 if it occurred and was reinforced on the preceding trial.

Later we shall consider a multi-element model which provides an excellent

description of many sets of data but is based on essentially the same condi-

tioning rules specified by this case of c'= O. It should be emphasized that
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deterministic predictions of the sort given in the equation above are

peculiar to one-element models; for the multi-element case such difficul-

ties do not arise. This point will be amplified later.

Case of c = O. We now consider the case in which direct counter-

conditioning does not occur, 1. e., c = 0, and thus p=O and 0 < E < OJ.

With this restriction the chain is still ergodic since it is possible

to go from every state to every other state, but transitions between

(21)Pr(Al ) =
,GO

Cl and C2 must go by way of CO' Letting p = 0 in Eq. 18 we obtain

2 1
11 + j21l(1- ll)E

From Eq. 21 we can draw some interesting conclusions about the

relationship of the asymptotic response probabilities to the ratio

o
"" Pr(Al )
oE . , ro

c'
E =-"c Differentiating with respect to E, we obtain

1
11(1-11)(2" - 11)

If then Pr(A
l

) has no maximum
,GO

for E in the open interval (O)OJ), which is the permissible range on E.

In fact) since the sign of the derivative is independent of E we know

that Pr(Al ) is either monotone increasing Or monotone decreasing in E,OJ
1 1strictly increasing if 11(1-11)(2" - 11) > 0 (i.e., 11 > 2") and decreasing if

ll(l-ll)(~-ll) < 0 (Le., 11 < ~). Moreover, because of the monotonicity of

compute bounds from Eq. 21.Pr(Al ) in E , it is easy to,OJ

see immediately that the lower bound (assuming 11 > ~) is

Firstly, we

lim Pr(Al GO)=~
E;~ 00 '
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however, that
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€ is very small, Pr(Al )
. )lco

Eq. 21 is inapplicable when

approaches

€ = 0 » for

2

"l + (1_,,)2
if both c = 0

Note,

and

c.'. = 0 , the tran.sition matrix (Eq. 14) reduces to

p =

1

cnrc

o

o

i-e"

o

o

c"(l-")

1

and if the process starts in Co ,Pr(Al,oe) = ". But for € > 0, if

1" > "2' pr(Al , oe) is a decreasing function of E and its values lie in

the half open interval

It is readily determined that probability matching would not be predicted

in this case. c'When -.. is greater than 2, the predicted value of
c

Pr(Al ) is less than '" and when this ratio is less than 2, the
,CD

predicted value

Finally we

of Pr(Al ) is greater than " .,oe

derive Pr(Al,n+lIEl,nAl,n} for this case. The derivation

is identical to that given for the case of c' = o. Hence

lim Pr(Al +llEl Al )
»0 . )·n ,n

n.-?(Xj

ul + ~ uo[c" + (l-c") ~]
1

ul +"2 U o

Note however that for c = 0 , the quantity Uo is never 0 (except for

" = 0,1) , and consequently Pr(Al llEl Al )is always less than 1.. ,n+ ,n,n
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Contingent reinforcement. As a final example we shall apply the

one-element model to a situation where the reinforcing event on trial n

is contingent on the response on that trial. Simple contingent reinforce-

ment is defined by two probabilities '\ and 112 such that

We consider the case of the model in which c I = 0 and pX(CO,l) = O.

That is, the subject is not in state Co on trial 1 and (since c' = 0)

he can never reach Co from Cl or C2 • Hence, on all trials he is in

Cl or C2 , and transitions between these states are governed by the

single parameter c. The trees for the C
l

and C2 states are given

in Figure 4.

Insert Fig. 4 about here

The transition matrix is

C
l

C2

C
I l-(l-ll )c (l-lln)Cn

P=

C
2 c"2l l-c"2l

,

and in terms of this matrix we may write
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C --Al,n l,n

c

c

C -.-JL2,n -C.,n

C2,n+l

,n+l

Fig. 4. Branching process for one element model in two-choice,
contingent case.
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llPr(.C
l

) and Pr(c
l

) = Pr(A
l

),n ,n ; n

This difference equation has the solution

Pr(A
l

)
,n

where

The asymptote is independent of c, and the rate of approach is

determined by the quantity c(1-1(n+"21)' . It is interesting' to,no.:te that

the learning function for Pr(A
l

n) in this case of the one-element model,
is identical to that of the linear model (cf. Estes and Suppes, 1959''').
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3. MULTICELEMENT PATTERN MODELS

3..1 Genere,lFormulation

In the literature of stimulus sampling theory a variety of proposals

have been made. for conceptually representing the stimulus situation. Funda-

mental to all of these suggestions has been the distinction between pattern

elements and component elements. For .the one-element case this distinc-

·tion does not playa serious role, but for multi-element formulations

these alterne,tive representations of the stimulus situations specify

different mathematice,l processes.

In component models, the stimulating situation is represented as a

.popl.\lation of elements which the learner is viewed as sampling from trial

to trial. I:t is e,ssumed that the conditioning of individual elements to

repponses occurs independently as the elements are sampled in conjunction

with reinforcing events, and that the response probability in the pres-

ence of a sample containing a number of elements is determined by an

averaging rule. The principal consideration he,s been to account for

response variability to an apparently cons.tantstimulus situation by

postulating random fluctuations from trial to trial in the particular

sample of stimulus elements affecting the learner. These component

models he,ve provided a mechanism for effecting a reconcilie,tion between

the picture of gradual change usually exhibited by the learning curve

<md the a:ll-or-none law of association.

For many experimental situations a detailed accGunt of the quanti-

tative pr()perties of learning can be given by component models that

assume discrete associations between responses and the independently
,

variable elements ofa>stimu:t,atingsituation. However, in some cases
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predictions from component models, fail, and it appears;;thilta simple

accoUnt of the learning process re~uires the assumption that responses

become associated, not with separate components or aspects of a stimulus

situation, but with total patterns of stimulation considered as units.

The model presented in this section is intended to 'represent such a case.

In it we assume that an experimentally specified stimulating situation

,can be conceived as an assemblage' of distinct, mutually exclusive patterns

of stimulation, each of which becomes conditioned to responses on an

all-or-none basis. By '''mutually exclusive" we mean that exactly one of

the patterns occurs (is sampled by the subject) on each trial. By "distinct"

we mean that no generalization occurs from one pattern to another. Thus

the clearest experimental interpretation would involve a set of patterns

having no common elements (i.e., common properties or components). In

practice the pattern model has also been applied with considerable success

to experiments in which the alternative stimuli have some common elements,

but nevertheless are sufficiently discriminable so that generalization

effects (e.g., "confusion errors") are small and can be neglected without

serious errorQ

In this presentation we shall limit cOnsideration to cases in which

patterns are sampled randomly with e~ual likelihood so that, if there

are N patterns, each has probability ~ of being s8ll!pled on a trial.

This sampling assumption represents only one way of formulating the model

and is presented here because it generates a fairly simple mathematical

process and provides a good account of a variety of experimental results.

However, this particular scheme for sampling patterns has restricted
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applicability. For example, in certain experiments it can be demonstrated

that the stimulus array to which the subject responds is in large p~rt

determined by events on previous trials; that is, trace stimulation asso-

ciated with previous repponses and rewards determine the stimulus pattern

to which the subject responds. When this is the case, it is necessary to

postulate a..more general rule for sampling patterns than the random scheme

proposed above. (e.g., see the discussion of "hypothesis models" in

Su'ppesand,Atkinson, 1960).

Before stating the axioms for the pattern model to be considered in

this section we define the following notions. As before, the behaviors

available to the subject are categorized into mutually exclusive and exhaus-

tive response classes (Al'~' ... ,Ar ) The possible experimenter-defined

outcomes of a trial (e.g., giving or withholding reward, unconditioned

stimulus, knowledge of results) are classified by their effect on response

probability and are represented by ac'mutilallyexclusive .andexhaustive set

of reinforcing events (EO' El ,·· .,Er ) The event E.(ifO) indicates
~

that response Ai is reinforced and EO represents any trial outcome

whose effect is neutral (i.e., reinforces none of the A.' s ).
~

The

subject.'s response and the experimenter-defined outcomes are observable,

but the occurrence of E
i

is a purely hypothetical event that represents

the reinforcing effect of the trial outcome. Event E
i

is said to have

occurred when the outcome of a trial is such as to increase the probability

of response Ai in the presence of the given stimulus~-provided, of course,

that this probability is not already at its maximum value.

We now present the axioms. The first group of axioms deals with the

conditioning of sampled patterns, the second group with the sampling of

patterns, and the third group with responses.
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Conditioning Axioms

Cl. On every trial each pattern is conditioned to exactly~ responseo

C2. If ~ pattern is sampled .2£ ~ trial, it becomes conditioned with

probability c to the response (if any) that is reinforced .2£ the

trial; if it is alreadz conditioned to that response, it remains ~.

C3. If no reinforcement occurs .2£ ~ trial, (;h.~., EO occurs), there

is no change in conditioning on that trial.

c4. Patterns that ~ not sampled on a trial do not change their condi-

tioning .2£ that trial.

C5. The probabilitz c that ~ sampled pattern.•~ll be conditioned to

~ reinforced reSponse is independent of the trial number and~

preceding events.

Sampling Axioms

Sl. Exactly~ pattern is sampled ~ each trial.

82. Given the set of N patterns available for sampling ~ ~ trial, the

probability of sampling ~ given pattern is liN, independently of

the trial number and the preceding events.

Response Axiom

Rl.On any trial that response is made to which the sampled pattern is

conditioned.

Later in this section we apply these axioms to a two~choice learning

experiment and to a paired-comparison study. First, however, we shall

prove several general theorems. Before we can begin our' analysis it is

necessary to define the notion of a conditioning state. For the axioms

aqove,all patterns are sampled with equal probability, and it suffices
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to let the state of conditioning indicate the number of patterns condi-

tioned to each response. Hence for r responses the conditioning states

are the ordered r-tuples k >
r

where k
i

= 0, 1, 2, ••• , N

and k
l

+ ~ + ••• + k
r

= N ; the integer ki denotes the number of

pattenns conditioned to the

(
N + Nr ~tioning states is

response. The number of possible condi-

(In a generalized model which permitted

different patterns to have different likelihoods of being sampled, it

would be necessary to specify not only the number of patterns conditioned

to a response but also the sampling probabilities associated with the

patterns.)

For simplicity, in this section we limit consideration to the case

of two alternatives except for bne example where r = 3. Given only

two alternatives we denote the conditioning state on trial n of an

i indi-i = 0, 1, 2, ... , N ; the subscriptC wherei,n

cates the number of patterns conditioned to A
l

and N-i the number

experiment as

conditioned to ~ •

Transition Probabilities. Only one pattern is sampled per trial;

therefore,. the subject can go from state C. to only one of the three
J.

states Ci _l ' C
i

,. or C
i
+l on any given trial. The probabilities of

these transitions depend on the value of the conditioning parameter c,

the reinforcement schedule, and the value of i. We now proceed to

compute these probabilities.

If the subject is in state C
i

on trial n and an El occurs,

then the possible outcomes are indicated by the tree in Figure 5.

Insert Fig. 5 about here
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1___-~-C. 1
1,n+

C.
~,n

c

C. 1J.,n+

Fig. 5.
subject

Branching process
starts in state Ci

for N
and an

element model on a
E

l
event occurs.

trial when the
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On the upper main branch, which has probability ~, a pattern that is

conditioned to Al is sampled and, since an El reinforcement occurs,

the pattern remains conditioned to Al • Hence, the conditioning state

on trial n + 1 is the same as on trial n (see Axiom C2). On the

lower main branch, which has probability N;i, a pattern conditioned to

~ is sampled; then with probability c the pattern is conditioned to

~ and tlleclsubject moves to conditioning state Ci +l ' whereas Witth

probability l-c conditioning is not effective and the subject remains

instate Ci Putting these results together we obtain

N-i
= c--

N
(22a)

Pr(C. +llEl C. )l.,n ,n l.,n
i

= l-c + C N

Similarly, if an E2 occurs on trial n,

Pi(C. 1 +11E2 C. )
1- ,n ,n .~Jn

i;:;:: c -
N

(22b)

Pr(C. +11E2 C. )2,n· ,u J.,n

By Axiom C3, if an EO occurs then

= l-c + c N-i
N

Pic'(C. +lIEO C. ) = 1J.,u· ,n J.,n
(22c)

Noting that a transition upward can occur only when a pattern condi-

tio~ed to ~ is sampled on an E
l

trial, and a transition downward can
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occur only when a pattern conditioned to Al is sampled on an E2 trial,

we can combine the results :l"romEq. 22a-c to obtain

P'r'(C'+l +llc. )]. . ,n " l.J n

P'r'(C. '1 +llc. )1- ,u,' -,1,n

P'r'(Ci +llc. ),n, :t..,.fi

N-i (I )= c -NP.rE
l

A_ C.,, ,n -'"'2,n J.,n

=C-NiBr(E2IAl C. ),on ,n 1,n

l-c + c [N!?r(El IAl C. ), ,n ,n J.,o

N-i (I )+ -N ?r ,E2 A_ C.,n -"'2,n J.,-n

+?r(Ea Ie. )],on 1, n

(23a)

(23b)

(23c)

:l"or the probabilities 0:1" one-step transitions between states. Equation 23a,

:l"or example, ,states that the pnobability 0:1" moving :l"rom the state with i

elements conditioned to A
l

to the state with i + 1 elements conditioned

to 1)., is the product 0:1" the probability R;i that an element not already

conditioned to A.- is sampled and the probabil:j.tyccPr(El IA- C. )
-~ ,n -'"'2,0 J.,n

that"under the given circumstances, conditioning occurs.

As de:l"ined earlier, we have a Markov process in the conditioning states

i:l" the probability 0:1" a transition :l"rom any state to any other state

depends at most on the state existing on the trial preceding the transi-

t'ion. By inspection of Eq. 23 we see that the Markov condition may be

satis:l"ied by limiting ourselves to reinforcement schedules in which the

probability of a reinforcing event E
i

depends at most on the response

of the given trial, that is, in learning-theory terminology, to
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noncontingent and simple contingent schedules. This restriction will be

assumed throughout the present section except fOr a few remarks ~n which

we explicitly consider various lines of generalization,

With these restrictions in mind, we define

:lt
iJ

. ;= fr(E.1 A. )
..... JJn l J n

where j;= 0 to r, i;= 1 to r J and L:It .. ;= 1. That is, the
. ~JJ .

reinforcement on atrial depends at most ·on the response of the given

trial, further, the reinforcement probabilities do not depend on the trial

number, We may then reWrite Eq, 23 as follows:

q ..
.1.,:1

q.. 1
1.,1"'"

Note that we use the notation

1
N-i, i .

'. c T :lt21 - c N"12

in place of Fr(e. +lle. )J,n.· J..,n

(24a)

(241;»

.(24c)

The

reason is that the. transj.tion probabilities do not depend on n , given

the restrictions on the reinforcement schedule stated above, and the

simpler notation expresses this fact,

Response Probabilities and Moments, By Axioms 81, 82, and Rl we

know that the relation between response probability and the conditioning

state is. simply

I i
P'r'(Al e.);= N,n J..,n
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Hence

N
Pr(Al ) '" LPr(A IC1 )Pr(C

1
)

,n 1=0 -",n ,n ,n

(25)

N 1
=L:-R'(C .)

1=0 N 1,n

But note th~t by definition of the transition probabilities qij

(26)

The latter expression, together with Eq. 25, serves as the basis for a

general recursion in Pr(Al ),n

.. N i N
Pr(Al ) = L: -N LR'(C. -l)q'i

,n i=Oj=O J,n J

Now substituting for qji in terms of Eq. 24 and rearranging the sum we

have
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N .
Pr(Al ) =~ ~ Pr(C. )-

,n i=O N ~,n-l

N-l

- c"21 L
i=O

N-l

+ c"21~
i=O

i(N-i) P (C )
2 r . i -1N ,n

(i+l)(N-i) Pr(C )
N2 .i,n-l

i(i-l) ( )if- Pr Ci , n-l

The first sum is, by EQ. 25, Pr(Al,n_l)' Let us define

N i2
a2 ,n = k. if- pr(C1,n) ; then the second sum is simply -c"12 a2,n_l

Similarly the third sum is -c"21 [ Pr(Al , n-l) - PreeN, n-l) - a2 , n-l

+ pr(CN,n_l)1= -C"h [pr(Al,n_l) - a2,n_1J and so forth. Carrying out

the su:mma.tion and simplifying we obtain the following recursion in

Pr(Al ):,n

.This difference equation has the well-known s.olution (cf. Bush and

Mosteller, 1955; Estes,1959b; Estes and Suppes, 1959)

. n-l

pr(Al,n) = pr(Al,a;» - [:pr(~,a;» - Pr(Al,l)] [1 - ~("12 + "21)] , (28)
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where

At this point it wi~~ a~so be instructive to calculate the vari-

ance of the distribution of.response probabi~ities Pr(Al nfCi n) •, ,
The second raw moment as defined above is

. Ct
2 ,n

Carrying out the summation as was done in the case of Eq. 27 we obtain

Ct = Ct [1 - 2c (rr + rr )J
2,n 2,n-l N 12 21

Subtracting the square of Pt(Al ) as given in Eq. 28 from Ct2,n ,on

yields the variance of the response probabilities. The second and

higher moments of the response probabilities are of experim~ntal inter-

est primarily because they enter into predictions concerning various

sequential stat~stics. We return to this point. later.

ASYJll;ptotic Distributions. The pattern model has one particularly

advantage~lliSc feature not shared by many other ~earning models that

have appeared in the literature. This feature is a simple calcula-

tional procedure for g~nerating ~he complete asymptotic distribution
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of conditioning states and therefore the asymptotic distribution of

responses. The derivation to be given assumes that all elements

q.. 1 ' q .. , q4,4+.1 of the transition matrix are nonzero; the
:.1.,].- ,1., ~ .I.. ..!.

same technique c~n be applied if there are zero entries, except, of

course, that in forming ratios one must keep the zeros out of the

denominators.

As in Sec. 2.3, we let l lim Pr(C. ) ~ u. • The theorem to be
n --+ 00 J.., n J.

proved is that all of the asymptotic conditioning state probabilities

ui can be expressed recursively in terms of u
O

; since the ui ' s

must sum to unity, this recursion suffices to determine the entire

distribution.

By Eq. 26 we note that

and hence

We now prove by induction that a similar relation holds for any ~djacent

pair of states; that is

q·+l .1. ,J.

q. ·+11.,1

For any state i, we have by Eq. 26,

Rearranging,
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'However, under the inductive hypothesis we may replace u i _1 by

its e<;tu:j.va1ent u 4 q !q • Hence_ .i,i-1i-1,;I.

or

ui(l - q. . -qi ·1) =
~,~ . ,;1.-

Hpwever1 - q -qi,i ;I.,i-l

and therefore

which concludes the proof.

Thus we may write

U;t
---=
ui+l

since

qi+l,i

q;l.,i+l

q.. 1 + Q. i + 'Q. i 1
J.,l,-' -:-1.,. ~, + = 1

,

and so forth .• Since the u. IS must sum to unity,
~

Uo also is deter-

mined. To illustrate the application of this technique we consi\ier

some siJrlplecases. For the noncontingent casediseussed in See. 2.;;

1-11 =
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By Eq.24 we have

N-1
qi,i+l = c N :n:

i
q.. 1 = c-N (1 - :n:)

1.,1.-

ll..pplying .the technique of the previous paragraph

.~ c:n: Nit
-u(Y = -C....,1,,....::(.:.:.l----:n:-) = ( 1 - :n:)

N

c ,§. _ (N-l):n:
N - 2(1 -It)

and in general

~--=
~-l

(N -k + l):n:
k(l - :n:)

This result has two interesting features. First, we note that the

asymptotic probabilities s.re independent of the conditioning para-

I N) :n:k- l (1 .-' :n:)N-k+l
k-lIN) k N-kk:n: (1 - :n:)and

Second, the ratio of ~ to uk_l is the same as that

Df neighboring terms

meter c ..

in the expansion of N[:n: + (1 - :n:)J • Therefore, the asymptotic

probabilities in this case are binomially distributed. For a
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populat10n ofsuqjects whose learning is described by the model,

the limiting proportion of subjects having all N patterns condi-

tioned to A
l

is Nrt ; the proportion having all but one of the

N patterns conditioned to A
l

is NTCN-1Cl - rt) ; and so on.

·For the case of simple contingent reinforcement,

uk
--- ;u

k
_
l

Again we note that the u
i

are independent of c. Further the ratio

uk to u
k

_
l

.is the same as that .of

(
N) k-l N-k+l

to k~l TC21 TC12

Therefore the asymptotic state probabilities are the terms in the

expansion of

Explicit formulas for state probabilities are useful primarily as

intermediary expressions in the derivation of other quantities, as will

be seen below. Jnthespecial case of the pattern model(unlike other

types of stimulus sampling models) the strict determination of the

response on any trial by the conditioning state of the trial sample

permits a relatively direct empirical interpretation, for the moments

of the distribution of state probabilities are identical with the moments
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of the response random variable. Thus, in the simple contingent case

we have immediately for the mean and variance of the response random

variable ... 1ln

and

N 2 1t )k 1t .)N-k( ) _-~ ~ INI (21 (l2 _ [E(A )]2Var bn £.-.2
k~l N·· k. 1t21 + 1tl2 1t21 + "l2 -n

A bit of caution is needed in applying this last expression to data.

If we select some fixed trial n (sufficiently large so that the

learning process may be assumed asymptotic), then the theoretical var_

iance for the Al response totals of a

of K subjects on trial n is simply

number of independent samples

"21 1tl2K . 2. by the familiar
("21 + 1tl2)

theorem for the variance of a sum of independent random variables.

However, this expression does not hold for the variance of Al response

totals over a block of K successive trials. The additional consid-

eratibns involved in the latter case will be discussed in the next

section.
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3.2 Treatment of the Simple Noncontingent Case

In this section we shall consider various predictions that may be

derived from the pattern model for simple predictive behavior in a two

choice situation with noncontingent reinforcement. Each trial in the

reference experiment begins with presentation of a ready signal; the

subject's task is to respond to the signal by operating one of a pair

of response keys, Al Or ~ ,indicating his prediction as to which of

two reinforcing lights will appear. The reinforcing lights are pro­

grammed by the experimenter to occur in random sequence, exactly one on

each trial, with probabilities which are constant throughout the series

and inliependent of the subject's behavior.

For illustrative purposes, we shl;tll use data from two experiments

of this sort. In one of these, henceforth designated the .6 series,

thirty subjects were run, each for a series of 240 trials, with proba­

bilities of .6 and .4 for the two reinforcing lights. Details of the

experimental procedure,and a more complete analysis of the data than

we shall undertake here, are given by Suppes and Atkinson (1960, Ch. 10).

In the other experiment, henceforth designated the .8 series, eighty

subjects were run, each for a series of 288 trials, with probabilities

of ..8 and .2 for the two reinforcing lights. Details of the procedure

and results have been reported by Friedman et. al.,(196o). A possibly

important difference between the conliitions of the two experiments is

that in the .6 series the subjects were new to this type of experiment

whereas in the .8 series the subjects were highly practiced, having had

experience with a variety of noncontingent schedules in two previous

experimental sessions.
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For our present purposes it will suffice to consider only the

simplest possible interpretation of the experimental situation in

terms of the pattern model. Let 01 denote the more frequently

occurring reinforcing light and 02 the less frequent light. We then

postulate a one-to-one correspondence between the appearance of light

0l' and the reinforcing event E. which is associated with A. (the
l l

response of predicting O. ) . Also we assume that the experimental
l

conditions determine a set of N distinct stimulus patterns, exactly

one of which is present at the onset of any given trial. Since, in

experiments of the sort under consideration, the experimenter usually

presents the same ready signal at the beginning of every trial, one

might assume that N would necessarily equal unity. However, we shall

not impose this restriction on the model. Rather, we shall let N

appear as a free parameter in theoretical expressions; then we shall

seek to determine from the data what value of N is required to mini-

mize the disparities between theoretical and observed values.

If the data of a particular experiment yield an estimate of N

greater than unity, and if with this estimate the model provides a

satisfactory account of the empirical relationships in question, we

shall conclude that the learning process proceeds as described by the

model but that, regardless of the experimenter's intention, the subjects

are sampling a population of stimulus patterns. The pattern effective

at the onset of a given trial might comprise the experimenter's ready

signal together with stimulus traces (perhaps verbally mediated) of the

reinforcing events and responses of one or more preceding trials.
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It will be apparent that the pattern model could scarcely be

expected to provide a completely adequate account of the data of two­

choice experiments run under the conditions sketched above. Firstly,

if the stimulus patterns to which the subject responds include cues

from preceding events, then it is extremely unlikely that all of the

available patterns would have equal sampling probabilities as assumed

in the model. Secondly, the different patterns must have component

cues in common and these would be expected to yield transfer effects

(at least on early trials) so that the response to a pattern first

sampled on trial n would be influenced by conditioning that occurred

when components of that pattern were present on earlier trials. How­

ever, the pattern model assumes that all of the patterns available for

sampling are distinct in the sense that reinforcement of a response to

one pattern has no effect on response probabilities associated with

other patterns.

Despite these complications, many investigators (e.g., Suppes and

Atkinson, 1960; Estes, 1961b; Suppes and Ginsberg, 1962b; Bower, 196+)

have found it a useful strategy to apply the pattern model in the simple

form presented in the preceding section. The goal in these applications

is not the perhaps impossible one of accounting for every detail of the

experimental results, but rather the more modest, yet realizable, one

of obtaining valuable information about various theoretical assumptions

by comparing manageably siml'le models that embody different combinations

of assumptions. This procedure will be illustrated in the remainder of

the section.
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Sequential Predictions. We begin our application of the pattern

model with a discussion of sequential statistics. It should be empha-

sized that one Of the major contributions of mathematical learning

theory has been to provide a framework within which the sequential

aspects of learning can be scrutinized. Prior to the development of

mathematical models, relatively little attention was paid to trial by

trial phenomena; at the present time, for many experimental problems,

such phenomena are viewed as the most interesting aspect of the data.

Although we consider only the noncontingent case, the same methods

may be used to obtain results for more general reinforcement schedules.

We shall develop the proofs in terms of two responses but the results

hold for any number of alternatives. If there are r responses in a

given experimental application, anyone response can be denoted Al

and the rest regarded as members of a single class, ~

We consider first the probability of an A
l

response given that

it occurred and was reinforced on the preceding trial; i.e.,

Pr(Al llEl Al ) It is convenient to deal first with the joint,n+ ,n ,n

probability Pr(Al +lEl Al ), then to conditionalize later. First,n ,n ,n

we note that

Pr(Al +lEl Al ),n ,n,n =L
i, j

Pr(A C. E A C ),
l,n+l J,n+l l,n l,n i,n

(30)

and that Pr(A C. E A C ) may be expressed in terms of
l,n+l J,n+l l,n l,n i,n

conditional probabilities as
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Pr(A Ie. E A e. )Pr(e. IE A C. )Pr(E IA e. )l,n+l J,n+l l,n l,n ~,n J,n+l l,n l,n~,n l,n l,n ~,n

. Pr(Al Ie. )Pr(e. ).
,0 1.,0 1.,0

But from the sampling and response axioms the probability of a response

on trial n is determined solely by the conditioning state on trial

n ; i.e., the first factor in the expansion can be rewritten simply as

Pr(Al,n+l1ej,n+l)' Further, by Axiom Rl, we have pr(Al,n+l1ej,n+l) =~

For the noncontingent case the probability of an E
l

on any trial is

independent of previous events and consequently we may write

pr(E
l

IA
l

C. ) = J(.,n ,n l,n

Next, we note that

1 , if i = j

Pr(e. +lIEl Al e. ) =J,n, ,n _,n 1,n
0 , if i F j

That is, an element conditioned to Al is sampled on trial n (since

an Al response occurs on n) and thus by Axiom C2no change in the

conditioning state can occur.

