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1. INTRODUCTION

Stimulus sampling theory is_concerned with providing a mathematical
language in which may be expressed assumptions about learning and
performance in relation to stimulus variables. A spgcial advantage
of the formulations to be discussed is that thelr mathematical properties
permit application of the simple and elegant theory of Markov chains
(Feller, 1957; Kemeny, Snell, and Thompson, 1957; Kemeny and Snell, 1959)
to the tasks of deriving theorems and generating statistical tests of the
agreement between assumptions and data. This branch of learning theory
has