Putting these results together and substituting in Eq. 30 we

obtain
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Pr(Al +lEl Al ),n ,n J n Pr(e. +l[El Al e. )Pr(e. )1,n ,0 ,n l,n 1,n

and

.2
; 11 L.!:..... Pr(e. )

i N2 J., n

; rc a2 ',n
(31a)

Pr(Al ""+lIEl " Al" ),n ' , n ,n

11 a2= ,n
pr(El Al " )

,n ,on

a
2,n

(31b)

In .order to express this cond~tional probability in terms of the

parameters n, c , N , and Pr(Al 1) , we simply substitute into Eq. 31b,
the expression given for Pr(Al ) in Eq. 28 and the corresponding,n
expression for a ,that would be given by the solution of the

2,n

difference equation, Eq •. 29. Unfortunately, the expression so obtained

is extremely cumbersome to work with. Consequently it is usually

preferable in working with data to proceed in a different way.

Suppose the data to be treated consist of proportions of OCcurrences

of the various triiSrams Ak +lE. A.,n J,n J.,n
over blocks of M trials.

If, for example, M; 5, then in the protocol

Trial

Event

1 2 3 4 5
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there are four opportunities for such trigrams. ,The combination

on one; hence the proportions of occurrence of

occurs on two of these,A E Al,n+l l,n l,n

and A E A_
l,n+l 1,n-""2,n

A E A2,n+l l,nl,n on one,

these trigrams are .5, .25, and .25 ,respectively. To deal

theoretically with quantities such as these, we need only average both

sides of Eq. 3la (and the corresponding e~pressions for other trigrams)

over the appropriate block of trials, obtaining, e.g., for the block

running from trial n through trial n+M-l

(32a)

where a2 (n,M) is the average value of the second momeI\t of the .esponse

probabilities over the given trial block. B,y .strictly analogous methods,

we can derive theoretical expressions for other trigram proportions, e.g.,

1 n+M-l
~ M:;S;:== Pr(Al n'+lEl nl~ n')

n,'-n " J, ,

(32c )

P122
1 n+M-l

~ Ii .«.>.,.-- Pr(Al I+lE2 I~ ,)
nt =n J n _' "n ,n,

and so on; .the quantity al(n,M) . denoting the average Al probability

(or, equivalently, the proportion of Al responses) over the given

trial block.
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Now the average moments a
i

can be treated as parameters to be

estimated from the data in order to mediate theoretical predictions. To

illustrate, let us consider a sample of data from the .8 series. Over

the first 12 trials of the ~ =.8 series, the observed proportion of

Al .responses for the group of 80 subjects was .63 and the observed

values for the trigrams of Eq. 32a-d were

P121 = .061, and P122 = .035

we have frOm Eq. 32a

Using

Plll = .379, Pl12 = .168,

Plll to estimate a2 (1,12) ,

.379 = .8 [~(1,12)]

. which yields as our estimate

A

a2(~,12) = .47 .

,

Now we are in a position to predict the value of P122

the appropriate parameter values into Eq. 32d, we have

P122 = .2(.63 - .47) = .032 ,

Substituting

which is not far from the observed value of .035. Proceedi.ng similarly,

we can use Eq. 32b to estimate c .N ' Vlz 0

Pll2 = •. 168 = .8 [(1 - ~)( .63) + ~ - .47],

from which
A
CN = .135

With this estimate in hand, together with those already obtained for

the first and second moments, we can substitute into Eq.32c and predict

the value of
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;::;: .077 ,

which is somewhat high in relation to the observed value of .061.

It should be mentioned that the simple estimation method used above

for illustrative purposes would be replaced, in a serious application

of the model, by a more systematic procedure. For example, one might

simultaneDusly estimate and c
N

by least squares, employing all

eight of the Pijk; .this procedure would yield a better overall fit of

the theoretical and observed values.

A limitation of the method just described is that it permits esti-

separately.Nandcmation of the ratio c
N ' but not estimation of

Fortunately, in the asymptotic case, the expressions for the moments

a i are simple enough so that expressions for the trigrams in terms of

the parameters are manageable; and it turns out to be easy to evaluate

the conditioning parameter and the number of. elements from these expres-

in theis, of course,nfor largeThe limit ofsions. a
l,n

simple noncontingent case. The limit, a
2

, of a may be obtained
2,n

from the solution of Eq. 29; however, a simpler method of obtaining

the same result is to note that, by deflnition,

where again represents the asymptotic· probability of the state in

which i elements are conditioned to AI' Recalling that the ui



A. and E. -72-

are terms of the binomial distribution, we may then write

The SWl11Edti.0I.i. is tilL: secund ra:W" moment of' the binomia.L dist.ributiun

\,':1. til T"lrurW:;,ter rc ttrld sample size N. Therefore

Using Eq. 33 and the fact that lim Pr(Al ) = 11 we have,n

By identical methods one can establish that

lim Pr(Al +llEl ~ ) 11(1
1 ) c (34b)= - !'iI

+- ,,n ,n, n !'iI

lim Pr(Al +11E2 Al ) 11(1
1 ) l-c (34c)= - N +T',n ,n,n

and

lim Pr(Al +11E2 ~ ) 11(1
1 ) (34d)= -ji .

, n . . _"n,n
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With these·formulas in hand, we need only apply elementary

probability theory to obtain expressions for dependencies of responses

on responses or responses on reinforcements, viz.,

lim Pr(A fA) = I( + (l-c)(l-I() (35a)
l,n+l l,n N

lim Pr(Al n+ll~ n) = I( - (l-c)n: (35b), , N

lim pr(Al,n+lIEl,n) (1 -
c )1( c (35c)= N

+-
N

lim Pr(Al llE2 ) (1 .: c )1( (35d)= N
.

,0+ . , n

Given a set of trigram proportions from the asymptotic data of a

two-choice experiment, We are now in a position to achieve a rigorous

test of the model by using part of the data to estimate the parameters

c and N, and then substituting these estimates into E~. 34a-d and

35a-d to predict the values of all eight of these se~uential statistics.

We shall illustrate this procedure with the data of the .6 series. The

observed transition frequencies F(A. +lIE. Ak· ) for the last 100
1,0 J,n ,0

trials, aggregated over subjects, are as follows:

Al ~

A1El 748 298

A1E2 394 342

A2El 462 305

~E2 186 264
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An estimate of the asymptotic probability of an A
l

response given

an A1El event on the preceding trial can be obtained by dividing,

the first entry in row one by the sum of the row; i.e.,

But, if we turn to Eq. 34a

we note that lim pr(Al,n+lIEl,nAl,n) -= 1((1 - ~ )

·7.l5 = .6(1 - ~)+ ~ , we obtain an estimate7 of

1
+N

N =

Hence, letting

3.48. Similarly

•

7 For anyone subject, N must, of course, be an integer. The fact

that our estimation procedures generally yield non-integral values for

N may signify that N varies somewhat between subjects, or it may

simply reflect some contamination of the data by sources of experimental

error not represented in the model.

which by Eq. 34b is an estimatePr(A1IE1~) = 462,/(462 + 306) -= .6<:9-

(
1 c

of 1(1 - "N) + N ; using our values of

and c = .605'.

and N we find that .£ = .174
N

Having estimated c and N we may now generate predictions for

any of our asymptotic quantities. Table 3 presents predicted and

observed values for the quantities given in Eq. 34a to Eq. 35d. Consid-

ering that only two degrees of freedom have been utilized in estimating

parameters, the close correspondence between theoretical and observed

quantities in Table 3 may be interpreted as giving considerable support

to the assumptions of the model. A similar analysis of the asymptoti,c

Insert Table 3 about here
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Table 3

Predicted (pattern model) and observed values of sequential statistics

for final 100 trials of the .6 series.

Asymptotic
Quantity Predicted Observed

pr(~IEl~) ·715 .715

Pr(AI IE2Al ) .541 .535

pr(AIIEl~) .601 .601

Pr(AIIE2~) .428 .413

pr(AIIAl ) .645 .641

Pr(All~) ·532 .532

Pr(AIIEl ) .669 .667

Pr(Al !E2) .496 .489
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data from the .8 series, which has been reported elsewhere (Estes,~96lb;

Estes and Suppes, 1962), yields comparable agreement between theoretical

and observed trigram proportions. The estimate of c/N for the .8

data is very close to that for the ,b data (.172 vs .174), but the

estimates of c and N (.31 and 1.84, respectively) are both smaller

for the .8 data. It appears that the more highly practiced subjects of

the .8 series are, on the average, sampling from a smaller population

of stimulus patterns and at the same time are less responsive to the

reinforcing lights than the more naive subjects of the .6 series.

Since no model can be expected to give a perfect account of fallible

data arising from real experiments (as distinguished from the idealized

experiments to which the model should apply strictly), it is difficult

to know how to evaluate the goodness-of-fit of theoretical to observed

values. In practice, investigators usually proceed on a largely

intuitive basis, evaluating the fit in a given instance against that

which it appears reasonable to hope for in the light of what is

known about the precision of experimental control and measurement.

Statistical tests of goodness-of-fit are sometimes possible (discussions

of some tests which may be used in conjunction with stimulus sampling

models are given by Suppes and Atkinson, 1960, and by Estes and Suppes,

1962); however, statistical tests are not entirely satisfactory

taken by themselves, for a sufficiently precise test will often indi­

cate significant differences between theoretical and observed values

even in cases where the agreement is as close as could reasonably be

hOPed for. Generally, once a degree of descriptive accuracy has been
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attained which appears satisfactory to investigators familiar with the

given area, further progress must come largely via differential tests of

alternative models.

In the case of the two-choice noncontingent situation, the ingre­

dients for one such test are immediately at hand; for we developed in

Sec. 2.3 a one-element, guessing state model that is comrarable to the

N-element model with respect to the number of free parameters, and which

to many might seem equally plausible on psychological grounds. These

models both embody the all-or-none assumption concerning the formation

of learned associations, but they differ in the means by which they

escape the deterministic features of the simple one-element model. It

will be recalled that the one-element model cannot handle the sequential

statistics considered in this section because it requires, for example,

a probability of unity for response Ai on any .trial following a trial

on which Ai occurred and was reinforced. In the N-element model (with

N ~ 2), there is no such constraint, for the stimulus pattern present

on the preceding reinforced trial may be replaced by another pattern,

possibly conditioned to a different response, on the following trial.

In the guessing state model, there is no strict determinacy since the

Ai response LJilS,Y:· occur on the reinforced trial by guessing, if the

subject cis, in state Co ; and, if the reinforcement was not effective,

a different response J may:: occur, again through guessing, .on the

following trial.

The case of the guessing state model with c= 0 (c , it will be

recalled,being the counter-conditioning parameter) provides a two
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parameter model which may be compared with the two-parameter, N-element

model. We will require an expression for at least one of the trigram

proportions that have been studied above in connection with the N-element

model. Let us take Pr(Al +lEl Al ) for this purpose. In Sec. 2.3,n ,n,n

we obtained an expression for pr(Al,n+l [El , nAl,n) for the case with

c = 0 and thus we can write at once

Since we are interested only in the asymptotic case, we shall drop the

n SUbScript from the right hand side of Eq.36a and have for the desired

theoretical asymptotic expression

(36b)

Substituting now into Eq. 36b the expressions for ul and Uo derived

in Sec. 2.3, we obtain finally

(36c)

.To apply this model to the asymptotic data of the .6 series, we may

first evaluate the parameter € by setting the observed proportion of'

Al responses over the terminal 100 trials, .593, equal to the right

hand side of E«.21 and sOlving for € , viz,



·593
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"(,, + (1-,,) .~ ]

and

.6(.6 + .2E)
.52 +.24E ,

Now introducing this value for € into E'l. 36c, and simplifying;, we

obtain the prediction

Plll = .2782 + .0775 c" •

Since the observed value of Pll.l for the .6 data is .249; it is apparent

that no matter what value (in the admissible range 0 < c" < 1) is

chosen for the parameter c", the value predicted from the guessing

state model will be too large. Further analysis, using the methods

illustrated above, makes it clear that for no combination of parameter

estimates can the guessing state model achieve predictive accuracy

comparable to that demonstrated for the N element model in Table 3.

Although this one comparison cannot be considered decisive, one might

be inclined to suspect that, for interpretation of two-choice, proba-

bility learning, the notion of a re-accessible guessing state is on the

wrong track, whereas the N~element sampling model merits further

investigation.

Mean and variance of response proportion. By letting

"11 ="21 =" in E'l. 28, we have immediately an expression for the
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probability of an Al response ·on trial nin the noncontingent case,

viz.

n-l
pr(Al,n) = rc - [rc - Pr(Al,ly](l - N) (37)

If we define a response random variable A
~n

which equals 1 or 0

according as Al or ~, respectively, occurs on trial n, then the

right side of Eq. 37 also represents the expectation of this random

variable on trial n The expected number of Al responses in a

series of· K trials is, then, given by the summation of Eq. 37 over

trials,

K
E(~) = L E(An ) =

n=l

N c K
Krr - c [rr - heAl, 1)][1 - (1 - iii) ] (38)

In experimental applications, one is frequently interested in the learning

curve obtained by plotting the proportion of A
l

responses per K-trial

block. A theoretical expression for this learning function is readily

obtained by an extension of the method used to derive Eq. 38. Let x

be the ordinal number of a K-trial block running from trial K(x-l) + 1

to Kx where x = 1, 2, •.• , and define p(x) as the proportion of

Al responses in block x. Then

1 [Kx !ili::ll l
P(x).C' K ~ Pr(Al,n) - ~pr(Al,n~

N
= n; - Kc [

rc - Pr(A )] [1 - (1 - 2.)K] (1 _ 2.)K(X-l) • (39a)
.1,1 . .. N .. N
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Th~ valu~ of Pr(AI 1) should be in the neighborhood of .5 if response,
bias does not exist. However, to allow'for sampling deviations we

may eliminate Pr(AI,I) in favor of the observed value of pel) . This,

can be done in the following way. Note that

Solving for [~- Pr(AI 1)] and substituting the result in Eq. 3913.,,
we obtain

-,,)K(X-I)
p(x) = ~ - [~ - P(l)](l - N

Applications of Eq.39b to data have led to results that are

(39b )

satisfying in some respects but perplexing in others (see, e.g., Estes,

195913.). In most instances the implication that the learning curve sho~ld

have :J( as an asymptote has been borne out (Estes, 196Ib,1962), and.

further, with a suitable choice of values for c/N "the curver~presented

by Eq. 39b has serv~d to describe the course of learning. However,. in

experiments run with naive subjects, as has been nearly always the case,

the value, of c/N required to fit, the mean learning curve has been

substantially smaller than the value required to handle the sequential

statistics discussed in the preceding section. Consider, for example,

the learning curve for the. 6 series plotted by 20 trial blocks • The

observed value of pel) is .48 and the value of c/N estimated from

the sequential statistics of the second 20-trial block is .12. With

these parameter values, Eq. 39b yields a prediction Of .59 for P(3)
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and t~e theoretical curve is essentially.at asymptote from block 4 On.

The empirical learning curve, however, .does not approach .59 until block

6 and is still short of asymptote at the end of 12 blocks, .the mean

proportion of Al responses over the last five blocks being .593

(Suppes and Atkinson, .1960, p. 197).

In the case of the .8 series there is a similar disparity between

the value of clN estimated from the sequential statistics and the value

estimated from the mean learning curve. As we have noted above, an

optimal account of the trigram proportions

a clN value of approximately .:1-7. B11t if

Pr(A IE. A. ) requires-x.,n+ J, n l,n

this estimate is substituted

into Eq.39a, the predicted Al frequency in the first block of 12

trials is .67, compared to an observed value of .63, and the ,theoretical

curve runs appreciably above the empirical curve for another five blocks.

A clN value of .06 yields a satisfactory graduation of the ob.served

mean curve in terms of Eq. 39a, and a fit to thetrigrams that does not

look bad by usual standards for prediction in learning experiments.

However, comparing predictions based on the two clN estimates for the

trigrams which contain this parameter, we see that the estimate of .17

is distinctly superior. For .the trigrams averaged over the first 12

trials, the result is

Observed Theoretical; c/N; .17 Theoretical,; c/N; .06

Pl12 .168 .177 .144

P12l .061 ·073 .087

P212 .121 .119 .152

P221 .062 .053 .039
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The reason for this discrepancy in :the value of clN reCluired to

give optimal descriptions of two different aspects of the data is not

clear even after much investigation. One contributing factor might be

individual differences in learning rates (c/N values) among subjects;

these would be expected to affect the two types of stati.stics differently.

However, in the case of the .8 series, when a more homogeneous subgroup

of Bubject.s (themi.ddle 50/0 on total A].
freCluency) is analyzed, the

disparity., although somewhat reduced, is not eliminated; optimal clN

values for the mean curve and the trigram statistics are now.o8 and .15,

respectively. The principal sOurce of the remaining discrepancy in this

homogeneous subgroup is a much smaller increment in Al freCluency from

thefir'st to the second 12-trial block than was predicted. Over the

first three blocks the observed proportions were .633, .665 and .790}

.theproportions predicted from ECl. 39a with clN ~ .15 run .657,.779

and .800. A possible explanation is that in the ea.rly part of the series

the subjects are responding to cues,perhaps verbal in character, which

are discarded (Le., are not resampled) .when they faU. to elicit consis-

tently correct responding. An interpretation of this sort could be

incorporated into the model and SUbjected to formal testing, but this

has not yet been done. In any event, one can see that analyses of data

in terms of a model enables U;3 to determine precisely which aspects of

the subjects I behavior are and which are not accounted"forin terms of

a particular set of assumptions.

Next to the mean learning curve, the most freCluen:tly used behavioral

measure in learning experiments is perhaps the va.riance of response
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occ\l,rrences.in a 1)lock of trials. Predicting this variance from a

theoretical model is an exceedingly taxing·assigrunent; for the effects

of individual differences in learning rate, together with those of all

sources of experimental error not represented in the model, must be

expected to increase the observed response variance. However, this

statistic .is relatively easy to compute for the pattern model, and the

deviation mayserve as a prototype for deviations of similar expressions

in other learning models. For simplicity,we shall limit consideration

here to the case of the variance uf A
l

response frequency in a trial

block after the mean curve has reached asymptote.

As a preliminary to computation .of the variance, we require a

statistic which is.also of interest in its own right, the covariance of

A), responses on any two trials; that is (using the notation of Eq. 2-5),

(40)

Pr(Al +kAl·· ) -Pr(Al +k)Pr(Al ),n ,no ,·n. , ,n

first, we can establish by induction that

:n:Pr(A
l

)
,n

~;i.s form1).la is obviously an identity for k '" 1. Thus, .assuming that

the formula holds for trials nand n + k , ,we may proceed to establish

it for trials nand n + k + 1 First we 1).se our standard procedure
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to expand the desired quantity in terms of' reinf'orcing events and states

of' conditioning~ Letting C. denote the state in which exactly j
J,n

of the N eIementsare conditioned to response AI' we may write

Pr(A A );L Pr(A ,E.. C . A )I,n+k+II,n " I,n+k+I ~,n+k j,n+k I,n
~, J

;LPr(A IE. C. A )Pr(E. .C. A)." I,n+k+I ~,n+k J,n+k I,n ~,n+k J,n+k I,n
~,J

Now we can make use of the assumptions that specify the nOncontingent

case to simplify the second ·factor to llPr( C. +kAI·. )J, n . , n
and

(l-lt)Pr(C. kAI ) foJ;' i; 1,2, respectively. Also, we may applyJ,n+ ,n

the learning axioms to the ,first factor,obtaining

.2 '. (1 ).
( I ) - L + ( _.J.) [ -c J

Pr Al n+k+l EI n+kCJ' n+kAI n - 2 1 N N
, ... , , ---, - J ", N

; (1 _ ~).J.. + ~
N N N

and

Pr(A IE C A) ; (I. _ £.)..1
l,n+k+l 2,n+k j,n+k l,n N N

Combining,these results, we have

+ c(j;I)]

_ .£) ..1 + .£] + (l-lt)(l _ .£)
N N N· '.' N

- (1- -N
c

)Pr(AI kAI ) + It-
N
c

Pr(AI' ),n+ ,n ,n
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Substituting into this expression in terms of our inductive ,hypothesis

yields

as required.

; (1 - ~){npr(Al,n) - [npr(Al,n)

• (1 _ .£/-l} + n .£ Pr(A )
N. N l,n

; nPr(Al,n) - [nPr(Al,n) -pr(Al,n+1Al,n)]
c k

(1 - -)N
,

We wish to take the limit of the right side of Eq. 40 as n ~ co in

order to obtain the covariance 'of the response random variable on any two

trials at asymptote. The limits of Pr(Al,n)

to be equal to n , and from Eq. 35 we have the

and Pr(Al,n+k) we know

expression n2 + n(l_n)~;c).

for the limit of Pr(Al,n+lAl,n) • Making the appropriate substitutions

in Eq. 40, yields the S:impl.e.result

lim Gov l A ' kA )
. \Pn+ .1'n

n~oo

2 ,[ 2 2, (l-C)](; n -' n -n- n(l-n) N • 1

k-l
; n(l-n~(l-c) (1- j)

2
, - n

(41)

Now we are ready to compute var(~), the variance of Al response

freqlJ,encies in a block of K trials at asymptote, by applying the stan­

dard theorem for.the variance of a sum of randomvari~bles (Feller, 1957):
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Since

lim
n->ro

the limiting variance of A is simply
JV'n

lim
n->ro

Var(A ) = lim
"'In

n--+oo
lim

n->co

2
=lC-lC

Substituting this result and that for

expression for var(4K)' we obtain

lim Cov(A +kA )-.n ""'n
into the general

. K

:S=L
i=l j=2

= Krc(l-lt) + 2lC(1-rc)(l-c) z.. !:! [1-(:\'> .£)j-l]
N j=l c N

= Klt(l-lC) + 2lC(1-rc l(1-c) {K - ~ [ 1-(1- ~{]}

(42)

Application Of this formula can be conveniently illustrated in terms

of the asymptotic data for the .8 series. Least squares determinations

of c
N

and N from the trigram proportions (using Eq. 34a-d) yielded

estimates of .17 and 1.84, respectively (Estes and Suppes, 1962).

Inserting these values into Eq. 42, we obtain fora 48 trial block at

asymptote, VarCh) = 37.50; this variance corresponds to a standard

deviation of 6.12. The observed standard deviation for the final 48

trial.block was 6.94. Thus, the theory predicts a variance of the right

order of magnitude, but, as anticipated, ·underestimates the observed

value.



Of tbe many otber statistic$ tbat can be derived fromtbe N~element

model for two~cboice learning data,we sball give one final example,

selected primarily for tbe purpose. of reviewing tbe tecbnique for

deriving sequential statistics. This tecbnique is so generally useful

tbat tbe major steps sbould be empbasized: first, expand tbe desired

expression in terms of tbe conditioning states (13.$ done, for example,

in tbe case of Eq.30); second, conditionalize responses and rein~

forcing events on tbe preceding sequence of events, introducing wbat~

ever simplification$ are permitted by tbe boundary conditions of tbe

case under consideration; tbird, apply tbe axioms and simplify to

obtain tbe appropriate result. These steps will now be followed in

deriving an expression of considerable interest in its own rigbt,~~

tbe probability of an Al response following a sequence of exactly

V El reinforcing events:
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Pr(Al +y[El +Y_.l··.·El· E2 -1) =y
l

Pr(Al 1<1 y 1" .El E2 1)........ ,n. ,n ,n ,n ,{.(l-ll) ··,n+V- ,n+ - . ,.n ,n-

= ~..::.l~ L Pr(A .C. 1< . ..,.E E2 lC, '1)
llY(l-ll)i,f " 1,n+V~,·n+V-l,n+Y-ll,n ,n-' J,n-

= ,1 L Pr(Al ,IC.1<l '1" ,El E2 lC, 1)
Vel' .) .. .' ,n+Y ~,n+V- ,n+Y-· ,n ,n-' J,n-'

II ' -ll ~,J

pr(C. +ylEl +Y 1" .El E2 ·le. '1)1.,n' ,n, -, - ,0, ,-0-' J,n-

Pr(El +Y 1" .El E2 , l[C' ·l)Pr(C· l ), . ,D-- -,' ,n, ',n-- -J,n- - J,n.-

= L-NiPr(C. +y[El · +Y l' ... El· E2 lC, "l)Pr(Cj'l). .--l,n',n ,-- ",n ,-n- J,n-- , ,n...
~,J

N[' . ",. . ~ . Y}. { . lY}]= ~ (l-c..2) 1-(1 - ..2)(1 _.£) + c..L 1-(1 - ~)(l _.£) Pr(C. )
~ . N "N' •.... N ' N . , N N" J,n-l
J=O

=~ [1-(1
j=O

c Y c c Y
= 1- (1 - P )( 1 - -) - -p ,(1 - -)

n-l N N n-l N

The derivation has a formidable appearance, mainly because we have

spelled out the steps in more than customary detail, but each step can

readily be justified. The first involves simply using the definition of

a condition",l probability,pr{AIB)=~~I~)'together with the fact that
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in. the simple noncontingent case, Pr(El ) = nand Pr(E2' ) = 1 - n,n ... ,n
V

for all n, .and Pr(El,n+Jll,n+V_l" .El,nE2,n_l) = n (l-n) The

second step introduces the conditioning states Ci V and,n+

denoting the states in which i elements are conditioned to Ai on

trial n + V and j elements on trial n - 1 ,respectively. Their

insertion into the right-hand expression of line 1 is permissible since

the summation of Pr(C.) Over all values of i is unity and similarly
1.

for the summation of pr(C
j

) • The third step is based solely on

repeated application of the defining equation for a conditional

probability, which permits the expansion

Pr(ABC•..•J)=Pr(AIBC..• •J)Pr(B[ C..• .J) •• •Pr(J) • The fourth step

involves assumptions of the model: the conditionalization of

on the preceding sequence can be reduced to Pr(Al +v1e. +V). ,n l,n.

Al,n+v
i

=:N
since, according to the theory, the preceding history affects response

probabiHty on a given trial only insofar as it determines the state

of conditioning, i.e., the proportion of elements conditioned to the

given response.

into

The decomposition of pr(El,n+V_l" .El,nE2,n_lICj,n_l)

is justified by the special assumptions of the

simple noncontingent case. The fifth step involves calculating, for

each value of j on trial n -1 , the expected proportion of elements

There are two main branches to

c ~ , the state of conditioning is

conditiOned to Ai on trial n + V

the process starting with state Cj

by the axioms has probability 1-

on trial n - 1 In one, which

unchanged by the E2 event on trial n - 1 ; then, applying Eq.37

with n = 1 (since from trial n onward we are dealing with a sequence
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of Pr(Al,l) = 4' we obtain the expression {
.. c V}1-(1- ..l)(l_ -). N· N

for the expected proportion of elements connected to Al on trial n + V

in this branch. In the other branch, which has probability c 4 appli-

cation of Eq. 37 with n = 1 and
'-1

pr(Al,l) = I N yields the expression

{l-(l - j;l)(l - j)V} for the expected proportion of elements connected

to Al on trial n + V. Carrying out the summation over j ,and using

the by now familiar property of the model that

N .
~ ~ Pr(C. -1) = Pr(Al,n_l) = Pn-l '
j=O J, n

we finally arrive at the desired expression for probability of Al

following exactly vE's
1

compute the following values for the conditional response proportions:

Application of Eq. 43 can conveniently be illustrated in terms of

the .8 series. Using the estimate of .17 for j (obtained previously

from the trigram statistics) and taking Pn-l = .83 (the mean proportion

of Al responses over the last 96 trials of the .8 series), we can

4

.852

.897

3

.822

.859

2

.786

.838

1o

.689

.695Observed

V

Theoretical

It can be seen that the trend of the theoretical values represents quite

well the trend of the observed proportions over the last 96 trials.

Somewl:tat surprisingly, the observed proportions run slightly above
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the predicted .values. There is no indication hereof the "negative

recency effect" (decrease in A
l

proportion with increasing length of

the El sequence) reported in a number of pUblished two-choice studies

(e.g., Jarvik, 1951; Nicks, 1959)0 It may be significant that nO nega-

tive recency effect is observed in the .8 series,which, it will be

recalled, involved well-practiced subjects who had had experience with a

wide range of:rr values in preceding series. However, the effect :is

observed in the .6 series, conducted with subjects new to this type of

experiment (cf. Suppes and Atkinson 1960, pp. 212-213). This differential

result appears to support the idea (Estes, 1962) that the negative recency

phenomenon is attributable to guessing habits carried over from everyday

life to the experimental situation and extinguished during along.l:l;;r.aining

series conducted withnoncontingent reinforcement.

We shall conclude our analysis of the N-element pattern model by

proving a very general "matching theorem." The substance of this theorem

is that, so long as either an E
l

or an E2 reinforcing event occurS

on each trial, the proportion of A
l

responses for any individual subject

should tend to match the proportion of El events over a sufficiently

long series of trials regardless of the reinforcement schedule.

For purposes of this derivation, we shall identify by a subscript

x the prObabilities and events associated with the individual x in a

population of subjects; thus PX1, n will denote probability of an Al

response by subject x on trial n , and E
-xl,n and .Ilxl,n will denote

random varia.bles which take on the values 1 or ° according as an El



on trial n

A. andE. -92-

event and an A
l

response do or do not occur in this subject's protocol

With this notation, the probability of an Al response

by subject x on trial n + 1 can be expressed by the recursion

c( )= +-E -A ..PX1,n+l PX1,nN -xl,n -xl,n (44)

The genesis of Eq. 44 should be reasonably obvious if we recall that

Pxl n is equal to the proportion of elements currently conditioned to,
the Al response. This proportion can change only if an El event

occurs on a trial when a stimulus pattern conditioned to ~ .is sampled,

in which case E - A = 1 - 0 = 1 , or if an-xl;n """Xl,n
event occurs on

a trial when a pattern conditioned to A
l

is sampled, in which case

o -1 = - 1. In the former case, the proportion of pat"E -A-xl,n '-xl,n

ternSI~ditioned to increases by 1
N

if conditioning is effective

(which has probability c) and in the latter case this proportion

1decreases by N (again with probability c).

Considering now a series of, say, n* trials: we can convertEq. 44

into an analogous recursion for response proportion~ over the series

simply by summing both sides over nand dividing by n*, viz.

n*

;* L Pxl n+l
n=l '

n*

;*~ Pxl n
n=l '

n*
1 c L( )+--E -An* N-xl n -xl nn=l J ,

Now we subtract the first sum on the right from both sides of the

equation, and distribute the second sum on the right yielding

PX1, n+l - PX1,1
n*
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The limit of the left side of this last equation is obviously zero as

n* ~ 00 ; thus, taking the limit and rearranging, we have7

7 Equation 45 holds only if the two limits exist, which will be the case

if the re'inforcing event on trial n depends at most on the outcomes of

some finite number of preceding trials. When this restriction is not

satisfied, a substantially equivalent theorem can be derived simply by

n*
1 LE
n'* n=l ""Xl,n

before passing to the limit; that is

PX1,n+l - PX1,1 = c
n* N

~~l,n

n*
L>

1
-xl,n

c n=
N n*

L llxl n
n=l '

Except for special cases in which the sum in the denominators converges,

the limit of the left-hand side is zero and

lim
n* -7 00

n*

~ 1.xl,n

n*
LE
n=l -xl,n

= 1

lim
n* -7·00

n*
l~-L-A ­
n* n=l "'xl,n -

lim
n* -7 CD

n*
1 ~E
n* L-.-xl nn=l "
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. To appreciate the strength of this prediction one should note that

it holds for the data of an individual subject starting at anyarbi-

trarily selected point in.a learning series, provided only that a suffi-

ciently long block of trials following that point is available for

analysis. Further, it holds regardless of the values of the parameters

Nand c (provided that the latter is not zero) and regardless of the

way in which the schedule of reinforcement may depend on preceding events,

the trial number, the subject's behavior, or even events outside the

system (e.g., the behavior of another individual in a competitive or

cooperative social situation). Examples of empirical applications of

this theorem under a variety of reinforcement schedules are to be found

in studies reported by Estes, L957aand Friedman, et. al.,196:'l.

3.3 Analysis of a Paired Comparison Learning Experiment

In order to exhibit a somewhat different interpretation of the axioms

of Sec. 3.1, we shall now analyze an experiment involving a paired-

comparison procedure. The experimental situation consists of a sequence

of discrete trials. There are r objects, denoted A.(i=ltor).
l

On

each trial two (or more) of these objects are presented to the subject

and he is required to choose between them. Once his response has been

made the trial terminates with the subject winning or losing a fixed

amount of money. The subject's task is to win as frequently as possible.

There are many aspects of the situation that can be manipulated by the

experimenter; for example, the strategy by which the experimenter makes

available certain subsets of objects from which the subjects must choose,
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the schedule by which the experimenter determines whether the selection

of a given object leads to a win or loss, and the amount of money won or

lost on each trial.

The particular experiment for ",hich we shall essay atheoret'ical

analysis was reported by Suppes and Atkinson (1960, Ch. 11). The problem

for the subjects involved repeated choices from subsets of a set of

three objects, which may be denoted A ,A_ , and A
3

•
1 -"

On each trial

The subject selected one of the objects in the

presentation set; then the trial terminated with a win or a loss of a

small silmof money. The four presentation sets (Al~)' (AIA
3

) ,

(~A3) ilnd (Al~A3) occurred with equal probabilities over the series

of trials. FQrther, if object was selected on a trial then with

probability A..
~

the subject lost and with probability 1 - A..
~

he won

the predesignated amount. More complex schedules of reinforcement could

be used; of particular interest is a schedule where the likelihood of a

win following the selection ofa given object depends on the other

available objects in the presentation group. For example, the probability

of a win following "n Al choice could differ depending on whether the

(AIA2 ) , (AIA
3

) or (Al~A3) presentation group occu:cred. The analysis

of these more complex schedules does not introduce new mathematical

problems and may be pursued by the same methods we shall use for the

simpler case.

Before the axioms of Sec. 3.1 can be applied to the present experi-

ment we need to provideiln interpretation of the stimulus situation
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confronting the subject from trial to triaL The one we select is some­

what arbitrary and in Part 4 alternative interpretations are examined,

Of course, discrepancies between predicted and observed quantities will

indicate ways in which our particular analysis of the stimulus needs to

be modified,

We shall represent the stimulus display associated with the I,resen-

tation of the pair of objects (AiAj ) by a set Sij of stimulus

patterns of size N; ,the triple of objects (Al~A3) will be represented

bya set of stimulus patterns of size N*, Thus, there are four

sets of stimulus patterns, and we assume that the sets are pairwise

disjoint (Le" have no patterns in common), Since,inthe model under

consideration,the stimulus element sampled on any trial represents

the full pattern of stimulation effective on the trial, one might wonder

why a given combination of objects, say (Al~)' should have more than

one element associated with it, It might be remarked in this connection

that in introducing a parameter N to represent set size, we do not

necessarily assume N> 1, We simply allow for the possibility that

such variations in the situation or different orders of presentation of

the same set of objects on different trials might give rise to different

stimulus patterns, The assumption that the stimulus patterns associated

with a given presentation set are pairwise disjoint does not seem appeal-

ing on common sense grounds; nevertheless it is of interest to see how

far we can go in predicting the data of a paired-comparison learning

experiment with the simplified model incorporating this highly restrictive

assumption, Even though we cannot attempt to handle the positive and
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n~g~tive transfer effects that must occur between different members of

the set of patterns associated with a gtven combination of objects during

~earningJ we may hope to account for statistics of asymptotic data.

When the pair of objects (AiAj ) is presented the sUbject must

select A. or A. (i.e. , make response A. or A.); hence all pattern
l J l J

elements in S.. become conditioned to A. or A. Similarly all
lJ l J

elements in S123 become condit:1,oned to Al , A2 or A
3

. When (A.A. )
,l J

is presented the subject samples a single pattern from Sij

the response to which the pattern is conditioned.

and makes

The final step, before applying the axioms of Sec. }.1, is to

provide an interpretation of reinforcing events. Our analysis is as

follows: If (AiAj ) is presented and the Ai object is selected" then

Cal the Ei reinforcing event occurs if the Ai response is followed

by a win and (b) the Ej event occurs if the Ai response is followed

bya loss. If (AiAj~) is presented and the Ai object is selected,

then (al ,the Ei event occurs if the Ai response is followed by a win

and (b)Ej or. Ek occurs, the two events having equal probabilities

if the Ai response is followed by a loss. This collection of rules

represents only one way of relating the observable trial outcomes to the

hypothetical reinforcing events. For example, when Ai is selected

gtven (AiAj~) and followed by a loss, rather than having Ej or Ek

occur with equal likelihoods, one might postulate that they occur with

probabilities dependent on the ratio of wins following A
j

responses to

wins following Ak responses over previous trials. Many such variations

in the rules of correspondence between trial outcomes and reinforcing
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events b.ave been explored; these variations become" particularly important

when the experimenter manipulates the amount of money won orlost,the

magnitude of reward in animal studies,and related variables (see Estes,

1960p;Atkinson, 1962'9;and Suppes and Atkinson, 1960, Chapter 11; for.

discussions of this point).

In.analyzing the model we shall use the following notation:

A~i,j) =
J.,n occurrence of an response on the nth presentation

Of (AiAj ) [note that the reference is not to the nth

trial of the experiment but to the nth presentation of

(ij)
Wn a win on the nth presentation of (AiAj ) •

L~ij) ~ a loss on the nth presentation of (AiAj )

We now proceed to derive the probability of an Ai response on the

nth presentation of (A1.AJo); namely pr(A~ij)) First we note that the
l,n

state of conditioning ofa stimulus pattern can change only when it is

sampled. Since all of the sets of stimulus patterns are pairwise disjoint

the sequence of trials on which (AiAj ) is presented forms a learning

process that maybe studied independently of what happens on other

trials (see Axiom c4); that is, the interspersing of other types of trials

between the nth and n + 1 st presentation of (AiA
j

) has no effect on

tb.e conditioning of patterns in set Sij •

We now want to obtain a recursive expression for This

can be done by using the same methods employed in the preceding section.

But to illustrate another approach we proceed differently in this case.



A. and E. ~99-'

changes in

Let
I . '.)

Pr(A~~J'1 ~ Y and
lJn I n

Yn are given in

pr(A~ij))
J,n

Figure 6.

~ 1 - Y . Then the possible
n

With probability 1 - c no

Insert Figure 6 about here

change occurs ·in conditi.oning regardless of trial events and hence

Yn+l ~ Yn p with probability c change can occur. If Ai occurs and

·i.s followed by a win then the sampled element remains conditioned to

A. p however, if a loss occurs the sampled element (which was conditioned
~

to Ai) becomes conditioned to Aj and thus

Occurs and is followed by a win then Yn+l ~ Yn p however, if it is

followed by a loss the sampled element (which was conditioned to A 1j'

becomes conditioned to Ai J hence Putting these

results together we have

which simplifies to the expression

~ Y [1 - ~(A. + A.)] + -m
c A.

n ".~ J . J
(46)

Solving this difference equation, we obtain

A. -;. A.
~ J[

A.
J
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~..• .z

Fig. 6. Branching process for a diad probability on a paired
comparison learning trial.
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We now consider
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pr(A~123)); for simplicity let
~,n

1 .. a _ ~ = pr(A(123)).
n n 3,n

a. are given in Figure 7. For example, on the bottom branch conditioning
n

Insert Figure 7 about here

is effective and an A
3

response occurs which leads to a loss; hence

El or E2 Occur with equal probabilities. BUt an A
3

followed by E
l

followed byE
2

makes a = a '.n+l n

Combining the results in this figure yields the following difference

equation:

+ a [c(l - an n

+ a [c(l - a
n n

1- 13)"- -]
n 3 2

Simplifying this result we obtain

By a similar argument we obtain

(48a)

I3nH
c

2N* (48b)
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a = a
1- - 1-1- n+l n

'il ~
v tl, vr.

" n·

an
1

Oin+l =a - N*n

a n+l = a n

.",

~ ..
"- _ 2-

A2:
t\

[3n 1
i; a = a +-
a: n+l n N*

a = a
n+l n

1
= a +­

n N*

Fig. 7. Branching process for a triad probability on a
paired comparison learning trial.
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Solutions for the pair of difference equations given by Eq. 48a' and48b

are well known and can be obtained by a number of different techniques
p. 130-133;

(see Goldberg, 1958,/or Jordan, 1950) •. Any solution presented can be

verified by substituting into the appropriate difference equations.

However, for now we shall limit consideration to aSYmptotic results.

In terms of the Markov chain property of our process it can be. shpwn

that· the limits a ~ . lim a and 13 lim I3n exist. Lettingnn ~ CD n ~ 00

a ~ a ~ a and I3n+l ~ I3n
~ 13 in Eq. 48a and 48b we obtainn+l n

Solving for a and 13, and rewriting we have

lim Pr(A(123 l) ~

).,2).,3
(49a)l,n ).,1).,2 + ).,1).,3 + ).,2).,3

,

lim pr(~123))
).,1).,3

(49b),n ).,1).,2 + ).,1).,3 + ).,2).,3
,

and
).,1).,2

lim pr(A(123 ) ) (Mc)~

).,1).,2 + ).,1).,3 +).,2).,33,n

The other moments of the distribution of response probabilities can

be obtained following the methods employed in Sec. 3.1; and,:· ate ..
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asymptote we can glOmerate the entire distribution. In particular, for

set 8
ij

the asymptotic probability that k patterns are conditioned

to Ai and N -k to Aj is siJnply

For the set 8
123

the asymptotic probability of k
l

patterns conditioned

to Al , ~ to ~ ,and k
3

to A
3

(where k l + ~ + k
3

= N*) is

In analyzing data,it also is helpful to examine the marginal

liJniting probability of an Ai response, Pr(A.) , in addition to the
l

other quantities mentioned above. We define Pr(A.) as the probability
l

of an Ai response on any trial (regardless of the stiJnulus display) once

the process has reached asymptote. Theoretically

Pr(~)

and
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where pr(D(i j » is the probabil.ity of presenting the pair of objects

The experimental results we consider were reported in preliminary

form in Suppes and Atkinson, (1960}.Two groups were run each involving

48 subjects; subjects in one group won or lost one cent on each trial,

and those in the other group won or lost five cents on each trial. We

shall consider only the one-cent group, for an analysis of the differen-

tial effects of the two reward values requires a more elaborate inter-

pretation of reinforcing events. Subjects were run for 400 trials with

the following reinforcement schedule

6/10 , "3 = 8/10

Figure 8 presents the observed proportions of A
l

, ~ and

Insert Figure 8 about here

responses in successive 20-trial blocks. The three curves appear to

be very stable over the last 10 or so blocks; consequently we treat the

data over trials 301 to 400 as asymptotic.

ByEq. 47 and Eq. 49a-c we may generate predictions for pr(A~ij)}
~.~co

.and Pr(Ai~~)}. Given these values and the fact that the four presen-

tationsets occur with equal probabilities we may, as shown above, generate

The predicted values for these quantitiespred·ictions for Pr(A. ).
1,.00

and the oqserved proportions over the last 100 trials are presented in

Table 4. The correspondence between predicted and observed values is
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Fig. 8. Observed proportion of A. responses in successive 20-trial blocks for paired
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comparison experiment.
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Insert Table 4 about here

very good, particularly for Pr(A. )
~, CD

and pr(A~ij))
~, CD

The largest

discrepancy is for the triple presentation set, where we note that the

is .041 above the predicted value of .507.observed value of Pr(A(123))
1,00

The statistical problem of determining whether or not this particular

difference is significant is a complex·rnatter and we do not undertake

it here. However, it should be noted that similar discrepancies have

been found in other studies dealing with three or more responses (see

Gardner, 1957; Detambel, 1955) and it may be necessary, in subsequent

developments of the theory, to consider some reinterpretation of rein-

forcing events in the multiple response case.

In order to make predictions for more complex aspects of the data

it is necessary to obtain estimates of c, Nand N*. Estimation

procedures of the sort referred to in Sec. 3.2 are applicable but the

analysis becomes tedious and such details are not appropriate here.

However, some comparisons can be made between sequential statistics

that do not depend on parameter values. For example, certain nonparametric

comparisons can be made between statistics where each individually

depends on c and N, but where the difference is independent of these

parameters. Such comparisons are particularly helpful when they permit

us to discriminate among different models without introducing the com-

plicating factor of having to estimate parameters.
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Table 4

Theoretical and observed asymptotic choice proportions

for paired-comparison learning experiment.

Predicted Observed

Pr(Al ) .464 .473

Pr(~) .302 .294

Pr(A
3

) .234 .233

pr(A
l

(12) ) .643 .651

Pr(A (13)) .706 ·7001

pr(~(23)) .571 .561

pr(A
l

(123)) ·507 .548

Pr(~ (123)) .282 .258

Pr(A
3

(123)) .211 .194
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To indicate the types of comparisons that are possible, we may

consider the subsequence of trials on which CA1~)iS presented and,

in particula~the expression

That is,the probability of an Al response on the n+lst presentation

of CAl~) given that on the nth presentation of (Al~) an Al

occurred and was followed bya win, and that on the n_lst presentation

of (Al~) an ~ occurred followed by a win. To compute this proba­

bility we note that

Now our problem is to compute the two quantities on the right-hand side

of this equation. We first observe that
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where C(12) denotes the conditioning state for set 8
12

in which i
i,n

elements are conditioned to A
l

and N~i to ~ on the nth presen-

tation of (AJ:A2) . Conditionalizing and applying the axioms,we may

expand the last expression.. into

L pr(A(l2) Ic~l2) )pr(C~12) IW(l2)A(l2)W(12)A~12) Ctl2 ) )
.. l,n+l J,n+l J,n+l n l,n n-l -",n-l i,n-l
~J . . .

. (1 -i>. )Pr(A(l2) jW(12)A(l2) C~12) )(1 - i>. )
1 1, n n-l -", n-l ~,n-l· 2

pr(A~l2) Id l2 ) )Pr(d l2 ) ) .
-",n-l ~,n-l ~,n-l

Further, the sampling and response axioms permit the simplifications

and

pr(A(12) IC~12)) N-i
-",n-l ~,n-l = N

Finally,in order to carry out the summation, we make use of the relation
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Pr(C~.12) 11l12 )A(12)w(12)d 12 ) dl2 ) ) =
J,n+l n l,n n-l -~,n-l ~,n-l

1 for i = j

o for i i- j

which expresses the fact·that no change in the conditioning state can

occur if the pattern sampled leads to a win .(see AxiomC2). Combining

these results and simplifying we have

Pr(A(12) i 12 )/12)W{12)A(12) )
. l,n+l n l,n n-l -"2,n-l

Similarly we obtain

pr(w(12)A(12)W(.12)A~.12.) ) = (1 _ A. )(1 _ A. ) ~1 (N-i)pr(c~12) .)
n l,n n-l -~,n-l . 1· 2 ~ N N ~,n-l

~

and finally, taking the quotient of the last two expressions,

(50b)

,

pr(A(12) IW(12)A(12)W(12) A~12) )
l,n+l n l,n n-l -~,n-l

L(11
2

(N-i)pr(. C~12) ). N N ~,n-l
~ (50c)

We next consider the same sequential statistic but with the responses

reversed on trials nand n - ·1 ; namely
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Interestingly enough, if we compute

and

they turn out to be expressed by the right sides of Eq. 50a and 50b;

respectively, Hence, for all n,

(51)

Pr(A(12) IW(12)A~12)W(12)A(12) ) •
l,n+l n --z,n n-l l,n-l

Comparable predictions, of course, hold for the subsequences of trials

on which (AlA) or (~A3) are presented.
3

Equation 51 provides a test of the theory which does not depend on

parameter estimates. Further, it is a prediction that differentiates

between this model and many other models. For example, in the next

section we consider a certain class of linear models, and it can be

shown that they generate the same predictions for the quantities in

Table 4 as the pattern modeL However, the sequential equalityd~isplayed

in Eq. 51 does not hold for the linear model.
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To check these predictions, we £hall utilize the data overall trials

of the (Al~) subsequence and not restrict the analysis to asymptotic

performance. Specifically we define

But by the results just obtained we have S121 ~ Sl12 and S21 ~ S12

for any given subject. Further, if we define ~ijk as the sum of the
. .

Sijk'S over all subjects then it follows that S121 ~ Sl12 independent

of intersubject. differences in c and N. Similarly S12 ~S21'

Thus we have a set of predictions which are not only nonparametric but

which require no restrictive assumptions on variability between subjects.

Observed frequencies corresponding to these theoretical quantities are

as follows:

S121 ~ 140 SU2 ~ 138

. 0

s2l ~ 243 s12 244

~121}21 ~ .576 ~112;112 ~ .566
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Similarly,for the (A
1
A

3
) subsequence

.
~13l = 67 ;
. .
~3l = 120 ; ~13 = 122

~13l;3l = .558; t113/t13 = .525

Finally,ror the (~A3) subsequence

~232 = 45 ~223 = 49
.
~32 = 82 ~23 = 87

t 232f32 = ·549 ~223/~23 .563

Further analyses will be required to determine whether the pattern

model gives an entirely satisfactory interpretation of paired-comparison

learning~ It is already apparent, however, that it may be very diffi-

cult indeed to find another theory t~t takes us further in this dire.c-

tion than the pattern model with equally simple machinery.
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4. A C(:MPONENT MODEL FOR STIMULUS COMPOUNDING AND GENERALIZATION

4.1 Basic Concepts; Conditioning and Response ~ioms

In the preceding section we simplified our analysis of learning in

terms .of the N-element, pattern model by assuming that all of the patterns

involved in a given experiment are disjoint, or at any rate that generali­

zation effects from one stimulus pattern to another are negligible. Now

We shall go to the other extreme and treat problems of simple transfer

of training between different stimulus situations that have elements in

common in a purely cross-sectional manner, with no reference to a learning

process occurring over trials. Again the basic mathematical apparatus

will be that of sets and elements, but with a reinterpretation which

needs to be clearly distinguished frOm that of the pattern model. In

Sections 2 and 3 we regarded the pattern of stimulation effective on any

trial as a single element sampled from a larger set of such patterns;

now we shall consider the trial pattern as itself constituting a set of

elements, the elements representing the various components or aspects of

the stimulus situation which may be sampled by the subject in differ~ng

combinations on different trials. We shall proceed first to give the

two basic axioms that establish the dependence of response probability

on the conditioning state of the stimulus. sample. Then some theorems

will be derived that specify relationships between response probabilities

in overlapping stimulus samples, and these will be illustrated in terms

of applications to experiments on simple stimulus compounding. Consi­

deration of the process whereby trial samples are drawn from a larger

stimulus population will be deferred to Section 4.2.
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The basic axioms ofhhe component model are as follows~

CloThe sample s of stimulation effectiVe on any trial is partitioned

into subsets si(i = 1, 2, ••• r, where r is the number of response

alternatives), the i-th subset containing the elements conditioned

to (or -"connected tott) response Ai

C2. ,The, probability of response Ai in ,the presence of the stimulus

sample sis given E;:[

Pr(A.ls)
~

N(s.)
~

N(s) ,

where N(x) denotes the number of elements in the set x.

In Cl we modify the usual definition of a partition to the extent of

permitting some of the subsets to be empty; ,that is, there may be some

response alternatives Which are conditioned to none of the elements ,of

s .We do mean to assume, however, that each element of s is condi-

tioned to exactly one response. ,The substance of C2 is, then, to make

the probability that a given response will be evoked bys equal to the

proportion of elements of s that are conditioned to that response.

4.2 Stimulus Compounding

An elementary transfer situation arises if one reinforces two

responses, each in the presence of a different stimulus sample, then

combines all or part of one sample with all or part of the other to

form a new test situation. To begin with a special case, let us consider
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an experiment conducted in the laboratory Of one of the writers

(W.)i:.E.). 8

8This experiment was conducted at Ipdiana University with the assistance

of Miss Joan SeBreny.

In one stage of the experiment, a number of disjoint samples of three

distinct cues drawn from a large population were used as the stimulus

members of paired-associate items, and by the usual method of paired

presentation one response was reinforced in the presence of some of

these samples and a different response in the presence of others. The

constituent cues, intended to serve as the empirical counterparts of

stimulus elements, were various typewriter symbols, which for present

purposes we shall designate by small letters a, b, c, etc., and the

responses were the numbers "one" and "two," spoken aloud. Instructions

to the subjects indicated that the cues represented symptoms and the

numbers diseases with which the symptoms were associated. Following

the training trials,new combinations of "symptoms" were formed, and the

subjects were instructed to make their best guesses at the correct

diagnoses.

Suppose now that response Ai had been reinforced ·in the presence

of the sample (abc) and response ~ in the presence of the sample

(def). If a test trial were given subsequently with the sample (abd),

direct application of Axiom C2 yields the prediction that resp.onse Ai

should occur with probability 2/3. Similarly,if a test were given
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with the sample (ade), response Al would be predicted to occur with

probabilityl/3.ResuJ:ts obtained with 40 subjects, each giv'en: ..24:t!"sts of

each type,were as follows:

Percentage·overlap of training and test sets

Percentage response l to test set

.667

.669

.333

.332

Success in bringing off a priori predictions of this sort depends

not only on the basic soundness of the theory but also on one's success

in realizing various simplifying ~ssumptions in the experimental situa-

tion. As mentioned above, it was. our intention in designing the experi-

ment just cited to choose cues, a, b, c, etc., which would take on the

role of stimulus elements. Actually, in order to justify our theoretical

predictions, it was necessary only that the cues behave as equal-sized

sets of elements. To bring out the importance of the equal N assump-

tion, let us suppose that the individual cues actually correspond to

subset to the reinforced response, application of Axiom C2 yields for

sets sa' sb' etc., of elements. Then, given the same training (response

Al reinforced to the combination abc and response ~ to def), and

assuming the training effective in conditioning all elements of each

,

abdtothe probability of response Al

where we have used the obvious abbreviation N(si) = Ni . This equation

reduces to Pr{Allsasbsa) = 2/3 only if Na =Nb ';. Nd .
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In this experiment we depended on commonsense considerations to

choose cues which could be expected to satisfy the e'lual-N re'luirement,

and also counterbalanced the design of the experiment so that minor

deviations might be expected to average out. Sometimes it may not be

possible to depend on commonsense considerations. In that case, one

can utilize a preliminary experiment to check on the simplifying assump-

tions. Suppose, for example, we had been in doubt as to whether cues a

and b would behave as equal-sized sets .To check on this,we could

have run a preliminary experiment in which we reinforced, say, response

Ai to a and response ~ to b , then tested with the compound abo

Probability of response Ai to ab is) according to the model, given

by

,

which should deviate in the appropriate direction from 1/2 if N
a

and

Nb are not equal. By meanS of calibration experiments of this sort,

sets of cues satisfying the equal-N assumption can be. assembled for use

in further research involving applications of the model.

The expressions obtained above for probabilities of response to

stimulus compounds can readily be generalize~ with respect both to set

sizes and level of training 0 Suppose that a collection of cues a, b, c .••

corresponds to a collection of stimulus sets s , sb J S J 0 0 Da c
of sizes

N , N
b

, N , ., •
a c and that some response A

j
is conditioned to a propor-

tion of .theelements in sa' a proportion of the elements
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in Sb' and so on. Then probability of response Aj to a compound of

these cues is, by AxiomC2, expressed by the relation

N p' . + NbPbj + Ncpcj +
Pr(A.1 s ,sb's , ... ) = _a=....:a"'J";;;----;-=-;;;=.,;-;;:,....:..,..:-'~__

Ja·c N.a+N+N+,..b c
(52)

Application of E~. 52 can be illustrated in terms of a study of

probabilistic discrimination learning reported by ·Estesj Burke, Atkinson,

and Frankmann (1957). In this study the individual cues were lights

which differed from each other only in their positions on a panel. ·The

first stage of the experiment consisted in discrimination training

according to a routine which we shall not describe here except to say

that on theoretical grounds it was predicted that at the end of training

the proportion of elements in a sample associated with the i-th light

conditioned to the first of two alternative responses would be given by

i
Pil = 13' Following this training, the subjects were given compounding

tests with various triads of lights. Considering, say,. the triad of

lights 1, 2,and 3, the values of Pil

and 3
P31 = 13 ' assuming

should be

Nl = N2 = N
3

= N , and substituting these

2
13 '

va).ues into E~. 52, we obtain

2
= 13 = .15

as the predicted probability of response 1 to the compound 1,2,3. Theo-

retical values similarly computed for a number of triads are compared with

the empirical test proportions reported by Estes et. al. ,in Table 5..
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Insert Table 5 about here

An important consideration in applications of models for stimulus

compounding is the question of whether the experimental situation contains

an appreciable amount of background stimulation in addition to the controlled

stimuli manipulated by the experimenter. Suppose, for example,we are

interested in the problem of whether a compound of two conditioned stimuli,

say a light and a tone, each of which has been paired with the same uncon-

ditioned stimulus, may have a higher probability of evoking a conditioned

response (CR) than either of the stimuli presented separately. To ana-

lyze this problem in terms of the present model, we may represent the

light and the tone by stimillus sets and Assuming that assa

result of the previous reinforcement the proportions of conditioned

elements in su and sT (and therefore the probabilities of CRs to the

stimuli taken separately) are PL and PT' respectively, application of

Axiom C2 yields for the probability of a CR to the compound. of light and

tone presented together, neglecting any possible background stimulation,

Pr(CRIL,T) =
NLPL + NTPT

NL + NT

Clearly, the probability of a CR to the compound is simply a weighted

mean of and PT ' and therefore its value must fall between the

pro1)abilities of a CR to the two conditioned stimuli taken separately.

No "summation" effect is predicted.
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Table 5

Theoretical and observed proportions of response A
l

to triads of lights in stimulus compounding test.
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Often, however, it may be unrealistic to assume background stimula-

tion from the apparatus and surroundings to be negligible, In fact, the

experimenter may have to count on an appreciable amount of background

stimulation, predominantly conditioned to behaviors incompatible with

the CR, to prevent "spontaneous" occurrences of the to-be-conditioned

response during intervals between presentations of the experimentally

·controlled stimuli-Let us now expand our representation of the condi-

tioning situation by defining a set sb of backgr'ound elements, a propor-

tion of which are conditioned to the CR, For simplicity, we shall

Then the theoretical pr'oba-consider only the special case of Pb = 0

bilities of evocation of the CR by the light, the tone, and the compound

of light and sound (together with background stimulation in each case)

are given by

and

Pr(CR!L) =

Pr(cRIT)

,

,

Pr(CR!L,T)
NTPT + NLPL

NT+NL+Nb
,

respectively, Under these conditions it is possible to obtain a summa-

tion effect, Assume, for eXaIllple, that NT = NL = Nb and PT > PL '
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so Pr(CRIT) > Pr(CRIL) • Taking the difference between the probability

of a CR to the compound and probability of a CR to the tone alone,

we have

,6
2p ­

L

which is positive if the inequality 2PL > PT holds. Thus, in this

case, probability of a CR to the compound will exceed probability of

a CR to either conditioned stimulus alone, provided that PT is not

more than twice

The role of background stimuli has been particularly important in

the interpretation of drive stimuli. It has been assumed (Estes, 1958,

1961a) th",t in simple animal learning experiments,(e.g., those involving

the learning of running or bar-pressing responses with food or water

reward~ the stimulus sample to which the animal responds at any time is

compounded from several sources--the experimentally controlled conditioned

stimulus (CS) or equivalent; stimuli, perhaps largely intra-organismic

in origin, controlled by the level of food or water deprivation; and

extraneous stimuli which are not systematically correlated with reward

Of the response undergoing training and therefore remain for the most

part connected to competing responses. It is assumed further that the
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sizes of samples of elements associated with the CS and with extraneous

sources, and sE ' are independent of drive, but that the size of

the sample of drive-stimulus elements, sD' increases as a function of

deprivation. In most simple reward-learning experiments, conditioning

to the CS and drive cues would proceed concurrently, and one might

expect that at a given stage of learning the proportions of elements in

samples from these sources conditioned to the rewarded response, R,

would be equal, i.e., PC = PD' If this were the case, then probability

of the rewarded response would be independent of depravation; for, letting

D and D' correspond to levels of deprivation such that N
D

< N
D

, ,

we have as the theoretical probabilities of response R at the two

deprivations,

Pr(RICS,D)
NePC + NoPD

= NC ND+

and

Pr(RI CS,D')
NCPC + ND,PD'

= NC ND,+

If the same training were given at the two drive levels, then we would

have PD = PD' , as well as Pc = PD ; in this case the difference between

the two expressions is zero. Considering the same assumptions but with

. extraneous cues taken explicitly into account, we arrive at a quite

different picture. In this case, the two expressions for response

probability are
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and

Pr(RICS,D,E) ;

Pr(RICS,D' ,E) ;

NcPC + NifD + NEPE
N

C
+ N

D
+ N

E

NcPC+ ND,PD; + NEPE
N

C
+N

D
, + N

E

Now, letting Pc = PD = PD' = P , and for simplicity taking PE; 0 ,

we obtain for the difference

Pr(RI CS,D' ,E) - Pr(RI CS,D,E)

,

which is obviously greater than zero given the assumption N
D

, > ND .

Thus, in this theory, the principal reason why probability of the rewarded

response tends, other things equal, to be higher at higher deprivations

is that that the larger the sample of drive stimuli, the more effective

it-is in outweighing the effects of extraneous stimuli.

4.3 Sampling Axioms and Major Response Theorem of Fixed Sample Size

Model

In 4.2 we considered some transfer effects which can be derived

within a component model by considering only relationships among stimulus

samples that have had different reinforcement histories. Generally,



A. and E. -l22-

however, it is desirable to take account of the fact that there may not

always be a one-to-one correspondence between the experimental stimulus

display and the stimulation actually influencing the subject's behavior.

Owing to a number of factors, e.g., variations in receptor-orienting

responses, fluctuations intheenvi~onmentalsituation, variations in

excitato~ states or thresholds of receptors, the subject often may

sample only a portion of the stimulation made available by the experi­

menter. One of the chief problems of statistical learning theories has

been to formulate conceptual representations of the stimulus sampling

process and to develop their implications for learning phenomena. With

respect to specific mathematical properties of the sampling process,

component models that have appeared in the literature may be classified

into two main types: (l) .models assuming fixed sampling probabilities

for the individual elements of a stimulus population, in which case

sample size varies randomly from trial to trial; and (2) models assuming

a fixed ratio between sample size and population size. The former type

was first discussed by Estes and Burke (l953), the latter by Estes (l950);

and some detailed comparisons of the two types have been presented by

Estes (l959b). In this section we shall limit consideration to models

of the second type, since these are in most respects easier to work with.

In the remainder of this section we shall distinguish stimulus

populations and samples by using S, with subscripts as needed, for a

pop\1lation, and s for a sample. The sampling axiOmS to be utilized

are as follows
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S1. For any fixed,experimenter-def"ined stimulating situation, . sample

size and population size ~ constant over trials.

S2. All samples of the.~ size have equal pro1;>abilities.

A prerequisite to nearly all applications of the model is a theorem

relating response probability to the state of conditioning of a stimulus

population.. We shall derive the theorem in terms of a stimulus situation

S containing N elements from which a sample of size N(s) = 0 is

drawn on each trial. Assuming that some number N. of the elements of
~

B are conditioned to response Ai' we wish to obtain an expression

for the expected proportion of elements conditioned to Ai in samples

drawn from S, since this proportion will, byAxiomC2, be equal to

the probability of evocation of resp0l)se Ai by samples from S. We

begin, as usual, with the probability in which we are interested, then,

using the axioms of the model as appropriate, proceed to expand in terms

of the state of conditioning and possible stimulus samples:

Pr(Ai!S) = L pr(Ails)pr(s!S) •
s

The summation being overall samples of size a that can be drawn from S .

represents the proba-In the last expression on the right,

Nel't, substituting expressions for the condi+ioned probabilities we obtain

" .(",) (.i:, )t:;:~)) ,
pr(Ai!S) = y- -0- r)

N~) 0 .~

N(s. )
l

bility of Ai in the presence of a .sample of size a containing a
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subset si of elements conditioned to Ai ; .the product of binomial

coefficients denotes the number of ways of obtaining exactly N(s.)
l

.elements conditioned to Ai in a sample of size cr, so the ratio of

The resulting

of size cr issample
N(si)

the probability of obtaining the given value of
cr

formula will be recognized as the familiar expression for the mean of

this product to the number of ways of drawing a

a hypergeometric distribution (Feller, 1957, p.218), so we have the

pleasingly simple outcome that the probability of a response to the

stimulating situation represented by a set _S is equal to the proportion

of elements of S that are conditioned to the given response:

(53)

Thi.s result may seem too intuitively obvious to have needed a proof, but

one should note that the same theorem does not hold in general for

component models with fixed sampling probabilities for the elements

(cf. Estes and Suppes, 1959b).

4.4 Interpretation of Stimulus Generalization

OUr approach to the problem of stimulus generalization is to

represent the similarity between two stimuli by the amount of overlap

between two sets of elements .9

9A model similar in most essentials has been presented by Bush and

Mosteller (1951~).
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In the simplest experimental paradigm for exhibiting generalization, we

begin with two stimllllls sitllation.s, represented by sets Sa and Sb'

neither of which has any of its elements conditioned to a reference

response Al Training is given by reinforcement of Al in the presence

of Sa only 1llltil the probability of Al in that sitllation reache.s

some value Pal> O. Then test trials are given in the presence of

Sb ' and if Pbl now proves to be greater than zero, we say that

stimllllls generalization has occllrred, If the axioms of the component

model are satisfied, the vallle of Pbl provides, in fact,a meaSllre

of the overlap of S and
a Sb ; for, by Eq. 53, we have immediately

where San~ den.otes the set of elements common to Sand
a Sb ' since

the numerator of this fraction is simply the number of elements in Sb

that are now conditioned to response A
l

. More generally, if the

proportion of elements of Sb conditioned to A
l

prior to the experi­

ment were eqllal to "bl' not necessarily zero, the probability of

response Al to stimllllls Sb after training in

NC~)

S wOllld be given by
a

,

or with the more compact notation Nab = N(SanSb) , etc.,

:f>bl :::;
NabPal + (Nb - Nab)"bl

Nb
(54a)
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This relation can be put in still more convenient fODm by letting

Nab
= wab ' viz.Nb

This e~uation maybe rearranged to read

(54b)

and we See that the difference (Pal - gbl) between the post-training

probability of Al in Sa and the pre-training probability in ~

can be regarded as the slope parameter of a linear "gradient" of

generalization in which Pbl is the dependent variable and the propor-

tion of overlap between Sa
and is the independent variable. If

we hold
~l

constant and let Pal vary as the parameter, we generate

a family of generalization gradients which have their greatest disparities

at wab = 1 (i.e., when the test stimulus Sb is identical with S)a

and converge as the overlap between ~ and Sa decreases, until the

gradients meet at when Thus the family of

gradients shown in Fig. 9 illustrates the picture to be expected if a

Insert Fig. 9 about here

series of generalization tests is given at each of several different

stages of training in S , or, alternatively, at several different stages
a

of extinction following training in S ,a
as was done, for example, by

Guttman and Kalish (1956). The problem of "calibrating" a physical

stimulus dimension so as to obtain a series of values which represent
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Fig. 9. Generalization from a training stimulus, Sa' to a test

stimulus, Sb' at several stages of training. The parameters are

the proportion of overlap between Sa and Sb' and

the probability of response Al to Sb prior to training
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equal differences in the value of wab has been discussed by

Carterette (1961).

One might regard the parameter wah as an index of the similarity

(the former being given by

larger set to a test

a symmetrical relation,

Nab
and

N
b

Na = N
b

• When

In g~neral, similarity is notto

for w b .. is not equal to wba N a

the latter by Nab) except in the special case
a

Na f Nb ' generalization from training with the

,of

with the smaller set will be greater than generalization from training

with the smaller set to a test with the larger set (assuming .that the

reinforcement given the reference response Al in the presence of the

training set Si is such as to establish the same value of Pil in

each case prior to testing in Sj)' We shall give no formal assump­

tion relating size of a stimulus set to observable properties; however,

it is reasonable to expect that larger sets will be associated with more

intense (where the notion of intensity is applicable) or attention-getting

stimuli. Thus if Sa and ~ represent tones a and b of the same

frequency but with tone a more intense than b, we should predict

greater generalization if we train the reference response to a given level

with a and .test with b than if we train to the same level with b

and test with I?-

It is worth noting that, although in the psychological literature

the notion of stimulus generalization has nearly always been taken to

refer to generalization along some physical continuum such as wavelength

of light, intensity of sound, or the like, the set-theoretical model is

not restricted to such cases. Predictions of generalization in the case
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of complex stimuli may be generated by. first evaluating the overlap

parameter w
ab

for a given pair of situations a and b from a set

of observations obtained with some particular combination of values of

and gbl ' then computing theoretical values of ~l for new

The problemconditions involving different levels of Pal and ~l

of treating a simple "stimulus dimension" is of special interest,how-

ever, and we shall conclude our discussion of generalization by sketching

10one approach to this problem.

10. We follow, in most respects, .the treatment given by W. K.Estes and

D.L. La Berge in unpublished notes prepared for the 1957SSRC Summer

Institute in Social Science for College Teachers of Mathematics. For

an approach combining essentially the same set-theoretical model with

somewhat different learning assumptions, the reader is referred to

Restle (1961).

We shall consider the type of stimulus dimension that Stevens (1957)

.has termed substitutive, or metathetic, i.e., one which involves the

notion of a simple ordering of stimuli along a dimension without varia_

tion in intensity or magnitude. Let us denote by Z a physical dimen-

sion of this sort, e.g., wavelength of visible light, which we wish to

represent by a se~uence of stimulus sets. First we shall briefly out-

line the properties that we wish this representation to have, then we

shall spell out the assumptions of the model more rigorOUSly.
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It is part of t4eint~itive basis of a substitutive dimension that

one moves from point to point by exchanging some of the elements of one

stimulus for some new ,ones belonging to the next. Consequently, we shall

assume that as values of Z 'change by constant increments., each success­

ive stimulus set should be generated by deleting some constant ,number

of elements from the preceding set and adding the same number of new

elements to form the next set. But to ensure that the organism's

behavior can reflect the ordering of stimuli along the Z scale without

ambiguity, we need also to assume that once an element is deleted as we

go along the Z scale, it must not reapPear in the set corresponding

to any higher Z value. Further,in view of the ,abundant empirical

evidence that generalization declines in an orderly fashion as the

distance between two stimuli on such a dimension increases, we must

assume that at least up to the point where sets corresponding to larger

differences in Z are disjoint, the overlap between two, stimulus sets

should be directly ,related to the interval between the corresponding

stimuli on the Z scale. These properties, taken together, enable us

to establish an intuitively reasoBablecorrespondence'betweeu'c4aracter­

istics ofa sequence of stimulus sets and the empirical notion of general­

ization along a dimension.

These ideas are incorporated more ,forinally ,in the following set

of axioms. The basis for these axioms is a stimulus dimension Z,

which may be either continuous or discontinuousj a collection S* of

stimulus sets, and a functionx('Zl , having a finite number of consecu­

tive integers in its range. The mapping of the set (xl of scaled
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stimulus values onto the subset,s (.Si) of S* must satisfy the

axioms:

Gl. For all i < j <k in (x), S/)Sk C. S.---- J

02· For all is j S k in (x) , if s/iSk f P , where p is the---- --- ---
null set, then S. C (s.USk ) .

J - ~

G3 . For all h < i, j < k in (x), if i - h = k - j , then Nhi = Njk ;

and for all i in (x), Nii = N .

The set (x) may simply be a set ofZ scale values, or it may be

a set of Z values rescaled by some transformation. The reasons for

introducing (x) are twofold. First, for reasons of mathematical sim-

plicity we find it advisable to restrict ourselves, at least for present

purposes, to a finite set ofZ values, and therefore to a finite col-

lection of stimulus sets. Second, there is no reason to think that equal

distances along physical dimensions will in general correspond to equal

overlaps between stimulus sets. All that is required,however, to make

the theory workable is that for any given physical dimension, wavelength

of light, frequency of a tone, or whatever,we can find experimentally a

transformation x such that equal distances on the x scale do corres-

pond to equal overlaps.

Axiom Gl states that if an element belongs to any two sets it also

belongs to all sets which fall between these two sets on the x scale.

Axiom G2 states that, if two sets have any common elements then all of the

elements of any set falling between them belong to one or the other (or

both) of the given sets; this property ensures that the elements drop out of

the sets ,in order as we move along the dimension. Axiom G3states the
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property which distinguishes a simple substitutive dimension from-an

additive, or intensity (in Stevens' terminology, prothetic) dimension,

It should be noted that only if the number of values in the range of

x(Z) is no greater thanN(S*) - N + 1 can Axiom G3 be satisfied, This

restri ction is necessary in order to obtain a one-to-one mapping of the

x values into the subsets (Si) of S*.

One advantage in having the axioms set forth explicitly is that it

then becomes_ relatively easy to design experiments bearing upon various

aspects of the model-Thus, to obtain evidence concerning the empirical

tenability of Axiom Gl, we might choose a response Al and a set (x)

of stimuli, including a pair i and k such that Pr(Al [i) ~ Pr(Al [k) ~ 0,

then train subjects with stimulus i only until pr(All i) 1, and

finally test with stimulus k. If pr(Al[k) is found to be greater

than zero, it must be concluded, in terms of the model, that Si()Sk f P;
Le., the sets corresponding to i and k have some elements in connnon.

Given pr(All k) > 0, it must be predicted that for every stimulus j

in (xl such that i < j < k , Pr(Allj) ~ pr(Allk) • Axiom Gl ensures

that all of the elements of Sk which are now conditioned to Al by

virtue of belonging also to Si must be included in

augmented by other elements of Si which are not in

Sj , possibly

Sk

'fa deal similarly with Axiom G2, we proceed in the same way to

locate two members i and k of a set (x) such that Si()Sk f P

Then we train subjects on both stimulus i and stimulus k until

Pr(Alli)~ pr(Allk) ~ 1 , response Al being one which before this

training had probability of less than unity to all stimuli. in (x),
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Now, by .G2if any stimulus j falls between i and k, the set 8j

must be contained entirely in the union 8i U8k ; consequently,we must

predict that we will now find pr(Al[j) = 1 for any stimulus j such

that i::: j ::: k .

To evaluate Axiom G3 empirically we require four stimuli h < i, j < k,

such that i - h = k - j If the four stimuli are all different, we can

simply train subjects on h and test generalization to i, then train

subjects to an equal degree on j and test generalization to k. If

the amount of generalization, as measured by the probability of the

test response, ·is the same in the t""o cases, then the axiom is supported.

In the special case when h = i and j = k , we would be testing the

assertion that the sets associated with different values of x are of

equal size. To accomplish this test, we need only take any two neighbor-

ing values of x, say i and j, train subjects to some criterion on

i and test on j, then reverse the procedure by training (different)

subjects to the same criterion on j and testing on i If the axiom

is satisfied, the amount of generalization should be the same in both

directions.

Once we have introduced the notion ofa dimension,it is natural

to inquire Whether the parameter which represents the degree of COJllIDun-

ality between pairs of stimulus sets might not be related in some simple

way to a measure of distance along the dimension. With one qualification,

which we will mention later, th.e quantity d .. = 1 - Wi' could serve as
lJ . J

a SUitable measure of the distance between stimuli i and j • We can

check to see whether the familiaraxiom$ for a metric are s.atisfied.

These axioms are
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l. dij
~ 0 if and only .if i ~ j ;

2. d. >- 0 ;lj

3. dij
;d .. ;Jl

4. d. +d .> dik ;lj jk -

where it is 1Ulderstood that i,j,and k are any members of the set

(x) associated with a given dimension. The first three of these obviously

hold, but the fourth re~uires a bit of analysis. To carry out a proof,

we shall use the notation Nij for the n1.llnber of elements common to

S. and S. , Nijk for the n1.llnber of elements in both S. and S.
1 J 1 J

but not in Sk and so on. The difference between the two sides of the

ine~uality we wish to establish can be expanded in terms of this nota-

tion as foliows:

Ni ·
2..l

N

N'k) + (1 - ~ ) - (1 ­
N

- l(N - N - N + N )- !'I . ij jk· ik

The last expression on the right is non-negative, which establisqes the

desired ine~uality. To find the restrictions 1Ulder which d is additive)

let us ass1.llne that stimuli i, j, and k fall in the order i < j < k

on the dimension. Then, by.Axiom Gl, we know that N
iJk

~ 0 However
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it is only in the special cases when 8
i

and 8
k

are either over­

lapping or adjacent that N7.k- ~ 0, and,therefore, that d .. + d'k ~ d<k'
~J ~J J ~

It is possible to define an additive distance measure which is not

subject to this restriction, but such extensions raise new problems and

we shall not be able to pursue them here.

In concluding this section, we should like to emphasize one dif-

ference between the model for generalization sketched here and some of

those already familiar in the literature (see, e.g., Spence, 1936;

HUll, 1943}. We do not postulate a particular form for generalization

of response strength or excitatory tendency. Rather, we introduce

certain assumptions about the properties of the set of stimuli associated

with a sensory dimension; then we take these together with learni~g

assumptions and information about reinforcement schedules as a basis for

deriving theoretical gradients of generalization for particular types

of experiments. Under the special conditions assumed in the example

considered above, the theory predicts a family of linear gradients with

very simple properties will be observed when response probability is

plotted as a function of distance from the point of reinforcement. Pre-

dictions of this sort may reasonably be tested by means of experiments

in which suitable measures are taken to meet the conditiOnS assumed in

the derivations (see, e.g. Carterette, 196'\.<; ). But to deal with

experiments involving different training conditions, or response measures

other than relative frequencies, further theoretical analysis is called

for; and one must be prepared to find substantial differences in the

phenotypic properties of generalization gradients derived from the same

basic theory for different experimental situations.
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5 • CCNPONENT AND LINEAR MODELS FOR SIMPLE LEARNING

·In this section we combine, in a sense, the theories discussed in

the preceding sections. Until now it was convenient for expositional

purposes, to threat the problems of learning and generalization separately.

We first considered a type of learning model in which the different

possible samples of stimulation from trial to trial were assumed to be

entirely distinct, and then turned to an analysis of generalization, or

transfer, effects that could be measured on an isolated test trial follow­

ing a series of learning trials. Prediction of these transfer effects

depended on information concerning the state of the stimulus population

just prior to the test trial but did not depend on information about the

COurse of learning over preceding training trials. However, in many

(perhaps most) learning situations, it is not reasonable to assume that

the samples, or patterns, of stimulation affecting the organism on

different trials· of a series are entirely disjoint; rather, they must

overlap to various intermediate degrees, thus generating transfer effects

throughout the learning series. In the "component models" of stimulus

sampling theory, one simply takes the learning assumptions of the pattern

model (Sec. 3) together with the sampling axioms and response rule of the

generalization model (Sec. 4) to generate an account of learning for this

more general case.

5·1 CompoEent Model.s with Fixed S8Jllple Size

As indicated earlier, the analysis of a simple learning experiment

in terms of a component model is based on the representation of the
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-stimulus as a set S of N stimulus elements from which the subject

draws a sample on each trial. At any time each element in the set S

is conditioned to exactly one of the r response alternatives Al , ... ,Ar ;

by the response axiom of Sec. 4.1 the probability of a response is equal

to the proportion of elements in the trial sample conditioned to that

response. At the termination of a trial, if reinforcing event Ei (i F 0)

occurs, then with probability c all elements in the trial sample become

conditioned to response Ai If EO occurs the conditioned status of

elements in the sample does not change. The conditioning parameter c

plays the same role here as in the pattern model. It should be noted

that in the early literature of stimulus sampling theory, this parameter

was usually assumed to be equal to unity.

Two general types of component models can be distinguished. For

the fixed sample~ model we assume that the sample size is a fixed

number s th",oughout any given experiment. For the independent sampling

model we assume that·the elements of the stimulus set, S, are sampled

independently on each trial, each element having some fixed probability

e of being drawn. In this section we discuss the fixed sample size model

and cOnsider the case in which all possible samples of size s are

sampled with equal probability.

Formulation for RTT Experiments. To illustrate the model we first

consider an experimental procedure in which a particular stimulus item is

given a single reinforced trial followed by two consecutive nonreinforced

test trials. The design may be conveniently symbolized RT1T2 . Pro­

cedures and results for a number of experiments using an RTT design
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have been reported elsewhere (Estes, 1960a; Estes, Hopkins and Crothers,

1960; Estes, 1961b; Crothers, 1961). For simplicity, suppose one selects

a·situation in which the probability of a correct response is zero before

the first reinforcement (and in which the likelihood of a subject's

obtaining correct responses by guessing is negligible on all. trials),

In terms of the fixed sample size model we can readily generate predic-

tions for the probabilities, Pij' of various combinations of response

i on Tl and response j on T2 . If i,j; 0 denotes a correct

response and i,j; 1 denotes an error then

To obtain the first result, we note that the correct response can occur

on either trial only if conditioning Occurs on the reinforced trial,

which has probability c. On occasions when conditi. oning occurs, the

whole sample of s elements becomes conditioned to the correct response

and the probability of this response on each of the test trials is
s
N'

On occasions when conditioning does not occur on the reinforced trial,

probability of a correct response remains at zero over both test trials.
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Note that when s; N ; 1 this model is equivalent to the one-element

model discussed in Sec. 2.1. If more than one reinforcement is given

prior to Tl , the predictions are essentially unchanged. In general,

for k preceding reinforcemen~s, the expected proportion of elements

conditioned to the correct response (i.e., the probability of a correct

response) at the time of the first test is

k
PO ; 1 - (1 - c; ) ,

and the probability of correct responses on both T
l

and T2 is given

by

ki[ siJ2c) - • 1 - (1 - iii)

To obtain this last expression, we n()tethat a subject for whom i of

the k reinforcements have been effective will have probability

[
s i]1 - (1 - iii) of making a correct response on each test, and the

probability that

(
k) i k-i
i c (1 - c)

exactly i reinforcements are effective is

Similarly,

and

s2i
(1-:- ). N
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If s = N , these expressions reduce to

kP = 1 - (1 - c)00

= a

. k
Pn = (1 - c)

This special case appears well suited to the interpretation of data

obtained by G. H. Bower (personal communication) from a study in which

the T1T2 procedure was applied following various numbers of presenta­

tions of word-word paired-associates. For 32 subjects each tested on

.10 items, Bower reports observed proportions of POO = .894 ,

P10 = Pal = .003 , and Pll = .100 •

When applied to other RTT experiments, this model has, however,

not yielded consistently accurate predictions. The difficulty apparently

stems from the fact that our assumptions do not take account of the

retention loss that is usually observed from Tl to T2 (see, e.g.,

Estes, 1961~). An extension of the model which is capable of handling

retention decrement as well as the acquisition process will be discussed

in Sec. 5.2 below.

For RTT experiments in which the probability of successful guessing

is not negligible (as in paired-associate tasks involving a fixed list

of responses which are known to the subject from the start) some addi-

.tional considerations arise. Perhaps the most natural extension of the

preceding treatment is to assume that the subject starts the experiment
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with a proportion l
of the elements of a given set S. connected tor ~

lthe correct response and a proportion (l - -) connected to incorrect
r

responses, r being the number of alternative responses. Then for a

fixed sample size model, the probability, PO' of a correct response to

a given item on the first test trial after a single reinforcement is

(1 c)
l

c[s
+ (N - s)jr]Po = - +

r N

(l~'~S) l +.£::.= ,r N

the bracketed quantity being the proportion of elements connected to the

correct response in the event that the reinforcement is effective. Then

the probabilities of various combinations of correct and incorrect reSponses

on the two test trials are given by

Poo = (l - c)

l l
PlO = POl = (l - c) r (1-:;::) + cqJ(l- qJ) (56)

l2
Pn = (l-e)(l- :;::)

2
+c(l-qJ) ,

where qJ = j + (1 - j) ~

An alternative approach to the type of experiment in which the

subject guesses on unlearned items is to assume that initially all

elements are neutral, i.e., are connected neither to correct nor to

incorrect responses. In the presence of a sample containing only.neui:;:ti('l.l



tioned elements in the sample connected to the correct response determines

tioned to the correct response, two conditioned to an incorrect response,

and four unconditioned, then the probability of a correct response is simply

Ifof being correct.
r
1
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elements, the subject guesses, with probability

the sample contains any conditioned elements, then the proportion of condi-

its probability (e.g., if the sample contains nine elements, three condi-

3/5). These assumptions seem in some respects more intuitively satisfactory

than those considered above. Perhaps the most important difference with

respect to empirical implications lies in the fact that with the latter

set of assumptions, exposure time on test trials must be taken into ac-

count. If the stimulus exposure time is just long enough to permit a

response (in terms of the theory, just long enough to permit the subject

to draw a single sample of stimulus elements), then the probabilities of

correct and incorrect response combinations on T
l

and T
2

are

1 2
P = (1 - c) --- + c m'00 2 'l'

r

= (1 - c) 1 (1 _ !) + c cp r (1 _ cp')
r r

,

1 2
= (1 - c)(l - -)

r

2
+ c(l- cp') ,

where The factor hi
I~\

is the probability

that the subject draws a sample containing none of the s elements that

became conditioned on the reinforced trial; therefore 1 - cp' represents

the probability that a subject for whom the reinforced trial was effective

nevertheless draws a sample containing no conditioned elements and makes

an incorrect guess, whereas cp' is the probability that such a subject

makes a correct response on either test trial.
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The two sets of e~uations 56 and 57 are formally identical, and thus

cannot be distinguished in application to RTT data. Like E~uation 55,

they have the limitation of not allowing ade~uately for the retention

loss usually observed (see, e.g., Estes, Hopkins, and Crothers, 1960);

we shall return to this point in Sec. 5.2.

If exposure time is sufficiently long on the test trials, then we

assume that the subject continues to draw successive random samples from

S and only makes a response when he finally draws a sample containing

at least one conditioned element. Thus, in cases in which the reinforce-

ment has been effective on a previous trial (so that S contains a sub-

sample containing one or more conditioned elements and will respond on

the basis of these elements thereby making a correct response with prob-

(58),

+ C

1 1c) - (1 - -)
r r

1 2
-)
r

1
2

r
Poo = (1 - c)

Pll = (1 - c)(l -

Therefore, for the case of unlimited exposure time,

set of s conditioned elements), the subject will eventually draw a

ability 1

~I = 1 and E~. 57 reduces to

which are. identical with the corresponding e~uations for the one-element

model of Sec. 2.2.

General Formulation. We turn now to the problem of deriving pre-

dictions from the fixed sample size model concerning the course of

learning over an experiment consisting of a se~uence of trials run
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under some prescribed reinforcement schedule. We shall limit considera-

tion to the case in which each element in S is conditioned to exactly

one of the two response alternatives, Al

N + 1 conditioning states. Again, we let

or ~, so that there are

C. (i = 0, ••• ,N) denote the
~

state in which i elements of the set S are conditioned to Al and

N - i to ~. As in the pattern model the transition probabilities

among conditioning states are functions of the reinforcement schedules

and the set-theoretical parameters c, .s, and N. Following our

approach in Sec, 3~1, we shall restrict the analysis to cases in which

the probability of reinforcement depends at most upon the response on

the given trial; we thereby guarantee that all elements in the transi-

tion matrix for conditioning states are constant over trials. Thus the

sequence of conditioning states can again be conceived as a Markov chain.

Transition Probabilities. Let s. denote the event of drawing
~,n

a sample on trial n with i elements conditioned to Al and s - i

conditioned to ~ Then the probability ofa one-step transition from

state to state is given by

Pr(Ells VC.) ,s- J
(59a)

w~ere pr(EllsS_vCj) is the probability of an El event given condi­

tioning state Cj and a sample with V elements conditioned to ~ •
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To obtain Eqo 59a we note that an El must occur and that the subject

must sample exactly v elements from the N - j elements not already

conditioned to Al ; the probability of the latter event is the number

of ways of drawing samples with V elements conditioned to ~ divided

by the total number of ways of drawing samples of size s 0 Similarly

and

1 -

(59b)

(59c)

Although it is an obvious conclusion,it is important for the reader to

realize that the pattern model discussed in Part 3 is identical to the

fixed sample size model when s = 1 This correspondence between the

two models is indicated by the fact that Eqo 59 reduce to Eqo 23 when we

let s = 1

For the simple noncontingent schedule in which only the two events

El and E2 occur (with probabilities IT and 1 - IT , respectively)

Eqso 59a to 59c simplify to
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,

,

(60a)

(60b)

(60c)

It is apparent that state CN is an absorbing state when " ~ 1 and

Co is an absorbing state when " ~ 0 Otherwise all states are ergodic.

Mean Learning Curve. Following the same techniques used in connec-

tion with Eq. 27 we obtain for the component model in the simple, non-

contingent case

(61)

This mean learning function traces out a smooth growth curve that can

take any value between 0 and 1 on trial n if parameters are selected

appropriately. However, it is im:portant to note that for a given reali-

zation of the experiment the actual response probabilities for individual

subjects (as opposed to expectations) can only take on the values 0,

1 2
N' N'

N-l... , N ' 1 ; Le., the values associated with the conditioning

states. This step-wise aspect of the process is particularly important

when one attempts to distinguish between this model and models that

assume gradual continuous increments in the strength or probability of
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a response over time (Hull, 1943; Bush and Mosteller, 1955; Estes

and Suppes, 1959a).

To illustrate this point we consider an experiment on avoidance

learning reported by Theios (1961). Fifty rats were used as subjects.

,The apparatus was a modified Miller-Mowrer electric shock box. The

animal was always placed in the black compartment; shortly thereafter

a buzzer and light came on as the door between the compartments was

opened. The correct response (Al ) was to run into the other compart­

ment within 3 seconds. If Al did not occur the subject was given a

high intensity shock (255 volts) until it escaped into the other com-

partment. After 20 seconds the subject was returned to the black corn-

partment, and another trial was given. Each rat was run until it met

a criterion of 20 consecutive successful avoidance responses.

Theois analyzes the situation in terms of a component model in

which N~2 and s~l. Further, he assumes that Pr(A
l

1) ~O and hence,
on trial 1 the subject is in conditioning state CO' Employing Eq. 60

with rt~l, N~2, ,and s~l we obtain the following transition matrix:

C Cl Co2

S 1 0 0

C
l c/2 1 -~2 0

Co 0 c 1 - c

And the expected probability of an A
l

response on trial n is readily

obtained by specialization of Eq. 61,
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() (
_ _2c)n-lPr Al,n = 1 -1 .

Applying this model Theios estimates c = .43 and provides an impressive

account of such statistics as total errors, the mean learning curve,

trial number of last error, autocorrelation of errors with lags of 1,

2, 3 and 4 trials, mean number of runs, probability of no reversals, and

many others. However, for our immediate purposes we are interested in

only one feature of his data; namely, whether the underlying response

1
0, ..2· and 1 as specified by the

model. First, we note that it is not possible to establish the exact

trial on which the subject moves from Co to Cl or from Cl to C2

Nevertheless, if there are some trials between the first succesS (Ai

response,). and the last error (~ response), we can be sure .that the

subject is.in state Cion these trials. For if the subject has made

one success, at least one of the two stimulus elements is conditioned

to the Ai response; if on a later trial the subject makes an error,

then, up to that trial, at least one of the elements is not conditioned

to the Al response. Since deconditioning does not occur in the present

model, the subject must be in conditioning state Cl

to the model, the sequence of response8after the first success and before

the last error should .form a sequence of Bernoulli trials with constant

probability of an response. Theios has applied several

statistical tests to che c.k this hypothesis and none suggest that the

assumption is incorrect. For example, the response sequences for the

trials between the first success and last error were divided into blocks
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of four trials and the number of Al responses in each block was counted.

The obtained frequencies for 0, 1 , 2 , 3 and 4 successes were 2 ,

.12 , 17, 15 , and 4 , respectively; the predicted binomial frequencies

were 3.1 , 12.5, 18.5 , 12.5 and 3.1. The correspondence between pre-

dieted and observed frequencies is excellent as indicated by a

goodness-of-fit test that yielded a value of 1.47 with 4 degrees of

freedom.

Theios has applied the Same analysis to data from an experiment by

Solomon and Wynne (1953) where dogs were required to learn an avoidance

response. The findings with regard to the binomial property on trials

after the first success and before the last error are in agreement with

his own data but suggest that the binomial parameter is other than ~ •

From a stimulus sampling viewpoint this observation would suggest that

the two eiements are not sampled with equal probabilities. For a detailed

discussion of this Bernoulli step-wise aspect of certain stimulus sampling

mOdels, related statistical tests, and a review of relevant experimental

data the reader is referred to Suppes and Ginsberg (1962a).

The mean learning curve for the fixed sample size model given by

Eq. 60 is identical to the corresponding equation for the pattern model

with the sampling ratio cs
N

taking the role of c
N' However, we need

not look far to find a difference in the predictions generated by the

two models. If we define 02,n as in Eq. 29; i.e.,
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t.hen by carrying out theswnmation using the same methods as in the case

of Eq.27, we obtain

-[1 _ 2cs + cs(s - 1)]
~,n - N N(N- 1) ~,n-l

/( 2)+ -Nc[-Ns - s(s - li] a 2 s s aN(N -:L 1., n-l + c:n: iii -; 1., n-1

2
c:n:s+--;

(62)

The asymptotic variance of the response probabilistics for the component

model is simply

2
a

CID

Letting Cl- = Cl- = Cl- , noting that·"c,n"c,n-l -c,oo Pr(Al ) = :n: , and
,00

carrying out the appropriate computations we obtain

loo· - :n:(l - :n:)fN + eN -.2)S]
- N L2N - s - 1 .

This asymptotic variance of the response probabilities depends in

(63)

relatively simple ways on s and N If we hold N fixed and dif-

ferentiate with respect to find that
2 increases monotoni-s , we a
00

cally with s ; in particular, then, this variance for a fixed sample

size model with s > 1 is larger than that of the pattern model with

the same number of elements. If we hold the sampling ratio N fixed

.2
and take the partial derivative with respect to N, we find a to

00
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be a decreasing function of N.. In the limit, if N --t 00 in such a

way that s
N = e remains constant, then

(64)

which, we will see later, is the variance for the linear model (Estes

and Suppes, 1959a). In contrast, for the pattern model the variance of

the p values approaches 0 as N becomes large. We return to

comparisons between the two models in Sec. 5.].

Sequential Predictions. We now examine some sequential statistics

for the fixed sample size model that later will help clarify relationships

among the various stimulus sampling models. In particular, we consider

the probability of an A
l

response given that on the preceding trial

EO ,El or E2 occurred.

Consider, first pr(Al,n+lIEl,n)' By taking account of the condi­

tioning states on trial n + 1 and trial n and also the sample on trial

n we may write

(1 ) L Pr(A C. E s. C ),Pr El '" k l,n+l J,n+l l,n l,n k,n,n J.,JJ

where, as before, s. denotes the event of drawing a sample on trial
l,n

n with i elements conditioned to A
l

and s - i conditioned to A2 ,

Conditionalizing, with our learning axioms in mind, we obtain
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= 1 L
Pr(El ) . . k

.9 n 1; J,
Pr(Al +llc. +l)Pr(C. +llEl s,Ck ),n· J,n. J,n ,n l,n ,n

. Pr(El Is. C
k

)Pr(s. IC
k

)Pr(C
k

),n l,n,n l,n,n ,n

Our reinforcement procedures depend at most on the responses of the

subject and hence Pr(E
l
·· ) =Pr(E

l
Is. C

k
).

,n ,n l,n ,n Further

c if j=k+s-i

Pr(C. +llEl s. Ck· ) =J,n. Jn1,n ,n.
1- c if j = k

o otherwise

That is, the s -·i elements in the sample originally conditioned to

~ now become conditioned to Al with probability c and hence a

mOve from state C
k

to C
k

+
s

_i Occurs. Also, as noted with regard to

Pre s. ICk ) =l,n ,n

substituting these results in our last expression for pr(Al,n+lIEl,n)

yields

Pre C
k

) .
,n
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We now need the fact that the first raw moment of the hypergeometric

distribution is

,

pel!'initting the simplification

Pr(A IE) = L [cs + ~ (1 - CS)] Pr(C
k

n)
1, n+l 1, n k N N· N ,

But by definition

Pr(Al ) = L ~N Preck ),
,n k ,n

whence

(65a)

By the same method of proof we may show that

(65b)

Pr(A
l

)
,n

(65c)

finally, for comparison with other models, we present the expressions for

Pr(Ak +lE. A. n) • As in previous cases (e.g.,Eg. 31a), we give,n. J,nl,
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results only for the noncontingent situation in which Pr(Eo ); 0
,n

and r; 2. Derivations of these probabilities are based on the same

methods used in connection with Eq. 61a.

Pr(A E A );rr{[l_C(S-l)]a +c(S-l) }
l,n+l l,n l,n N -1· 2,n N - 1 '\,n

Pr(Al,n+lE2,nAl,n) ; (1- rr){[l- c~s_-/)]~,n -[ c; - c~~-/)]'\,n}

Pr(A
l

+lE
2

A2 .); (l_rr)[l_C(S-l)]~ -a)
,n ,n . ,n N.~ 1 l,n 2,n

Pr(A_ .E A ) ;rr[l_c(S-l)](Q _Q )
-'",n+l l,n l,n N-1 .L,n ~,n

(66a)

(66b)

(66c)

(66d)

(66e)

pr(~,n+lEl,n~,n) ; rr{(l- c;)(l-'\,n) -[1- t.-ll)}al,n -~,n)} (66f)

pr(~,n+lE2,nAl,n) ; (l-rr){[l+ it- c~S_-ll)]'\,n - [1- c~S_-11)}=t2,n} (66g)

pr(~,n+lE2,n~,n) ; (1 - rrJ{l - al,n - [1- c~S_-/)]cal,n - a2,n)} (66h)
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Application of these equations to the corresponding set of trigram

proportions for a pre-asymptotic trial block is not particularly reward-

ing. The difficulty is that certain combinations of parameters, e.g.,

( l_c(S-l). _
.. N - 1 ) (ell n ~ n), ,

csand N' behave as units; consequently, the

basic parameters c, s ,and N cannot be estimated individually and,

as a result, the predictions available from the simpler N-element pattern

model via Eq. 32 cannot be improved upon by use of Eq. 66. For asymptotic

data, the situation is somewhat different. By substituting the limiting

values for 0:
l,n

and 0:2 in Eq. 66,i.e.,
,n

q ~ rc
1

and fromEq. 63

2
+ rc ~ rc(l- rc)fN+ (N_2)S]+

N l 2N - s - 1
2rc ~

rc[N- 2s+Ns+2rc(N-s)(N-l)]
-- N(2N-s-l) ,

we can express the trigram probabilities, Pr(A E. A. ) in terms
-K,CO J,OO 1,00

of the basic parameters of the model. The resulting expressions are

somewhat cumbersome, however, and we shalL_not pursue this line of

analysis further in the present article.
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5.2 Component Models with Stim)J.lus Fluctuation

In the preceding section, as in most of the literature on stimulus

sampling models for learning, we restricted attention to the special case

in which the stimulation effective on successive trials of an experiment

may be considered to represent independent random samples from the

population of elements available under the given experimental conditions.

More generally, we would expect that the independence of successive

samples would depend on the interval between trials. The concept of

stimulus sampling in the model corresponds to the process ofst1mulation

in the empirical situation. Thus sampling and re-sampling from a stimulus

population must take time; and if the interval between trials is suffi­

ciently short, there will not be time to draw a completely new sample.

We should expect the correlation, or degree of overlap, between succes­

sive stimulus samples to vary inversely with the .intertrial interval,

running from perfect overlap in the.limitingcase(~otnece~sarily

empirically realizable) of a zero interval to independence at suffi­

ciently long intervals. These notions have been embodied in the

stimulus fluctuation model (Estes, 1955a, 1955b, 1959a). In this section,

we shall develop the assumption of stimulus fluctuation in connection

with fixed sample size models; consequently, the expressions derived

will differ in minor respects from .those of the earlier presentations

(cited above) which were not restricted to the case of fixed sample size.

Assumptions and Derivation of Retention CurVeS. Following the·

convention of previous articles on stimulus fluctuation models, we shall

denote by S* the set of stimulus elements potentially available for
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sampling under. a given set of experimental conditions, by S the subset

of elements available for sampling a.t any given time and by S' the sub-

set of elements that are temporarily unavailable (so that S* = sUS')

The trial sample, s , is in turn a subset of S ., however, in this

presentation we shall assume for simplicity that all of the temporarily

available elements are sampled on each trial (1. e., S = s ) . We denote

by N, N', and N*, respectively, the numbers of elements in s,

S', and S*

The·interchange between the stimulus sample and the remainder of

the pop~llation,i.e.,between sand S', is assumed to occur at a

constant rate ov(>r time. Specifically, we assume that during an inter-

val L>t which is just long enough to permit the interchange of a single

element between sand S', there is probability gthat such an

interchange will oCCur, the parameter g being constant over time.

We shall limit consideration to the special case in which all stimulus

elements are equally likely to participate in an interchange. With this

restriction, the fluctuation process can be Characterized by the

difference equation,

f{t + 1)

11
= [1 - g(iii + iii')] f(t) + ~, , (67.)

where f(t) denotes the probability that any given element.of S* is

in s at time t. This recursion can be solved by standard methods



A. and E. -157-

to yield the explicit formula

fet)
N N 1 1 t

= N* - [N* - f( 0)][1 - g('N + N')]

= J - [J - f(O)] at , (68)

where

and a

N
J = N*' the proportion of all elements which are in the sample,

1 1
1 - g(N + N') •

Equation 68 can now serve as the basis for deriving numerOuS

expressions of experimental interest. Suppose for example, that at the

end of a conditioning (or extinction) period there were J" conditioned
·0

To ob-

elements in Sand kO conditioned elements in S', the momentary

probability of a conditioned response thus being PO = jo IN

tain an expression for probability of a conditioned response after a

rest interval of duration t, we proceed as follows. For each condi-

tioned element in S at the beginning of the interval, we need only set

f(O) = 1 in Equation 68 to obtain the probability that the element is

in S at time t. Similarly, for a conditioned element initially in

S', we set f(O) = 0 in Equation 68. Combining the two types, we

obtain for the expected number of conditioned elements in S at time t ,
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Dividing by N (and noting that N
J = N*) we have, then, for the

probability of a conditioned response at time t,

(69)

where P5 and PO denote the proportion of conditioned elements in

the total population S* and the initial propo:rtion in S, respec-

tively. If the rest interval begins following a conditioning period,

we would ordinarily have Po > P5' in which case Equation 69 describes

a decreasing flmction (forgetting, O:r spontaneous regression). If the

rest int"rval begins following an extinction period, we would have

Po < P5' in which case Equation 69 describes an increasing flmction

(spontaneous recovery). The manner in which cases of spontaneous re-

gression or recovery depend on the amount and spacing of previous

acquisition or extinction.has been discussed in detail elsewhere (Estes,

1955a) •.

Application to the RTT Experiment. We noted in the preceding

section that the fixed sample size model could not p:rovide a generally

satisfactory account of RTT experiments because it did not allow for

the retention loss usually observed between the first and second tests.

It seems reasonable that this defect might be remedied by removing the

restriction on independent sampling. To illustrate application of the
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more general model with provision for stimulus fluctuation, we shall

again consider the case of an RTT experiment in which the probability

of a correct response is negligible prior to the reinforced trial (and

also on later trials· if learning has not occurred). Letting t
l

and

t 2 denote the intervals between Rand Tl and between T
l

and T2 ,

respectively, we may obtain the following basic expressions by setting

f( 0) equal to 1 or 0, as appropriate, in Equation 68:

For the probability that an element sampled on R is sampled

again on T
l

,

t
l

= J + (1 - J)a ;

for the probability that an element sampled on T
l

is sampled

again on T2 ,

t 2
J + (1 - J)a ;

and for the probability that an element not sampled on T
l

is

sampled on T2 ,

t 2
J( 1 - a )

Assuming now that ·N = 1 , so that we are dealing with a generalized

form of the pattern model, we can write the probabilities of the four

combinations of correct and incorrect responses on Tl and T2 in



A. and E. ~160.

terms of the conditioning parameter c and the parameters f i

Poo ~ c f l f 2

POl ~ c f l (1-f2 )

PlO ~ c(l - f l ) f
3

Pn 1- c + c(l- fl)(l -f
3

) ,

where, as before, the subscripts 0 and 1 denote correct responses

and errors, respectively. As they stand, Eq. 10 are not suitable for

application to data, for there are too many parameters to be estimated.

This difficulty could be surmounted by adding a third test trial, for

the resulting eight observation equations,

etc., would permit overdetermination of the four parameters. In the

case of some published studies (e.g., Estes, 1961b) .the data can be

handled quite well on the assumption that f
l

is approximately unity,

in which case Eq. 70 reduce to
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Pll = 1 - c

In the general case of E~. 70, some predictions can be

made without information as to exact parameter values. It has been

noted in pUblished studies (Estes, Hopkins and Crothers, 1960; Estes,

1961b) that the observed proportion POl is generally larger than

P10' Taking the difference between the theoretical expressions for

these ~uantities, we have

POl - P10 = c fl(l- f 2 ) - c(l-fl ) f 3

t l . t 2
=c[J+(l-J)a ](l-J)(l-a )

t
l

t
2

- c(l- J)(l- a ) J(l- a )

t
2

. t
l

t
lc(l-J)(l-a )[J+(l-J)a -J(l-a )]

,

which obviously must be e~ual to or greater than zero. The experiments

cited above have in all cases had t
l

< t 2 , and therefore f l > f2 •
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Since f 2 , which is directly estimated by the proportions of instances

in which correct responses on Tl are repeated on T2 , has ranged

from about .6 to .9 in these experiments (and f l must be larger)

it is clear that P10' the probability of an incorrect followed by a

correct response, should be relatively small. This theoretical predic.

tion accords well with observation.

Numerous predictions can be generated concerning the effects of

varying the durations of t
l

and t 2 The probability of repeating

a correct response from T
l

to T2 , for example, should depend solely

on the parameter f 2 , decreasing as t 2 increases (and f 2 therefore

decreases). The probability of a correct response on T2 following an

incorrect"response on Tl should depend most strongly on f
3

, in­

creasing as t 2 (and therefore f
3

) increases. The overall proportion

correct per test shOUld, of course, decrease from Tl to T2 (although

the difference between proportions on T
l

and T2 tends to zero as

t
l

becomes large). Data relevant to these and other predictions are

available in studies by Estes, Hopkins, and Crothers (196Q),Peterson,

Saltzman, Hillner, and Land (1962), and Witte (R. Witte, personal com­

munication). The predictions concerning effects of variation of t 2

are well confirmed by these studies. Results bearing on predictions

concerning variation in t l are not consistent over the set of experi­

ments, possibly because of artifacts arising from item selection

(discussed by Peterson, et al, 1962).
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Application to the Simple Noncontingent case. We shall restrict

consideration to the special case of N =1; thus, we shall be dealing

with a variant of the pattern model in which the pattern sampled on any

trial is the One most likely to be sampled on the next trial. No new

concepts are required beyond those introduced in connection with the

RTT experiment, but it will be convenient to denote by a single symbol,

say g, the probability that the stimulus pattern sampled on any trial

n. is exchanged for another pattern on trial n+l. In terms of the

notation used above,

g
t(l-J)(l- a )

where' t is now taken to denote the intertrial intervaL AlSO, we

the probability of the state of the organism in whichdenote by u lm,n

m stimulus patterns are conditioned to the Al response and one of

patterns aremthe probability thatu Cm,n

conditioned to Al but a pattern conditioned to ~ is sampled.

these is sampled, and by

Obviously,

N*
LU
m=O lm,n

,

Where, as usual, Pn denotes probability of the Al response on trial n .

Now we can write expressions for trigram probabilities, following

essentially the same reasoning used before in the case of the pattern

model with independent sampling. For the joint event A1E1A
l
, we obtain
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Pr(Al +lEl Al ),n . ,n ,n = II 2= u lm,n
m "

[ m -1]l-g+gN'" ;

= ll[(l- g -~')Pn + g 2= ulm n j,] ;
ill '

for if an element conditioned to A
l

is sampled on trial n, then

with probability l-g it is resampled and with probability
m-l

gN'

it is replaced by another element conditioned to A
l

, and in either

event an A
l

response must occur on trial n + 1 Using the abbrevia-

tions U = L: ulm -N
m

, ?-nd V = r u"- -N
m

" the trigram probabilitiesn , n n \,All, n .m m
can be written in relatively compact form:

Pr(Al +lEl Al )= n[ (1 - g - -Ng,);p + gU ],n .". ,n ,n .. n n ,

Pr(Al +lE2 A
l

)=(l-ll)[((l-c)(l-g)-g;}p +gU],n, ,n ,n .,', " Wr n n

Pr(Al +lEl A_ ) = ll[c(l-g)(l-Pn) + gVn ] ,,n, , ,n·c,n

Pr(A E A_ ) = (l-ll)gV ,l,n+l 2,n-'"2,n n

,

Pre A_ +lEl Al )
-~,n ,n ,n ,

Pr(A_ +lE2 A
l

) = (l-ll).[(C -cg+g+-Ng,)p - gU]-""2, n , ,n ,n ,-n -n

Pr(A_ E A_ ) = ll[(l-c+cg)(l-p)- gV] ,
'""'2 ,n+I 1, n-/2 J n n n

,

Pr(A_ E A_) = (l-ll)[l- p - gV] (71)-'"2,n+l 2,n-'"2,n "n n
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The chief difference between these expressions and the corresponding

ones for the independent sampling models is that sequential effects

now depend on the intertrial interval. Consider, for example, the

first two of Equations 71, involving repetitions of response Al • It

will be noted that both of these expressions represent linear combina-

tions of with the relative contribution of increas-

ing as the intertrial interval (and therefore g) decreases. Also,

it is apparent from the. defining equations for Pn and Un' that

p > U , with equality obtaining only in the special cases where both
n~ 'n

are equal to unity or both equal to zero. Therefore, the probability

of a repetition is inversely related to the intertrial interval. In

particular, the probability that a correct Al or ~ response will

be repeated tends to unity in the limit as the intertrial interval goes

to zero. When the intertrial interval becomes large, the parameter g

and Equations 71 reduce to those of a patternapproaches 1
1- N* ,

model with N elements and independent sampling.

Summing the first four of Equations 71, we obtain a recursion for

probability of the Al 'response:

~ (1 - c - g - .!:aN' + cg)p + c(l - g)rc + g(U +V )
n' "n n

Now, although a full proof would be quite involved, it is not hard

to show heuristically that the asymptote is independent of the inter-

trial interval. We note first that asymptotically we will have
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,

where u
m

is the probability that m elements are conditioned to Al .

The substitution of for is possible in view of the intui-

tively evident fact that, asymptotically, the probability that an ele-

ment conditioned to Al constitutes the trial sample is simply equal

to the proportion of such elements in the total population. Substi-

tuting into the recursion for Pn in terms of this relation, and the

analogous one for

we obtain

v ,
n

= (1- c +cg)Pn .+ c(l- g)n ,

the simplification in the last line having been effected by means of

the identity

- g -~,
N'+ 1

=- g("-NT") N*
- g:N'
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Poo and solving for Poo' we arrive at the tidy

Poo ~ O· - c + cg)poo + c(l - g)n ,

The recursion in can be solved, but the resulting formula

expressing Pn as a function of n and the parameters is too cU1llber­

some to yield much useful information by visual inspection. It seems

intuitively obVious that for 1
g < 1-­

N* (Le., for any but very long

intertrial intervals) the learning curve will rise more sharply on early

trials than the corresponding curve for the independent sampling case.

This is so because only sampled elements can undergo conditioning, and

once sampled, an element is more likely to iI:le. resampled th!'l.,phiJrter the

intertrial interval. However, the curves for longer and shorter inter-

vals must cross ultimately, with the curve for the longer interval

approaching asymptote more rapidly on later trials (Estes, 1955b). If

;n: ~1, the total nU1llber of errors expected during learning mUllt be

independent of the intertrial interval; for each initially unconditioned

element will continue to produce an error each time it is sampled until

it is finally conditioned, and the probability of any specified number

of errors prior to conditioning depends only on the value of the
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conditioning parameter c. Similarly, if n is set equal to 0

after a conditioning session, the total number of conditioned responses

during extinction is independent of the intertrial interval.

5.3 The Linear Model as a Limiting Case

For those experiments in which the available stimuli are the same

on all trials, the possibility arises of using a model that suppresses

the concept of stimuli. In such a "pure" reinforcement model the

learning assumptions specify directly how response probability changes

on a reinforced trial. Elf all odds the most popular models of this

sort are those which assume probability of a response on a given trial

to be a linear function of the probability of that response on the

previous trial. ll

11 For a discussion of this general class of "incremental" models see

the Chapter by Sternberg in this volume.

The so-called "linear models" received their first systematic treatment

by Bush and Mosteller (195la,1955) and have been investigated and

developed fu;rther by many others. We shall be concerned only with a

certain class of such models based on a single learning parameter e

A more extensive analysis of this class of linear models has been given

by Estes and Suppes (1959a).

The linear theory .is formulated for the probability of a response

on trial n +1, given the entire preceding sequence of responses and
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x be the sequence of responses and
n

12
In the language of stochastic processes we have a chain of infinite

order.

reinforcements of a given subject through trial n; that is, x is
n

a sequence of length 2n with j's (where j = 1 to r) in the odd

positions indicating responses and i's (where i = 0 to r) in the

even positions indicating reinforcements. The axioms of the linear

model are as follows:

and O<k<r,

for every 1,i' and k such that 1< •• I
1"J. < r

Ll. If Pr(E. A. I x 1) > 0 thenl,n 1 ,u n-

Pr(A. llEi A. , x 1) = (1 - e) Pr(Ai n1xn_l) + e1,n+ ,n 1 ,u n- ,

L2. If Pr(Ek A. I x 1) > 0 , k ~ i and k ~ 0 , then
,TIl ,U u,:","

Pr(A. +llEk A. I x 1) = (1- e) Pr(A. Ix 1)l,n,ll l,n n- J., n n-

L3. If Pr(Eo A. I x 1) > 0 then,nJ.,un-

Pr(A. +lIEO A., x 1) = Pr(A. Ix 1)
l, n .,n ]. ,u n- l,n u-::-
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By a~ibm Ll, if the reinforcing event, Ei , corresponding to

response Ai oc.curs on trial n , then (regardless of the response

occur,ring on trial n ) the probability of A. increases by a linear
~

transform of the old value. By L2 , if some reinforcing event other

than Ei occurs on trial n, then the probability of Ai decreases

by a linear transform of its old value. And by L3, occurrence of the

("neutral") event EO leaves response probabilities unchanged. The

axioms may be written more compa~tly in terms of the probability,

PXi,n' that a subject identified with sequence x makes an Ai

response on trial n •, namely,

L If the subject receives an E
i

event on trial n,

PXi,n+l ; (1 - e)Pxi,n + e ;

2. if the subject receives an Ek event (k F i and k F 0 )

on trial n,

PXi,n+l - (1 - e):Pxi,n ;

3. if the subject receives an EO event on trial n,
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From a mathematical standpoint it is important to note that for

the linear model the response probability associated with a particular

subject is free to vary continuously over the entire interval from 0

to 1 since this probability undergoes linear transformations as a

result of reinforcement. Consequently, if one wishes to interpret

changes in response probability as transitions among states of a Markov

process, one must deal with a continuous-state space. Thus the Markov

interpretation is of little practical value for calculational purposes.

In stimulus sampling models, response probability .is defined in terms

of the proportion of stimuli conditioned; since the set of stimuli is

finite, so also is the set of values taken on by the response proba-

bility of any individual subject. It is this finite character of

stimulus sampling models that makes possible the extremely useful

interpretation of the models as finite Markov chains.

An inspection of the three axioms for the linear model indicates

that they have the same general form as Equation 60, which describe

changes in response probability for the fixed sample size component

·C's·e = IN then the two sets of rules are

similar. As one might expect from this observation, many of the

predictions generated by the two models are identical when
cse =­
N

For example, in the simple noncontingent situation the mean learning

curve for the linear model is

Pr(Al ),n (72)
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which is the same as that of the component model (see Estes and Suppes,

1959a, fora derivation of results for the linear model). However,

the two models are not identical in all respects, as is indicated by a

comparison Of the asymptotic variances of the response distributions.

For the linear model

2 8
cr = rc(l- rc) --

00 .. 2-8

as contrasted to Equation 63 for the component model. However, as

noted above in connection with Equation 63, i11 the limit (as N -> 00 )

2cr for the component model equals the predicted value for the
00

.linear model.

The last result suggests that the component model may converge to

the linear process a.s N -> 00 • This conjecture is substantially cor-

rect; it can be shown that, in the limit both the fixed sample size

model and the independent sampling model approach the linear model for

an extreme~ybroad class of assumptions governing the sampling of ele-

ments. The derivation of .thelinear model from component models holds

for any reinforcement schedule, for any finite number r of responses,

and for every trial n, not simply at asymptote. The proof of this

convergence theorem is lengthy and we shall not present it here.

However, as one might expect, the proof depends on the fact that the

variance of the sampling distribution for any statistic of the trial

sample approaches 0 as N becomes large. A proof of the convergerce

theorem is given by Estes and Suppes (l.959b). Kemepyand Snell (1957)
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also have considered the problem but their proof is restricted to the

·two-choice noncontingent situation at asymptote.

Comparison of the Linear and Pattern Models. The same limiting

result, of course, does not hold for the pattern model discussed in

Sec. 3. For the pattern model only one element is sampled on each trial

and it is obvious that as N ~oo the learning effect of this sampling

scheme would diminish to zero. For experimental situations where both

the linear model and the pattern model appear to be applicable it is

important to derive differential predictions from the two models which,

on empirical grounds, will permit the researcher to choose between them.

To this end we display a few predictions for the linear model applied

to both the RTT situation and the simple two-response noncontingent

situation; these results will be compared with the corresponding

equations for the pattern model.

For simplicity, let us assume that in the case of the RTT situation

the likelihood of a correct response by guessing is negligible on all

trials. Then, according to the linear model, probability of a rein-

forced response changes in accordance with the equation

Pl=(l-e)p +e.n+ n

In the present application the probability of a correct response

on the first trial (the R trial) is zero, and hence the probability

. of a correct response on the first test trial is simply e. No

reinforcement is given on T
l

and consequently the probability of a
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correct response does not change between T
l

and T2 Therefore,

whereas the differ-

P'OO' the probability of a correct response on both Tl and T2 (as

defined in connection with Equation 55) is e2
• Similarly, we obtain

2
POl ~ P10 ~ e(l- e), and Pll ~ (1 - e) • Some relevant data are

Insert Table 6 about here

presented in Table 6 (from Estes, 1961b). They represent joint response

proportions for 40 subjects, each tested on 15 paired associate items of

the type described in Sec. 2 •.1, the RTT design applied to each item. In

order to minimize the probability of correct responses occurring by

guessing, these items were introduced (one per trial) into a larger list,

the composition of which changed from trial to trial. A critical item

introduced on trial n received one reinforcement (paired presentation

of stimulus and response members) followed by a test (presentation of

stimulus alone) on trial n and trial n +1, following which it was

dropped from the list.

From an inspection of the data column of Table 6 it is obvious

that the simple linear model cannot handle these proportions. It suf-

fices to note that the model requires POL ~ P1C '

ence between these two entries in the data column is quite large.

One might try to preserve the linear model by arguing that the

pattern of observed results in Table 6 could have arisen as an artifact.

If, for example, there are differences in difficulty among items (or,

equivalently, differences in learning rate among subjects), then the



,

A. and E. -174a-

Table 6

Observed Joint Response Proportions for RTT Experiment and Predictions

from Linear Retention-Loss Model and Sampling Model.

Observed Linear Sampling
Pnop:brtion Model Model

POO .238 .238 .238

POl .147 .238 .152

PlO .017 .018 0

Pn .598 .506 .610
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instances of incorrect response on T
l

, would predominately represent

smaller a values than instances of correct responses. On this account

one might expect that the predicted proportion of correct following

incorrect responses would be smaller than that allowed for under the

"equal a" assumption, and therefore that the linear model might not

actually be incompatible with the data of Table 6. We can easily check

the validity of such an argument. Suppose that parameter ai is asso­

ciated with a proportion f i of the items (or subjects). Then in each

Case where ai is applicable, the probability of a correct response on

Clearly then, POl

estimated from a group of items described by ,differences in a would be

POl = L f.a.(l-a.)
i 11· 1

But a similar argument yields

PlO = L::: f. (1 - a. )a.
. il J.J.

Since, again, the expressions for and are equal for all

distributions of ai' it is clear that individual differences in

learning rates alone could not account for the observed results.

A related hypothesis that might seem to merit consideration is

that of individual differences in rates of forgetting. Since the pro-

portion of correct responses on is less than that on there

i~ evidently some retention loss, and differences among subjects, or

items in susceptibility to this retention loss might be a source of
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bias in the data. The hypothesis can be formulated in the linear model

as follows: Probability of the correct reElponse on T
l

iEl equal to

e ; if, however, there iEl a retention 10SEl then the probability of a

correct reElPonEle on T2 will have declined to some value P, such

that p < e. If there are individual differences in amount of

retention loss, then we should again categorize the population of

subjectEl and items into ElubgroupEl, with a proportion f
i

of· the sub­

jectEl characterized by retention parameter Pi' Theoretical expreEl­

sions for Pij can be derived for Eluch a population by the same. method

used in the preceding case; the reElults are aEl follows:

Poo = e Lf.p
:i l: i

POl = e Lf.(l-p.)
i J. J.

PIO = (l-e) ~fiPi
J.

Pn = (1- e) Lf. (1 -P.)
• J. J.
J.

This time the expressions for and are different; with a

suitable choice of parameter values, they could accommodate the dif-

ference between the observed proportions and However,

another difficulty remains. To obtain a near zero value for

would require either a e near unity, which would be incompatible with

the observed proportion of .385 correct on T
l

, or a value of

L:= fiPi near zero, which would be incompatible with the observed
't



A.andE. -177-

proportion of .255 correct on T2 • Thus, we have no support for the

hypothesis that individual differences in amount of retention loss might

account for the pattern of empirical values.

One can go on in a similar fashion and examine the results of

supplementing the original linear model by hypotheses involving more

complex combinations or interactions of possible sources of bias (see

Estes, 1961b). For example, one might assume that there are large

individual differences in both learning and retention parameters. But

even with this latitude it is not easy to adjust the linear model to

the RTT data. Suppose that we admit different learning parameters,

and and different retention parameters, and the

combination 81°
1

, obtaining for half the items and the combination

for the other half, Now the formulas become

81°1 + 82°2
Poo = 2 ,

81 (1-°1) + 82 (1 -°2)
POl = 2

(1 - 81 )°1 + (1-82 )°2
P10 = 2

,

(1-81 )(1- 0:\) + (1.- 82 )(1-°2)

2

From the data column of Table 6, the proportionp of correct responses

on the first and second test trials, are PO- = .385 and P-O = .255 ,

respectively. Adding the first and second of the equ",tions above to

obtain :the theoretical expression for PO-' and the 'first and third

equations to get P~O' we· have .
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e
l + e

2
PO-

;

2

and

Pl + P2
P-0

;

2

Equating theoretical and observed values, we obtain the constraints

which should be satisfied by the parameter values. If the proportion

Poa in Table 6 is to be predicted correctly, we must have further

elPl + e2P2 ; :238
2

,

or, substituting from the two equations just above,

which may be solved for e
l

.083 + .77Pl
2Pl - ·51

"now the admissible range of parameter values can be further reduced.

For the right hand side of this last equation to have a value between

o and 1, P
l

must be greater than .48, so we have the relatively
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proportion of .255 correct on T2 .' Thus, we have no support for the

hypothesis that individual differences in amount of retention loss might

account for the pattern of empirical values.

One can go on in a similar fashion and examine the results of

supplementing the original linear model by hypotheses involving more

complex combinations or interactions of possible sources of bias (see

Estes, 1961b). For example, one might assume that thElre are large

individual differences in both learning and retention parameters. But

even with this latitude it is not easy to adjust the linear model to

the RTT data. Suppose that we admit different learning parameters,

8
1

and and different retention parameters, and the

combination' 81P
l

, obtaining for half the items and the combination

for the other half. Now the formulas become

81Pl + 82P2
POO 2 ,

Bl(l-Pl ) + 82 (1-P2 )

PO' 2 ,
,L

(1 - 81 )Pl + (l~ 82 )P2
P10 = 2 ,

(1 -81 ) (1- Pl ) + (1- 82 )(1 - P2 )

Pn 2

From the data column of Table 6, the proportions of correct responses

on the first and second test trials, are PO- = .385 and P-O = .255 ,

respectively. Adding ,the first, and second of the equatiorts above to

obtain the theoretical expression for PO-' ahdthe ~irst and third

equ.ationsto get, p~O' wehave
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and

E~uating theoretical and observed values, we obtain the cOnstraints

which should be satisfied by the parameter values. If the proportion

Poo in Table 6 is to be predicted correctly, we must have further

81Pl + 82P2 = :238
2

,

or, substituting from the two e~uations just above,

which may be solved fOr 81

.083 + .7!Pl
2P l - ·51

,.Now the admissible range of parameter values can be further reduced.

For the right hand side of this last e~uation to have a value between

a and 1, Pl must be greater than .48, so we have the relatively
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narrow bounds on the parameters Pi

Using these bounds on

as a function of that

we find from the equation expressing el

el must in turn satisfy .93 ~ el ~ 1.0

But now the model is in trouble, for in order to also satisfy the

constraint el + e
2

= .77, e
2

would have to be negative (and the cor­

rect response probabilities for half of the items on T
l

would also be

negative). About the best we can do, without allowing "negative proba­

,bilities" is to use the limits we have obtained for Pl , P2 , and 81

and arbitrarily assign a zero or small positive value to e
2

Choosing

the combination el = ·95 , 82 = .01, Pl = .5, and P2 = . 01 , we

obtain the theoretical values listed for the linear model in Table 6.

By introducing additional assumptions or additional parameters, we could

improve the fit of the linear model to these data, but there would seem

to be little point in doing so. The refractoriness of the data to des­

cription by any reasonably simple form of the mode+ suggests that perhaps

the learning process is simply not well represented by the type of growth

function embodied in the linear model.

By contrast, these data can be quite readily handled by the stimulus

fluctuation model developed in the preceding section, Letting f
l

= 1

in Equations 70, and using the estimates c = .39 and f 2 = .61 , we

obtain the theoretical values listed under "Sampling l'lodel" in Table 6.
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One would not, of course, claim that the. sampling model has been rigorously

tested, since two parameters had to be estimated and there are only three

degrees of freedom in this set of data, However, the model does seem

more promising than any of the variants of the linear model that have

been investigated. More stringent tests of the sampling model can readily

be obtained by running similar experiments with longer sequences of test

trials, since predictions concerning joint response proportions over

blocks of three or. more test trials can be generated without additional

assumptions .

. Additional Comparisons Between the Linear and Pattern Model. We

now turn to a few comparisons between the linear model and the multi-

element pattern model for the simple noncontingent situation. First of

. all, we note that the mean learning curves for the two models (as given

in Equation 37 and Equation 72) are identical if we let c
iii '" e .

However, the expressions for the variance of the asymptotic response

distribution are different; for the linear model 2 ( )' Ba = n 1- n ---
00 2 - e ,

whereas for the pattern model 1n(l - n)-. N This difference is

reflected in another prediction that provides a more direct experimental

test of the two models. This concerns the asymptotic variance of the

distribution of the number of A
l

responses in a block of K trials

which we denote

1959a) ,

var(lc) . For the linear model (cf.Estes and Suppes,
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for the pattern model, 1;)11 .E'l'; '42,

~(~J ••(l -.J ~K , 'K(; - oj - '1:,- oJN [l - (l- it]}
Note that, for c: e, the variance for the pattern model is larger

than for the linear model. However, for the case of e: i, the

variance for the pattern model can be larger or smaller than for the

linear model depending on theparticl).lar vall).es of c and N.

Finally, we present certain asymptotic seql).ential predictions for

the linear mode.l in the noncontingent sitl).ation; namely

limPr(Al +llEl Al · ):(l_e)a+e,_n _ ,n ,n

lim Pr(Al l[El A2 ) 1 - (1 - e)bJln+- _ ,n ,n

where a: [2,,(1- e) + e] I (2 - e) and b: [2(1 -,,)(1- e) + e] I (2 -e)

These predictions are to be compared with E'l. 34 for the pattern model.

In the case of the pattern model we note that Pr(AlIE1Al ) and

pr(Al[E2~) depend only on " and N whereas pr(Al [E2Al ) and

Pr(A1IE1~) depend on " , N and c . In contrast, all fOl).r seql).ential

probabilities depend on " and e in the linear model. For detailed

comparisons between the linear model and the pattern model in application
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to two-choice data, the reader is referred to Suppes and Atkinson (1960),

and Estes and Suppes (1962).

5.4 Applications to Multi-person Interactions

In this .secti.on.. we .apply the 11nearmOdel .to eXl'<;lximental situa:tions

involving multi-person interactions in Which the reinforcement for any

given subject depends both on his response and on the responses of other

subjects. Several recent investigations have provided evidence indi­

cating the fruitfulness of this line of development. for example, Bush

and Mosteller (1955) have analyzed a study of imitative behavior in

terms of their linear model, and Estes (1957a), Burke (1959)+960) .aJild.'Atkinson

and Suppes (1958) have derived and tested predictions from linear models

for behavior in two and three person games. Suppes and Atkinson (1960)

have also provided a comparison between pattern models and linear models

for multi~person experiments and have extended the analysis to situations

involving communication between subjects, monetary payoff, social pres-

sure, ec.onomic oligopolies, and related variables.

The simple two-person game has particular advantages for expository

purposes, and we use this situation to illustrate the technique of

extending the linear model to multi-person interactions. We consider

a situation which, from the standpoint of game theory (see, e.g., Luce

and Raiffa, 1957), l)1aY be characterized as a game in normal form with

a finite number of strategies available to each player. Each play of

the game constitutes a trial, and a pl&yer.'.s choice of a strategy for

a given trial corresponds to the selection of a response. To avoid
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problems h/3.ving to do with t.he measurement of utility (or from the

viewpoint of learning theory, problems of reward magnitude), we assume

/3. unit reward that is assigned on an all-or-none basis. Rules of the

game require the two players to exhibit .their choices simultane.ously

on all trials (as in.a game of matching pennies) and each player .is

informed that, given the choice of the other player on the trial, there

is exactly one choice leading to the unit reward •

.We designate the two players as A and B and let Ai (i ; 1,.... , r)

andB :( j; 1, •.. , r' ) denote the responses .available to the two players.
J

The set of reinforcement probabilities prescribed by the experimenter

may be represented in a matrix (aij,b
ij

) analogous to the "payoff

represents the pro-The number a
ij

bability of Player A being correct on any trial ·of the experiment

matrix"familiar in g/3.me theory,

given.the response pair AiB
j

; similarly, b.. is the probability of
~J

Player B being ·correct given the response pair AiB
j

consider the matrix

For example,

B
l B2

A
l

1 1
1 °2' 2 ,

A2 1, ° 0, 1

When both subjects make response 1
1 ,each has probability 2 of

receiving reward; When both make response 2, then only Player B

receives reward; when either of the other possible response pairs occurs

(Le., ~Bl· or ·A
1

B2 ) , . then only PlayerA receives reward. It
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should be emphasized that although one usually thinks of one player

winning and the other ~osingon any given play of a game, this is not

a necessary restriction on the model. In theory, and in experimental

tests of the theory,it is quite possible to permit both or nei1:iher of

the players to be rewarded on any trial. Eowever, to provide a rela-

tively simple theoretical interpretation of reinforcing events it is

essential that on a nonrewarded trial the player be informed (or led to

infer) that some other choice, had he made it under the same circum."

stances, would have been successful. We return to this point later.

Let denote the event of reinforcing the response for

Player A and E~B)
J

the event of reinforcing the response for

Player B To simplify our analysis we consider the case in which

each subject has on~ two response alternatives, and we define the

probability of occurrence of a particu~ar reinforcing event~_fun',;tll'!lmJls,)!,Jf

the payoff parameters as follows (for i';' i' and j';' j ')

(A) I b .. (B) Ia .. ~ Pr(E. A. B. ) ~ Pr(E. A. B. )
lJ ~ l,n JJn lJ J l,n J,n

(73)

1- a .. (A) I 1- b .. (B) IPr(E., A. B. ) ~ Pr(E., A. B. )
lJ l l,n J,n lJ J l,n J,n

For example, if Player A makes an A
l

response and is rewarded then

an EiA) occurs; however, if an A
l

is made and no, reward occurs then

we assume that the other response is reinforced; i.e., an occurs.

Finally, one last definition to simplify ~otation. We denote

Player A's response probability by a and Player B's by ~, and we

denote, by "I the joint probability of an Al and Bl response. ,Specifically,
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a ~ Pr(Al ), ~
n ,n n ~ Pr(Al•· Bl ),n :son

We now derive a theorem that provides recursive expressions for

an and ~n and points up a property of the model that greatly complicates

the mathematics; namely, that both a
n+l

and ~ 1· depend on the jointn+

probability '1 ~ Pr(Al B
l

) •
n ,u .. ,n

Tlleorem

(75b)

A and Bwhere e
A

ande
B

are the learning parameters for players

Proof. It will suffice to derive the difference equation for 06+1'

since the derivation for is identicaL To begin with, from

Axioms Ll and L2 we can easily show that the general form ofa recursion

for a is
n

a ~ (1 - eA)a
n

+ e Pr(E(A))
n+l A l,n

.The term pr(E(A)) can then be expanded as follows
1,n
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pr(E(A}}=L::Pr(E(A} A. B. }
l,n .,' l,n J.,n J"n

~, J

. (A)
=z= Pr(El Ill.. B. }Pr(,A. B. }.. ,n 1.,n J,n' J.,n J,n

~, J

and by (73)

pr(E(A}} Pr(A B } + P (A B )= all 11 . a 12 r· l 2l,n, ,n ,.n ,n ,n

Next we observe that

Pr(A
l

B2 }= Pr(B2 IAl }Pr(Al }
J n , n ,n ,n , n

= [1 - Pr(B
l

IA
l

} ]Pr(A
l

},n ,n,n

= Pr(Al } - Pr(Al Bl }
,n . ,n "n

S;i.milarly

Pr(A B2,n l,n} = Pr(B
l

} - Pr(Al Bl } ,
, ,n JUJu

and

= [1 - Pr(Al IB2 }]Pr(B2 },n , , n ,n

= pr(B2 . } - Pr(Al B.2 }
_,0 ,n-,n

= 1 - Pr(B
l

} ~ Pr(A
l

} + Pr(A
l

B
l

.)
,.n. ',n ,n .,n

(76)

(77a)

(77b )

(77c)
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S~bstituting into Equation 76 from Equations 77a, 77b and 77c and

simplifying by means of the definition for a, 13 and 7, we obtain

+ (1- a22 )(.1- a -13 +7 ), n n n

Substituting this expression into the general recursion for

the desired result, which completes the proof.

a yields
n

It has been shown by Lamperti and Suppes (1959) that the limits

a, 13 and 7 exist, whence (letting O:n+l.; an ; a, I3n+l ; I3n ; 13

and 7
n

; 7 in 75a and 75b) we have two linear relations that are

independent of BA and BE; namely,

where

aa ; bl3 + c7 + d , el3 ; fa + gr + h , (78)

b ;
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Byeliminating r from Equations 78 we obtain the following linear

relation in a and 13:

(

( - ag - ce)a + (bg -tcf)13 ~ ch - dg . (80)

Unfortunately, this relationship is one of the few quantitative

results that can be directly computed for the linear model. It has,

however) the advantageous feature that it is independent of the learn-

ing parameters $A and BB and therefore may be compared directly with

experimental data. Application of this result can be illustrated in

terms of the game cited earlier in which the payoff matrix takes the form

Bl

Al
1 1
2' 2

~ 1, 0

From Equations 79 we obtain

1 J 0

o} 1

a ~ 1

b -1

1c = 2

d ~ 1

e ~ 1

f = 1

1
g ~ 2

h 0

and Equation 80 becomes
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To derive a prediction for Player Aresponses will tend toof

From this result we predict immediately that the long-run proportion

1
2

we substitute the known values of the parameters into the first part

of Eqo 78 to o1:ltain

Unfortunately we cannot compute?" the asymptotic-probability of the

is positive and since onlyresponse pair. However, we know 'I'

Player BI s responses are B
1

1 s , r'c cannot be greater than 1
2'

Therefore, we have 1o < 'I' S 2' and as a result can set definite bounds

on the 10ng~run probability of an Ai response; namely

Thus, we have the basis for a rather exacting experimental test since

the asymptotic predictions for both subjects are parameter-free; ioeo,

they do not depend on the e -values of either subject or on initial

response probabilities.

Ofcourse,by imposing restrictions on the experimentally determined

parameters and a variety of results can be obtained, We

limit ourselves to the consideration of one such case: choice of the

parameters so that the coefficients of 'I'n vanish in the recursive

equ.ations 7.5a and 75b. Bpecifically,if we, let c' = g = 0 and

af - be f 0 J then
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a = aa + btl + dn+l n n
(81)

etl + fa + hn n

SQlutions for this system are well-known and can be obtained by a number

of different techniques; for a detailed discussion of th", problem of

obtaining "'xplicit expressions of a and tl for arbitrary nth'"
n n

r"'ader is r"'f"'rr"'d to an articl'" by Burke (1960). We do knQW, however,

a and tl exist and ar", independent of both
n n

and tl = 13n+1 = I3n into the two recursions we obtain

(:t=a =a
n+l nBy substituting

that the limits for

th", initial conditions and eA and

bh + dfa= af - be

and

ah + ite
af - be

Th", fact that a and 13 are independent of eA and eB under the

restrictiQns imposed on the parameters in no way implies that y is

also independent of these quantities.

Eq·'.· .61 provide a very precise test of the model and the necessary

conditions for this test involve only experimentally manipulable param-

eters. A great deal of experimental work has been conducted on this

restricted problem and, in general, th", correspondence between predicted

and observed values has been very good; for an account of this wQrk see

Atkinson and Supp",s (1958), Burke (1959, 1960), .and Suppes and Atkinson

(1960).
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In conclusion we should mention that ,all of the predictions

presented in this section are identical to those that can be derived

from the .pattern model of Section 2 However, in general, only the

grosser predictions, such as those for

for the two models.

a
n

and ~, are the same
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6. DISCRIMINATION LEARNING

The distinction between simple learning and discrimination

learning is somewhat arbitrary. By discrimination we refer, roughly

speaking, to the process by which the subject learns to make one re­

sponse to one of a pair of stimuli and a different response to the

other. But there is an element of discrimination in any learning

situation. Even in the simplest conditioning experiment, the subject·

learns to make a conditioned response only when the conditioned stimu­

lus is presented, and therefore to do something else when that stimulus

is absent. In the paired associate situation (referred to several times

in previous. sections) the subject learns to associate the appropriate

member of a response. set with each member of a set of stimuli, and

therefore to "discriminate" the stimuli. The principal basis for

differentiation between the two categories of learning seems to be that

in the case of discrimination learning the similarity, or communality,

between stimuli is a major independent variable; in the case of simple

learning, stimulus Similarity is an extraneous factor, to be minimized

experimentally and neglected in theory so far as possible.

One of the general.·strategic assumptions of the type of stim1).lus­

response theory which has been associated with the development of

stimulus sampling models is that discrimination learning involves sim­

ply a combination of processes each of which can be studied independently

in simpler situations -- the learning aspect in experiments on simple
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acquisition or extinction, and the stimulus relationships in experiments

on stimulus generalization or transfer of training. Thus,there will be

nothing new at the conceptual level in our treatment of discrimination.

There is adequate scope for analysis of different types of discrimina­

tive situations;. but since our main concern in this article is with

methods rather than content, we shall not go far in this direction.

We propose only to show how the processes of association and generali­

zation treated in preceding sections enter into discrimination learning,

and this can be accomplished by formulating assumptions and deriving

results of general interest for. a few important caseS.

6,1 The pattern Model for Discrimination Learning

As in the cases of simple acquisition and probability learning,

it is sometimes useful in the treatment of discriminative situations

to ignore generalization effects among the stimuli involved in an exper­

iment and regard each stimulus display as a unique pattern. Thus,

behavior elicited by the stimulus display will depend only on the sub­

ject's reinforcement history with respect to that particular pattern.

Two important variants of the model arise according as experimental

arrangements do or do not ensure that the subject will sample the entire

stimulus display presented on each trial.

Case L All cues presented are sampled on each triaL For a

classical two-stimulus, two_response discrimination problem (e.g" a

Lashley situation with the rat being differentially rewarded for jumping

to ;a black card and avoiding a grey card), our conceptualization requires
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a distinction among three types of cues: We shall denote by Sl the

set of component cues present only in the stimulus si.tuation associated

·with reinforcement of response Al , by S2' the set of cues present

only in the situation associated with reinforcement of response ~,

and by S ,
c

the set of cues present in both situations. In the .exam-

window, Sl the stimulation present only on trials with black cards,

ple of the Lashley situation, Al might be the response of jumping to

the left hand window, ~, .the respon"e of jumping to the right hand

S2 the stimulation present only on trials with grey cards, and S
c

the stimulation common to both types of trials. And we denote by Nl ,

and N ,
c

the number of cues in each of these subsets. In stan~

dard experiments, the "cues" refer to experimentally manipulable aspects

of the situation, such as tones, objects, colors, symbols, or the like,

and it is reasonably well-known just how many different combinations of

these cues will be responded to by subjects as distinct patterns- ·In

some instances, however, the experimenter may have no a priori knowledge

as to the patterns distinguishable by the subject; in such instances,

the Ni may be treated as unknown parameters to be estimated from data,

and the model may thus serve as a tool to aid in securing evidence as to

the subject's perceptions of the physical situation.

Suppose, now, that the experimenter's procedure is to present on

some trials (Tl trials) a set of cues including ~ from Sl and m
c

from S •
c '

and on the remaining trials ( T2 trials) cues from S·
2

and m from S
c c Further, let the two types of trials occur with equal



A. and E. -195-

We can obtain an expression for probability of a correct response on a

Tl trial simply by appropriate substitution into Eq. 28, viz

Pr(Al ITl ) = 1 - [1 - Pr(Al llTl 1)]
,n1 ,nl .) .}

, (82)

where is the ordinal number of th~ trial. The corresponding

:':'TI~(::) j'i""" " 0"",0" d"~~ "'lli "-'"

In the discrimination literature, cues in the sets 81 and 82

are commonly referred to as relevant, those in 8 as irrelevant,· since
c

the former are correlated with reinforcing events whereas the latter

are not. It is apparent by inspection of Eq. 82 that (for the above speci-

fied experimental conditions} the pattern model predicts that probability

of correct responding will go asymptotically to unity regardless of the

numbers of relevant and irrelevant cues, provided only that neither

ml nor ~ .is equal to zero. Rate of approach to asymptote on each

type of trial is inversely related to the total number of patterns

available for sampling. Therefore, other things equal, rate of learning

is qecreased (and total errors to criterion increased) by the addition

of either relevant or irrelevant cues.
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Partial sampling of the cues presented on each trial.

We consider now the situation which arises if the number of cues pre-

sented per trial is too large, or the exposure time too short, ,for the

entire stimulus display to be sampled by the subject. Let us suppose

for simplicity that there are only two stimulus displays: the display

on Tl trials comprises the Nl cues of 8
1

together with the Nc

cues of 8 , and that on T2 trials the N2 cues of 82 together
c

with the N cues of 8 For a given fixed exposure time}) we asSlll!1ec c

:q:::::'::::~' ;:"'T,' ;",:::',:::,':::::',:'en:~ot1:::j(:;::,l"~'
of filling the sample, with sl cues from 81 and ihe remainder from

8 The asymptote of discriminative performance will depend on thec

size of s relative to N
c

If s < N , so that the entire sample
- c

can come from the set of irrelevant cues, then the asymptotic probability

of a correct response will be less than unity.

In Case 2, two types of patterns need to be distingMished for each

type of triaL We can limit consideration to T
1

trials, si.nce analo­

gous arguments hold for T2 • There may be some patterns including

only cues from 8c ' and learning with respect to these will be on a

simple random reinforcement schedule. The proportion of such patterns,

w , is given by
c

w =
(:c)

c (Nl : N
c

)

,
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which is equal to zero if s > N •c If and trials have equal

probabilities, then the probability, to be denoted V
n

, that a pattern

on trial n can be obtained from Eq. 28 by setting rt 12

containing only cues from 8 will be conditioned to the
c

response

where
cw

c

r:;=
c- =
N

andPr(A
l

) =
,n

V
n

1 (1)( )n-l- - - - V 1 - cb .
2 2 1 lc

The remaining patterns available on T
l

trials all contain at least one

cue from 8
1

, and thus occur only on trials when response Al is re-

inforced. The probability, to be denoted U ,
n

that anyone of these is

conditioned to A
l

on trial n may be similarly obtained by rewriting

Eq. 28, this time with rt12 = 0, rt21 ~ 1, pr(Al,n) = Un' and

c 1
N = 2 cblc ' i.e.,

U = 1 - (1 - U )(1 _ l cb )n-l
n 1 2 lc ' (84 )

where the factor

sampling on only

1
2
1
2

enters because these patterns are available for

of the trials.

Now to obtain the probability of an A
l

response if a T
l

display

is presented on trial n, we need only combine Eq. 83 and 84, weighting

each by the probability of the appropriate type of pattern, viz
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Pr(Al ITl ) ~ (l-w)U + w V. ,n ,n c 'n en

1 n-l
(l-w)(l-U)(l--cb)c 1 2 lc

_ w (-!-V )(l-cb )n-l
c 2 1 lc (85)

which may be simplified, if to

Pr(Al ITl ),n ,n
1 _10 w -lo(l-W )(1_10 cb )n-l

2 c 2 c 2 lc
( 85a)

The resulting expression for probability of a correct response

has a number of interesting general properties. The asymptote, as

anticipated, depends in a simple way On wc ' the proportion of

"irrelevant patterns". When W
c

~ 0, the asymptotic probability of

a correct response is unity; when w = 1 ,
c

the whole process reduces

to simple random reinforcement. Between these extremes, asymptotic

performance varies i~versely with w ,c
so that the terminal proportion

of correct responses on either type of trial proYides a simple estimate

of this parameter from data. The slope parameter, cblc ' could then

be estimated from total errOrs over a series of trials. As in Case 1,

the rate of approach to asymptote proves to depend only on the condi-

tioning parameters and total number of patterns available for sampling;

thus it is a joint fUnction of the total nmnber of cues, Nl +.Nc ' and
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s, but does not depend on the relative proportions

of relevant and irrelevant cues. The last result may seem implausable,

but it should be noted that the result depends on the simplifying assump­

tion of the pattern model that there are no transfer effects from learn­

ing on one pattern to performance on another pattern which has component

cues in COmmon with the first, The situation in this regard will be

different for the "mixed model" to be discussed below.

6.2 A Mixed Model

The pattern model may provide a relatively complete account of

discrimination data in situations involving only distinct, readily dis­

criminable patterns of stimulation, as, for example the "paired comparison"

experiment discussed in Sec. 3.3 or the verbal discrimination experiment

treated by Bower (1962). Also, this model may account for some aspects of

the data (e.g., asymptotic performancelevel,.trialsto criterion) even in

discrimination experiments where similarity, or communality, among stimuli

is a major variable. But to account for other aspects of the data in cases

of the latter type, it is necessary to deal with transfer effects through­

out the course of learning. The approach to this problem which we now

wish to consider employs no neW conceptual apparatus, but simply a com­

bination of ideas developed in preceding sections.

In the mixed model, the conceptualization of the discriminative

situation and the learning assumptions are exactly the same as those of

the pattern model discussed in Sec. 6.1. The only change is in the



A. and E. ~200-

response rule, and that is altered in only one respect. As before, we

assume that, once a stimulus pattern has become cOnditioned to a response,

it will evoke that response on each subsequent occurrence (unless on

some later trial the pattern becomes reconditioned to a different re-

sponse - as may occur during reversal of a discrimination). The new

feature concerns patterns which have not yet become conditioned to any

of the response alternatives of the given experimental situation, but

which have component cues in common with other patterns which have been

so conditioned. Our assumption is simply that transfer occurs from a

conditioned to an unconditioned pattern in accordance with the assump-

tions utilized in our earlier treatment of compOunding and generalization

(specifically, by axiom C2, together with a modified version of Cl, of

Sec. 4.1).

Before the assumptions about transfer can be employed unambiguously

in connection with the mixed model, the notion of conditioned status of

a component cue needs to be clarified. We shall say that a cue is Con-

ditioned to response Ai if it is a component of a stimulus pattern

that has become conditioned to response Ai' If a cue belongs to two

patterns, one of which is conditioned to response Ai and one tore~.

then the conditioning status of the cue followssponse A .. (iij),
J

that of the more recently conditioned pattern. If a cue belongs to no

conditioned pattern, then it is said to be in the unconditioned, or

"guessing" state. Note that a pattern may be unconditioned even though

all of its cues are conditioned. Suppose, for example, that a pattern
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con$isting of cues x, y and z in a particular arrangement has never

been presented during the first n triMs of an experiment,.but that

each of the cues has appeared in other pattern$, say wxy and wvz,

which have been presented and conditioned 0 Then all of the cues of pat-

tern xyz would be conditioned, but the pattern would still be in the

unconditioned stateo Consequently, if wxy had been conditioned to

response A
l

and wvz to

of pattern xyz would be

the probability of

But if now response

in the presence

were effectively

reinforced in the presence of xyz, its probability of evocation by

that pattern would henceforth be unitYo

The only new complication arises if an unconditioned pattern

includes some cues which are still in the unconditioned stateo Several

alternative ways of formulating the response rule for this case have

some plausibility, and it is by no means sure that anyone choice will

prove to hold for all types of situationso We shall here limit consid-

eration to the formulation suggested by a recent study of discrimination

and transfer which has been analyzed in terms of the mixed model (Estes,

and Hopkin$, 1961)0 The amended response rule for patterns including

unconditioned cues is as follows in this formulation: Axiom C2 of

Seco 401 is reinterpreted so that in a situation involving r response

alternatives,

is equal toof any response

10 if all cues in a pattern are unconditioned, the probability

1r ;
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2. if a pattern (sample) comprises m cues conditioned to

response Ai' m' cues conditioned to other responses, and

m" unconditioned cues, then the probability that Ai will

be evoked by this pattern is given by

Pr(A.)
~

mil
m+­

r
= m + rot + mil

In other words, axiom C2 holds, but with each unconditioned cue

contributing "weight"

responses ..

1
r

toward the evocation of each of the alternative

To illustrate these assumptions in operation, let us consider a

simple classical discrimination experiment involving three cues, a,

b, and c, and two responses,Al and ~. We shall assume that

the pattern ac is presented on half of the trials, with Al reinforced,

and bc on the other half of the trials, with ~ reinforced, the two

types of trials occurring in random sequence. We assume further that

conditions are such as to ensure the subject's sampling both cues pre-

sented on each trial. The possible conditioning states of each pattern

and the probability of response A
l

associated with each may now be

tabulated as follows:
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!ll Probability

, States to each Pattern---
ac bc ac bc

1 2 1 0

1 1 1 1

2 2 0 0

2 1 0 1

0 1 3/4 1

0 2 1/4 0

1 0 1 3/4

2 0 0 1/4

0 0 1/2 1/2

where a 1, 2, or 0, respectively," in a ijtate column indicates

that the pattern is conditioned to A
l

, conditioned to ~, or

unconditioned. For each pair of values under States, the associated

Al probabilities,comp~ted according to the modified response rule, are

given in the corresponding positions under A
l

Probability. To reduce

algebraic complications, we shall carry o~t derivations for the special

case in which the subject starts the experiment with both patterns

unconditioned; then, under the conditions of reinforcement specified

above, only the states represented in the first; seventh, sixth, and

ninth rows of the tables are available to the 8ubject,and for brevity

we shall number these states 3, 2 , 1, and 0, in the order just

listed. That is,
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State 3 ~ pattern ac conditioned to Al ,
conditoned to ~ ,

State 2 ~ pattern ac conditioned to Al ,

and pattern bc

and pattern bc

unconditioned,

State 1 ~ pattern ac unconditioned, and pattern bc conditioned

to ~,

State 0 both patterns ac and bc are unconditioned.

Now these states can be interpreted as the states of a Markov

chain, since the probability of transition from anyone of them to any

other on a given trial is independent of the preceding history. The

matrix of probabilities for one-step transitions among the four states

takes the following form;

1 0 0 0

c 1-.£ 0 02" 2
Q = , (86)

c
0 1-.£ 0

2 2
c c 1:_ c0 2 2

where the states are ordered 3, 2 , 1 , 0 from top to bottom and

left to right. Thus, State 3 (in which ac is conditioned to Al ,

and bc to ~) is an absorbing state, and the process must termi­

nate in this state, with asymptotic probability of a correct response

to each pattern equal to unity. In State 2, ac is conditioned to

A
l

but bc is still unconditioned. This state can be reached only
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from State 0, in which both patterns are unconditioned; the probability

of the transiti8n is 1
2' (the probability that pattern ac is presented)

times c (the probability that the reinforcing event produces condi-

tioning); thus the entry in the second cell of the bottom row is c
2" •

From State 2, the subject can go only to State 3, and this transition

again has probability ~. The other cells are filled in similarly.

Now the probability, U. ,
~,n

of being in state i on trial n

can be derived quite easily for each state. The subject is assumed to

start the experiment in State 0 and has probability c of leaving this

state on each trial, hence

u
O,n

For State 1, we can write a recursion,

ul,n ,

which holds ,if n > 2. For, , to be in State 1 on trial n, the

subject must have entered at the end of trial 1, which has proba-

•.,. .. _ c,
lnlilityc, "2' "j' and then remained for n - 2 trials, which has probability

(1
_ _2c )n-2 ,, or have entered at the end, of trial 2, which has proba-

bility (1 - c)~, and then remained for n -3 trials, which has

probability (1- ~)n-3 ; ••• ; or have entered at the end of trial

n -1 , which has probability (1- c)n-2 ~
2

The right hand side of

this recursion can be summed to yield
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(

c )vn-2 1 - -
; .£(1- c)n-2~ 2

2 ~ 1 - cv;o

; (1-C)n-l[(2h-_~)tl -1]
; (1- ~)n-l _ (1 _ c)n-l

By an identical argument, we Qqtain

u ; (l~ _2c )n-l - (1 _ c)n-l
2,n

and then by subtraction

,

~jn ; 1 - ~,n - u - ul,n O,n

( c)n-l( )n-l;1-21- 2 + l-c

From the tabulation of states and response probabilities, we know

that the probability of response Al to pattern ac is equal to 1 ,

1
1 and 1 respectively, when the subject is in State :5 2 , 1, '4 ' 2

, , ,

or o • Consequently the probability of a correct (Al ) response to

ac is obtained simply by summing these response probabilities, each

weighted by the state probability, viz
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( n-l l( c)n-l l( )n-l- 1-c)' +41-2 -41-c

1(1 )n-l+ 2 - c

1 3(1 c)n-l.' 1(1' ,)n_l:::; -'4 -'2. +'4.- c (87)

Equation 87 is written fbr the probability of an A
l

response to

ac on trial n; however, the expression for probability of an ~

response to bc is ,identical, ,and consequently Eq. 87 expresses also

the probability, Pn' of a correct response on any trial, without

regard to the stimuluS pattern presented. A simple estimator :of',

othe:;conditi'OJiing' ; parameter c is now obtainable by summing the error

probability over trials. Letting e denote the expected total error,s

during learning, we have

1 1 5
4 C ~ 4c

An example of, the sort of prediction involving a ,elatively direct

assessment of transfer effects is the ,fOllowing. Suppose the first
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stimulus pattern to appear is ac; the probability of a correct

response to it is, by hypothesis, 1
2 ' and if there were no transfer

Under the assump-also.

between patterns, the probability of a correct response to bc when it

1
2first appeared on a later trial should be

tions of the mixed model, however, the probability of a correct response

to bc, if it first appeared on trial 2, should be

1 .1
[1 - 2(1 - c) - c] + 2 1 c

----'=-----;2"...,-----,.:=. ; 2 - '4 ;

if it first appeared on trial 3, should be

1 2 1
2(1 - c) + ~
--"'2-__2; ~ - ~(l-~) ;

and so on, tending to 1
'4 after a sufficiently long prior sequence of

ac trials.

Simply by inspection of the transition matrix, we can develop an

interesting prediction concerning behavior during. the presolution period

of the experiment. By presolution period, we mean the sequence of trials

prior to the last error for any given subject. We know.that the subject

cannot be in State 3 on any trial prior to the last error. On all trials

of the presolution period, probability of a correct response should be

equal either to ~ (if no conditioning has occurred) or to ~ (if

exactly one of the two stimulus patterns has been conditioned to its

correct response) •. Thus the proportion, which we may ·denote by P ,
( ps
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of correct responses over the presolution trial seQuence should fall

in the interval

and, in fact, the same bounds obtained for any subset of trials within

the presolution seQuence. Clearly predictions from this model concern-

ing presolution responding differ sharply from those derivable from any

model that assumes a continuous increase in probability of correct

responding during the presolution period; this model also differs,

though not so sharply, from a pure "insight" model assuming no learning

on presolution trials. So far as we know, no data relevant to these

differential predictions are available in the literature (though simi-

lar predictions have been tested in somewhat different situations:

Suppes and Ginsberg, 1962a; Theios, 1961). Now that the predictions are

in hand, it seems likely that pertinent analyses will be forthcoming.

The development in this section was for the case where there were

only three cues a, b and c. For the more general case we could as-

sume that there are Na cues associated with stimulus a, N
b

with

stimulus b, and N with stimulus c.
c

I~ we assume, as we have in

this section, that ex~p.erimental conditions are such to ensure the sub-

ject's sampling all cues presented 011 each trial, then EQ. 87 may be

rewritten as
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Pr(A
l

lac),n
c)n-l 1 (1 )n-l- - +- W -c
2 2 1

Further,

""
e L (~[l-pr(Al,nlac)] + ~[1-pr(A2,nlbC)])

h~l

~l(l+1:.w)
c 2

where The parameter w is an index of similarity be-

tween the stimuli ac and bc; as w approaches its maximum value of

1, the number of total errors increases. Further the proportion of

correct responses over the presolution trial sequence should fall in

either the interval

1:. < P < 1:. + ,!o (l-w )
2 - ps - 2 '+ 1

or the interval

1:. < P < 1:. + 1:. (1-w
2

) ,
2 - ps - 2 4

depending on whether ac or bc is conditioned first.

6.3 Component Models

So long as the number of stimulus patterns involyed in a discrim-

ination experiment is relatively small, an analysis in terms of an

appropriate case of the mixed model can be effected along the lines
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indicated in Sec. 6:.2. But the number of cues need become only moder­

ately large in order to generate a number of patterns so great as to be

unmanageable by these methods. However, if the number of patterns is

large enough so that any particular pattern is unlikely to be sampled
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more than once during an experiment, the emendations of the response

rule presented in Sec, 6.2 can be neglected and the process treated as

a simple extension of the component model of Sec. 5.1 •

Suppose, for example, that a classical discrimination involved a

set S:j. of cues available only on trials when Al is reinforced, a

set S2 of cues available only on trials when ~ is reinforced, and

a set ,Be of cues common to Sl and S2; further, assume that a constant

fraction of each set presented is sampled by the subject on any trial.

If the two types of 'trials occur with equal probabilities, and if the

numbers of cues in the various sets are large enough so that the number

of possible trial samples is larger than the number of trials in the

experiment, then we may apply Eq. 53 of Sec. 4.3 to obtain approximate

expressions for response prob~bilities. For example, asymptotically

all of the elements of and half of the elements of S
c

(on the average) would be conditioned to response A
l

, and therefore

probability of Al on a trial when Sl was presented would be predicted

by ,the component model to be

,

which will, in general, h~ve a value intermediate between 1
2" and unity.

Functions for learning curves and other aspects of the data can be de-

rived for various types of discrimination experiments from the assump-

tions of the component model. Numerous results of this sort have been
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published (Burke and Estes, 1957; Bush and Mosteller, 1951b; Estes,

1958, 1961a~ Estes, Burke, Atkinson, and Frankmann,1957; Popper, 1959;

Popper and A,t~inson,1958).

6.4 Analysis of a Signal Detection Experiment

Although thus far we have developed stimulus sampling models only

in connection with simple associative learning and discrimination learn­

ing, it should be noted that such models may have much broader areas of

application. On occasion one may even :;;ee possibilities of u:;;ing the

concepts of stimulus sampling and association to interpret experiments

that, by conventional classifications, do not fall within the area of

learning. In this section we examine such a case.

The experiment to be considered fits one of the standard paradigms

associated with :;;tudies of Signal detection (see, e.g., Tanner and

Swet~, 1954; Swets, Tanner and Birdsall, 1961). The subject's task

in this experiment, like that of an observer monitoring a radar screen,

is to detect the presence of a visual signal which may occur from time

to time in one of several possible locations. Problems of interest in

connection with theories of signal detection arise when the signals are

faint enough so that the observer is unable to report them with complete

accuracy on all occasions. One empirical relation that we would want

to account for, in quantitative detail, is that between detection proba­

bilities and the relative frequencies with which signals occur in differ­

ent location:;;. Another is the improvement in detection rate that may
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occur over a series of trials even when the observer receives no

knowledge of -r~ults.:'_:;·.

A possible way of accounting for the "practice effect" is suggested

by some rather obvious analogies between the detection experiment and

the probability learning experiment considered earlier: We would ex­

pect that, when the subject actually detects a signal (in terms of

stimulus sampling theory, samples the corresponding stimulus element),

he will make the appropriate verbal report. Further, in the absense of

any other information, this detection of the signal may act as a rein­

forcing event, leading to conditioning of the verbal report to other

cues in the situation which may have been available for sampling prior

to the occurrence of the signal. If so, and if signals occur in some

locations more often than in others, then on the basis of the theory

developed in earlier sections we should predict that the subject will

come to report the signal in the preferred location more frequently

than in others on trials when he fails -to detect a signal and is forced

to respond to backg:J:'0und cues. These notions will be made more explicit

in connection with the following analysis of a visual recognition exper­

iment reported by Kinchla (1962).

Kinchla employed a forced-choice visual detection situation

involving a series of over 900 discrete trials for each subject. Two

areas were outlined on a uniformly illuminated milk glass screen. Each

trial began with an auditory signal. -During the auditory signal one of

L the following events occurred:
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(1) A fixed increment in radiant intensity occurred in .area ~ -

a Tl
type trial.

(2) A fixed increment in radiant intensity occurred in area 2 -
a T2 type tri"l.

(3) No change in the. radiant character of either signal area

occurred - a TO type trial.

Subjects were told that a change in illumination wou~d occur in

one of the two areas on each trial. Following the auditory sign<>l, the

subject was required to make either. an Al or ~ response (i.e.,

select one of two keys placed below the slgnal areas) to indicate which

area he be~ieved had changed in brightness. The subject was given no

information at the end of the trial as to whether or not his response

was correct. Thus} on a given trial one of three events occurred (T
l

,

T2 ' TO)} the subject made either an Al or ~ response, and a

short time later the next tril?-l began.

For a fixed signl?-~ intensity the experimenter has the option of

specifying l?- schedu~e for presenting the T
i

events. Kinchla selected

a simple probabilistic procedure in which Pr(T. ) = So
l,.n 1

and

Sl + S2 + So = 1 . Two groups of subjects were run~ For group I,

Sl s2 . 4 and S = .2 . For Group II, Sl = So = .2 and S2 = .6
0

The purpose of Kinchla's study was to determine how these event schedules

influenced the .lill:elihood of correct detections.
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The model that we will 1.!se to analyze the experiment combines

two quite distinct processes: a simple perceptual process. defined

with regard to the signal events and a learning process associated

with background cues. The stimulus situation is conceptually repre-

sented in terms of two sensory elements ~l and s2' corresponding

to the two alternative signals, and a setS of elements associated

with stimulus features common to all trials. On every trial the sub-

ject is assumed to sample a single element from the background set S

and he mayor may not sample one of the sensory elements. If the

element is sampled an Al occurs; if s2 is sampled an ~

occurs. ~f neither sensory element is sampled the subject makes the

response to which the background element is conditioned. Conditioning

of elements in S changes from trial to trial via a learning process.

Th.e sampling of sensory elements depends on the trial type (Tl ,

T2 ' To) and is descriqed by a simple probabilistic model. The

learning process associated With S is assumed to be the multi-element

pattern model presented in Sec.). Specifically, the assumptions of

the model are embodied in the following statements:

If T. (i = 1, 2)
l

occurs, then sensory element will be

sampled with probability h (With probability l-h, neither

nor

nor

s2 will be sampled).

s2 will be sampled.

If occurs, then neither
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2. Exactly one element is sampled from S on every trial.

Given the set S of N elements, the probability of

sampling a partic~lar element is 1
iii '

If s. (i ~ 1, 2) is sampled on trial n, then with
~

probability c' the element sampled from S on the

trial becomes conditioned to Ai at the end of trial n •

If neither nor is sampled, then with prooabiJ-

ity c the element sampled from S becomes conditioned

with equal likelihood to Al or ~ at th" end of trial n.

4. If sensory element s. is sampled, then A. will occ~r.
1. l

If neit~er sensory element is sampled, then the response

to which the sampled element from S is conditioned will

Occur..

If we let Pn denote the expected proportion of elements in S

conditioned to Al at the start of trial n, then (in terms of state-

ments 1 and 4 ab\lve) we can immediately.write an expression for the

likelihood of an Ai response given a T
j

event; namely,

Pr(A_ IT
2

) ~
"""2, n . ,n

h + (l-h)p
n

h + (1 - h) (1 - P )
n

(88a)

(88b)

(88c)
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Th~ ~xpression for p can be obtained from statements 2 and 3 by the
n

sam~ methods us~d throughout S~c. 3 of this chapt~r and is as follows

(for a d~rivation of this r~sult s~~ Atkinson, 1962a):

and Dividing th~numerator and d~nominator of by c

yields th~ ~xpr~ssion

(89)

wh~r~
c'

\jI =c . Thus, th~ asymptotic ~xpr~ssion for p
n

do~s not d~p~nd

on th~ absolute valu~s of c' and c but only on th~ir ratio.

An insp~ction of Kinchla's data indicat~s that th~ curv~s for

pr(AiITj) ar~ ~xtr~m~ly stabl~ ov~r th~ last 400 or so trials of th~

exp~rim~nt; cons~qu~ntly w~ shall vi~w this portion of th~ data as

asymptotic. Tabl~ 7 pr~s~nts th~ obs~rv~d m~an valu~s of Pr(A
i

ITj)

for th~ last 400 trials. Th~ corr~sponding asymptotic expr~ssions ar~

Sp~cifi~d in t~rms of Eq. 88 and Eq. 89 and ar~ simply

Ins~rt Table 7 about h~r~
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Table 7

Predicted and Observed Asymptotic Response Probabilities

for Visual Detection Experiment

Group I Group II

Observed Predicted Observed Predicted

Pr(A1IT1) .645 .645 .558 .565

Pr(~IT2) .64~ .645 .7~0 .724

pr(A1lTo) .494 ·500 .~88 .~88
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lim

lim
n ~ ¢O

lim
ll"7'7OO

Pr(Al iTl. ) =,n . ,n

Pr(A_ \T2·) =
~""2jn JlD

Pr(Al ITo ),n ,n

h+(l_h)p. .,

h + (l-h)(l-p ).,

P.,

(9Gb)

(90c)

In order to generate asymptotic predictions we need values for hand

1*. We £irst note by inspection of Eq. 89 that P., = 2 for Group I;

1
in fact, whenever ~:l = ~2 we have P., =2' Hence, taking the observed

asymptoti.c valu<j'·for pr(Al!Tl ) in Group I (Le., .645) and setting

it equal to h + (1 - h)~ yields an estimate of h = .289. The back-

ground illumination and the increment in radiant intensity are the same

for both experimental groups and therefore we WOuld require an estimate

of h obtaihedfrom Group I to be applicable to Group II.. In order to

estimate *, we take the observed asymPtotic value of pr(Al!To) in

Gr"up II and set it equal to the right side of Eq. 89 w.ith h co .289 ,

'"~l = ~o =.2 and ~·2 = .6; solving for * we obtain *=2.8 •

Using these estimates of hand * and Eqs. 89· and 90 yield the

asymptotic predictions given in Table 7.

Over all the equations give an excellent account of these particular

response measures. However, a more crucial test of the model is provided

by g,n analysis of thi= sequential data. To indicate the nature of the

sequential predictions that can be obtained, consider the probability

of an Al response on a T
l

trial given the various trial types and

responses that .can occur on the preceding trial, i. e.,
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Pr(Al +.lITl +lA. T. ) ,,u . ,n l,n J,n

where i =1, 2 and j =0, 1, 2 • Explicit expressions for these

quantities can be derived from the axioms by the same methods used

throughout this chapter. To indicate their form, theoretical expres-

sions for lim pr(Al llTl lAo T. ) will be given and, to
n ~oo ,n+. ,n+ l,n J,n

expressions for these quantities are as follows:

[h + (1 - h)5]p + (1 - p )h)" (N - l)X
pr(Al[T1A1Tl ) '" '"= NX

+
N

(1-h)5'(1-p) (N - l)X
pr(All Tl~Tl)

, - - 00

= N(l- X)
+

N

h)'p + [h
2

+ (1-h)5'](1-p) (N - l)X
Pr(Al [T1A2T2 ) '" ""

NY + N

(91a)

(91b)

(91c)

(1- h)5p
. '"
N(l - Y) +

(N - l)X
N

(91e)

(9lf)

where)' = c'h + (l-c'), 7' = c' + (l-c')h, 5 = ~ h + (l-~) ,

5' = ~ + (l-~)h, X = h + (l-h)p"" and Y = h + (l-h)(l-p) •
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It is interesting to note that the asymptotic expressions for

lim Pr(A. IT. ) depend only on hand *, whereas the ~uantities
J.,n JJn

in E~o 91 are functions of all four parameters N, c ,c' and h 0

Comparable sets of equations can be written for Pr(~IT2AiTj) and

pr(Al!TchTj) 0

The expressions in Eqo 91 are rather formidable, but numerical pre-

dictions can be easily calculated once values for the parameters have

been obtainedo -Further, independently of the parameter values, certain

relations among the sequential probabi.lities can be specified.o As an

example of such a relation, it can be shown that pr(~ITIAITO) >

pr(AlITl~To) for any stimulus schedule and any set of parameter valueso

To see this, simply subtract Eqo 91f:Troni Eqo 91e and note that 5 > 5' 0

Insert Table 8 about here

In Table 8 the observed values for pr(AiITj~T£) are presented as

reported by Kinchlao Estimates of these conditional probabilities were

computed for individual subjects using the data over the last 400 trials;

the averages of these individual estimates are the ~uantities given in

the tableo Each entry is based on 24 subjectso

In order to generate theoretical predictions for the observed

entriep in Table 8 values for N, c ,c' and hare neededo Of course,

estimates of h and c'*= c
already have been made for this set of

data, and therefore it is only necessary to estimate N and either c

or c' 0 We obtain our estimates of Nand c by a least squares
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Table 8

Predicted and Observed Asymptotic Sequential Response

Probabilities in Visual Detection Experiment

Group I Group II

Observed Predicted Observed Predicted

Pr(~IT2A1Tl} .57 .58 ·59 .64

pr(~IT2~Tl) .65 .69 .70 .76

Pr(A2IT2~T2) ·71 ·71 ·79 ·77

pr(~!T2A1T2) .61 ·59 .69 .66

Pr(~ IT2Al TO) .54 .59 Jill .66

pr(~IT2~TO) .66 ·70 ·11 .76

pr(Al !T1A1Tl ) ·73 ·71 ·70 .65

pr(AlITl~Tl) .62 ·59 .59 .52

pr(AIIT1~T2) ·53 .58 .53 .51
..

pr(Al !T1A1T2) .66 ·70 .64 .64

pr(Al lT1Al TO) ·72 ·70 .61 .63

pr(Al lT1A2TO) .61 .59 .48 .52

pr(~IT(hTl) .38 .40 .47 .49

p'(~ITchTl) .56 .58 ·59 .66

pr(~ITchT2) .64 .60 .67 .68

Pr(~ IT<flT2) .47 .42 .51 ·51

Pr(~ IT<flTO) .47 .42 .50 .51

pr(~ ITOA2TO) .60 .58 .65 .66

-
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"method; i. e 0, we select a value of Nand c (where c I = c1jr) so that

the sum of squared deviations between the 36 observed values in Table 8

and the corresponding theoretical quantities is minimized. The theoreti-

cal quantities for pr(Al'I'T1A.iT
j

) are computed from Eq. 91; theoretical

expressions for pr(~IT2AiTj) and pr(~IT~iTj) h~ve not been pre­

sented here but are of the same general form as those given in Eqo 91.

Using this technique, estimates of the parameters are as follows:

c' = 1 .. 00

(92)

h 0289 C ::; 0357

The predictions corresponding to these parameter values are presented

in Table 8. When one considers that only four of the possible 36 degrees

of freedom represented in Table 8 have been utilized in estimating pa-

rameters; the close correspondence between theoretical and observed

quantities may be interpreted as giving considerable support to the

assumptions of· ··the .. mbdel.

A great deal of research needs to be done to explore the consequences

of this approach to signal detections. In terms of the experimental pro-

blem conSidered in this section much progress can be made vi.a different·ial

tests among alternative formulations of the model. For example, we

postulated a multi-element pattern model to describe the learning pro-

cess associated with background stimuli; it would be important to deter-

mine whether other formulations of the learning process such as those
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developed in Sec. 5 or those proposed.·by Bush and Mosteller (1955)

would provide as good or even better theoretical fits than the ones

displayed in Tables 7 and 8. Also, it would be valuable to examine

variation" i.n the scheme for sampling sensory elements along .lines

developed by Luce (1959) and Restle (1961).

More generally, further development of the theory is required

before one could attempt to deal with the wide range of empirical

phenomena encompassed in the approach to perception via decision theory

proposed by Swets, Tanner, and Birdsall (1961) and others. Some theo~

retical work has been done by Atkinson (1961b ) along the lines outlined

in this section to account for the ROC (receiver-operating~characteristic)

curves that are' typically ob"erved in detection studies and to specify

the relation between forced_choice and yes-no experiments. However,

this work is still quite tentative and an evaluation of the approach

will require extensive analyses of the detailed sequential properties

of psychophysical data.

6~5 MUltiple Process Models

Analyses of certain behavioral situations have proved to require

formulations in terms of two or more distinguishable, though possibly

interdependent, learning processes that proceed simultaneously. For

some situations these separate processes may be directly observable;

for other situations we may find it advantageous to postulate processes

th~t are unobservable but which determine in some well-defined fashion

the sequence of obsElrvable behaviors.
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For example, in Restle's (1955) treatment of discrimination

learning it is assumed that irrelevant stimuli may become "adapted"

over a period of time and thus be: rendered nonfunctionaL Such an

analysis entails. a. two-process system. One process has to do with

the conditioning of stimuli to responses, whereas ·,the other process

prescribes both the conditions under which cues become irrelevant and

the rate at which adaptation occurs.

Another application of multiple process models arises with regard

to discrimination prOblems in which either a covert or a directly ob­

servable orienting response is required. One process might describe

how the stimuli presented to the subject become conditioned to discrim­

inative responses. Another process might specify the acquisition and

extinction of various orienting responses; these orienting responses

would determine the specific subset of the environment that the subject

would perceive on a given triaL For models dealing with this type of

problem see Atkinson (1958), Bower (1959), and WYckoff (1952).

As another example, consider a two-process scheme developed by

Atkinson (1960) to account for certain types of discrimination behavior.

This model makes use of the distinction, developed in Sec". 3 and 4 of

the present chapter, between component models and pattern models and

suggests that the subject may (at any .instant in time) perceive the

stimulus situation either as a unit pattern or as a collection of

individual components. ThuS, two perceptual states are defined; one

in which the subject responds to the pattern of stimulation and one in
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which he responds to the separate components of the situation. Two

learning processes are also defined. One process specifies how the

patterns and components become conditioned to responses, and the second

process describes the conditions under which the subject shifts from

one perceptual state to 'another. The control of the second process is
)

governed by the reinforcing schedule, the subject's sequence of responses,

and by similarity of the discriminanda. In this model neither the condi-

tioning states nor the perceptual states are observable; nevertheless,

the behavior of the subject is rigorously defined in terms of these

hypothetical states.

Models of the sort described above are generally difficult to work

with mathematically and consequently have had only limited development

and analysis. It is for this reason that we select a particularly

simple example to illustrate the type of formulation that is possible.

The example deals With a discrimination learning task investigated by

Atkinson (1961a) tn which observing res:pcnses are categorized and di-

rectly measured.

The experimental situation consists of a sequence of discrete

trials. Each trial is specified in terms of the following classifications:

Trial type. Each trial is either a T
l

or a T2 • The

trial type is set by the experimenter and determines in

part the stimulus event occurring on the trial.
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Observing responses. On each trial, the subject makes

either an R
l

or R2 • The particular observing response

determines in part the stimulus event for that trial.

sl' sb' s8: Stimulus events. Following the observing response, one

and only one of these stimulus events (discriminative cues)

can occur; onor sb

occur. 13canor

trial eitherOn a Tl

trial either

occurs 0

13 The subscript b has been used to denote the stimulus event that

may occur on both Tl
and T2 trials; the subscripts 1 and 2 denote

stimulus events unique to Tl and T2
trials, respectively.

Discriminative responses. On each trial the subject makes

either an A
l

or A
2

response to the presentation of a

stimulus event.

Trial outcome. Each trial is terminated with the occurrence

of one of these events. An 01 indicates that Al was

the correct response for that trial, and 02 indicates

that A
2

was correct.

The sequence of events on a trial is as follows: (1) The ready

signal occurs and the subject responds with Rl or R
2

• (2) Following

the observing response or is presented. To the onset

of the stimulus event the subject responds with either A
l

or A2 • (4)

The trial terminates with either an 01 or 02 event.
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To keep the analysis simple we consider an experimenter controlled

reinforcement schedule. On a T
l

trial, either an 01 occurs with

probability "1' or an 02 with probability 1 - "1;. on a T2 trial

an 01 occurs with probability "2' or an 02 with probability 1-"2'

The Tl type trial occurs with probability ~ and T
2

with probability

1 -~. Thus a Tl - 01 combination occurs with probability ~l;

Tl - 02 with probability .~(l - rr
l

); and so on.

The particular stimulus event si (i = 1, 2, b) that the experi-

menter presents on any trial depends on the trial type (T
l

or T
2

) and

the subject's observing response (R
l

or R2 ). Spectfically:

(i) If an R
l

is made then

(a) with probability ex the sl event occurs on a

Tl trial and the s2 event on a T2 trial.

(b) with probability 1 - ex the sb event occurs,

regardless of the trial type.

( ii ) If an R2 is made then

(a) with probability ex the sb event occurs,

regardless of the trial type;

(b) with probability 1 - ex the sl event occurs on

a Tl trial and 8
2

on a T
2

trial,

To clarify this procedure, consider the case where ex = 1, "1 = 1,

and rr2 = O. If the subject is to be correct on every trial, he must
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make an Al on a Tl type trial and an ~ on a T2 type trial.

However, the subject can only ascertain the trial type by making the

appropriate observing response. That is, R
l

must be made in order to

identify the trial type, for the occurrence of ,E2 always leads to the

presentation of sb regardless of the trial type. Hence, for perfect

responding the subject must make Rl with probability 1 and then

make Al to or ~ to The purpose of the Atkinson study

was to determine how variations in 111 , 112 and a would affect both

the observing responses and the discriminative responses.

Our analysis of this experimental procedure will be based on the

axioms presented in Sees. 2 and 3. However, in order to apply the theory

we must first identify the stimulus and reinforcing events, in terms of

the experimental operations,. The identification we offer :seems 'quite

natural to us and is in accord with the formulations given in Sees. 2

and 3.

We assume that associated with the ready signal is a set SR of

pattern elements. Each element in SR is conditioned to either the

Rl or the ~ observing response; there are N' such elements. At

the start of each trial (i.e., with the onset of the ready signal) an

element is sampled from SR and the subject makes the response to which

the element is conditioned.

Associated with each stimulus event s. (i = 1, 2,b)
~

is a set Si

of pattern elements; elements in Si are conditioned to either the A
l

or the ~ discrimination response. There are N such elements in each
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set Si and, for simplicity, we assume the sets are pairwise disjoint.

When the stimulus event occurs one element is randomly sampled from

Si and the subject mades the discriminative response to which the ele-

ment is conditioned.

Thus, we have two types of learning processes; one defined on the

set SR and the other defined on the sets Sl' Sb and S2' Once the

.reinforcing events have been specified for these processes we can apply

our axioms. The interpretation of reinforcement for the discrimination

response process is identical to that given in Sec. 3. If a pattern

element is sample from set Si for i; 1, 2, b and fallowed by an

0. (j ; 1, 2) outcome, then with probability c the element becomes
J

the conditioning state1 - cand with probabilitycondtioned to A
j

of the sampled element remains unchanged.

The conditioning process for the SR set is somewhat more complex

in that the reinforcing events for the observing responses are assumed

to be subject-controlled. Specifically, if an element conditioned to

R. is sampled from SR and followed by either an A10l or A2021

event, then the element will remain conditioned to Ri ; however, if

A102 or A201 occurs, then with probability c' the element will

become conditioned to the other observing response. Otherwise stated,---
if an element from SR elicits an observing response that selects a

stimulus event and, in turn, the stimulus event elicits a correct dis-

crimination response (i.e., A10l or A
2

0
2

), then the sampled element
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will remain conditioned to that observing response. However, if the

observing response selects a stimulus event that gives rise to an in­

correct discrimination response (i.e., A102 or ~Ol)' then there

will be a decrement in the tendency to repeat that observing response

on the next trial.

Given the above identification of events we can now generate a

mathematical model for the experiment. To simplify the analysis we let

N' = N = 1 ; namely, we aSSume that there is one element in each of our

stimulus sets and consequently the single element is sampled with proba­

bility 1 whenever the set is available. With this restriction we may

describe the' conditioning state of a subject, at the start of each trial,

by an ordered four tuple < i j k I, > where

(1) the first member i is 1 or 2 and indicates whether the

single element of 8
R

is conditioned to R
l

or R2 ;

(2) the second member j is 1 or 2 and indicates whether the

single element of 8
1

is conditioned to A
l

or A2 ;

(3) the third member k is 1 or 2 and indicates whether the

element of 8
b

is conditioned to A
l

or A
2

;

(4) the fourth member I, is 1 or 2 and indicates whether the

element of 8
2

is conditioned to A
l

,or A
2

.

observing response; then, to sl' sb or s2'

native response Aj , Ak or AI,' respectively.

Thus, if the subject is in state < ijkl, > he will make the Ri

he will make discrimi-
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From our assumptions it follows that the sequence of random variables

that take the subject states < i j k £ > as values is a 16 state Markov

chain. Fi~reIO displays the possible transitions that can occur when

Insert Fi~re 10 aboilt here

the subject is in state < 1122 > on trial n. To clarify this tree,

let us trace out the top branch. An R
l

is elicited with probability 1

and with probability ~rtl a Tl trial with an 01 outcome occurs;

further, given an R
l

response on . a T
l

trial there is probability

that the sl stimulus event occurs; the onset of the sl event elicits

a correct response and hence no change occurs in the conditioning state

of any of the stimulus patterns. Now consider the next set of branches:

an Rl occurs and we have a TIOl tria,l; with probability 1 - a the

sb stimulus is presented and an ~ occurs; the ~ response is in­

correct (in that it is followed by an 01 event), hence with proba­

bility c the element of set Sb becomes conditioned to Al and

with independent probability c' the element of set SR becomes

conditioned to the alternative observing response, namely R2 •

From this tree we obtain probabilities corresponding to the < 1122: >

row in the transition matrix, For example, the probability of going

from < 1122 > to < 2112 > is simply ~rtl(l-a)cc' + (1- ~)rt2(1-a)cc' ;

that is, the sum over branches 2 and IS. An inspection of the transition

matrix yields some important results. For example, if a = 1 , rt l = 1 ,

and rt2 = ° then states < 1112 > and < 1122 > are absorbing and
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Rl 2121
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". 2122

1122

.. 211205'0 '
~j;,

1112

2122

1122

ex : s2 &. Az 1122

Fig. 10. Branching process, starting in state <:1122>, for a single
trial in the two-process discrimination learning model.



hence in the limit

As before, let
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Pr(Rl )= i, Pr(Al ITl ) =1 , and Pr(A_ !T2 . )d.,n ,n , ,n '"'"2.,.n,n

ui~~£ denote the probability of being in state

< i j k £ > on trial n's when the limit exists let u"!'
~J r ..

1
, (n)

= J.m ui "k.€
n-4oo J

Experimentally, we shall be interested in evaluating the following

theoretical predictions:

(n) (n) (n) (n)+ u1211 + u1212 + u1221 + u1222

(n) (n) (n) (n)+ ex[ul121 + ul122 + u2211 + u2212 ]

( ) [ (n) (n) (n) (n) ]+ 1 - ex . u1211 + u1212 + u2121 + u2122

( I ) (n) (n) (n) (n)
Pr Al,n T2,n = ullll + u1211 + U21l1 + u2211

[ (n) (n) (n) (n) ]+ ex ul121 + u1221 + u2112 + u2212

( ) [ (n) (n) (n) (n) ]
+ 1 - Qi ull12 + u1212 + u2121 + U2221

( ) (n) . (n) . ( ) (n)Pr Rl , n n Al , n = ul111 + ex u l121 +. 1 - Qi u1212

1 [(n) (n)]+ 2 Qi ul122 + u122l

(93a)

(93c)

(93d)
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1 (n) (n)
+ 2(1 - a) [~122 + u2221l

1 (n) (n)
+ [1-2(1-a)][~112 + ~211l (93e)

The first equation gives the probability of an R
l

response. The

second and third equations give the probability of an A
l

response on

Tl and T2 trials, respectively. Finally, the last two equations

present the probability of the joint occurrence of each observing

response with an Al response.

In the experiment reported by Atkinson (1961a) six groups were run

with 40 subjects in each group. For all groups rt l = ·9 and ~ = ·5·

'The groups differed with respect to the value of a and For

Groups I-III, the value of a = 1; and for Groups IV-VI, a = .75. For

Groups I and IV, rt = ·9;2
for II and V, and for Groups III

and VI, rt
2

~ .1. The design can be described by the following array:

a
1.0

.75

.9

I

IV

.5

II

V

.1

III

VI

Given these values of rt l , rt2 ' a and

chain is irreducible and aperiodic. Thus,

~ our 16 state Markov

(n)
lim uijk£ = uijk£ exists
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and can be obtained by solving the appropriate set of 16 linear equations

(see Eq. 16). The values predicted by the model are given in Table 9

for the case whe~e Values for the were computed

Insert Table 9 about here

and then combined by Eq. 93 to predict the response probabilities. By

presenting a single value for each theoretical quantity in the table we

imply that these predictions are independent of c and c' • Actually

this is not always the case. However, for the schedules employed in

this experiment the dependency of these· asymptotic predictions on c and

c' is virtually negligible. For c = c' ranging over the interval

from .0001 to 1.0 the predicted values given in Table 9 are affected

in on~ the third or fourth decimal place; it is for this reason that

we present theoretical values to only two decimal places.

In view of these comments it should be clear that the predictions

in Table 9 are based solely on the experimental parameter values.

Consequently, differences between subjects (that may be represented by

intersubject variability in c and c l
) do not substantially affect

these predictions.
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Table 9

Predicted and Observed Asymptotic Besponse Probabilities

in Qbserving Besponse Experiment

Group I Group II Group III

Pred. Obs. 3D Pred. Obs. 3D Pred. Obs • 3D
.

Pr(A1IT1) .90 .94 .01.4 .81 .85 .164 ·79 ·79 .158

pr(A1 IT2) ·90 .94 .014 ·59 .61. .134 .21 .23 .182
.

Pr(Bl } .50 .45 .279 ·55 ·59 .279 ·73 ·70 .285

Fr(I\ n~) .45 .43 .266 .39 .42 .226 .37 .36 .164

Pr(~nA1) .45 ' .47 .293 .31 .31 .232 .13 .16 .161
i.

Group IV Group V Group VI

Fred. Obs. 3D Pred. Obs. 3D Pred. Obs. 3D

...
pr(Al!Tl ) .90 .93 .063 .80 .82 .114 ·73 ·73 .138

p;r(All T2} .90 .95 .014 .60 .68 .114 .27 .25 .138

Pr(I\} .49 ·50 .257 . ·52 ·53 .305 .63 .72 .263

Pr(Bln Al } .44 .47 .241 .35 .38 .219 .32 .36 .138

Pr(~ () Al } .46 .47 .247 .34 .36 .272 .19 .13 .168
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In the Atkinson study 400 trials were run and the response propor-

tions appear to have reached a fairly stable level over the last half

of the experiment. Consequently, the proportions computed over the

final block of 160 trials were used as estimates of asymptotic quantities.

Table 9 presents the mean and standard deviation of the 40 observed pro-

portions' obtained under each experimental condition. As can be seen,

the agreement between theoretical and observed quantities is fairly good.

Despite the fact that these gross asymptotic predictions hold up

quite well, it is obvious that some of the predictions from the model

will not be confirmed. The difficulty with the one-element assumption

is that the fundamental theory laid down by the axioms of Sec. 3 is

completely deterministic in many respects. For example, when N' ; 1

we have

pr(Rl +11°1 Al Rl ); 1 ;. .,n ,on -- , n , n

namely, if an ~ occurs on trial n and is reinforced (i.e., followed

by an A101 event) then Rl will reoccur with probability 1 on trial

n +1. This prediction, of course, is a consequence of the assumption

that we have but one element in set SR which necessarily is sampled

on every trial. If we assume more than one element, the deterministic

features of the model no longer hold and such sequential statistics

become functions of c, c' , Nand N' Uqfortunately, for elaborate

experimental procedures of the sort described in this section, the multi-

element case leads to complicated mathematical processes for which it is
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extremely difficult to carry out computations. Thus, the generality

of the multi-element assumption may often be offset by the difficulty

involved in making predictions.

Naturally it is usually preferable to choose from the available

models the one that best fits the data, but in the present state of

psychological knowledge no single model is clearly superior to all others

in every facet of analysis. The one-element assumption, despite some of

its erroneous features, may prove to be a valuable instrument for the

rapid exploi,ation of a wide variety of complex phenomena. For most of

the cases we have examined, the predicted mean response probabilities
of

are usually independent/ (or on;Ly slightly dependent on) the number of

elements assumed. Thus the one-element assumption may be viewed as a

simple device for computing the grosser predictions of the general theory.

For exploratory work in complex situations, then, we recommend using

the one-element model because of the greater difficulty of computations

for the multi-element models. In advocating this approach we are taking

a methodological position with which some scientists do not agree. Our

position is in contrast to one which asserts that a model should be dis-

carded once it is clear that certain of its predictions are in error.

We do not take it to be the principal goal (or even, in many cases, an

important goal) of theory construction to provide models for particular

experimental situations. The assumptions of stimulus sampling theory

are intended to describe processes or re;Lationships that are common to a

wide variety of learning situations, but with no implication that behavior.
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in these situations is a function solely of the variables represented in

the theory. As we have attempted to illustrate by means of numerous

examples, formulation of a model within this framework for a particular

experiment is a matter of selecting the relevant assumptions, or axioms,

of the general theory and interpreting these in terms of the conditions

of the experiment. How much of the variance in a set of data can be

accounted for by a model depends jointly on the adequacy of the theoret­

ical assumptions and on the extent to which it has been possible to

realize experimentally the boundary conditions envisaged in the theory

thereby minimizing the effects of variables not represented. In our

view, a model, in application to a given experiment, is not to be

classified as IIcorrectll or f1incorrect"; rather,- the degre-e to which it

accounts for the data may provide evidence tending either to support or

to cast doubt on the theory from which the particular model was derived.
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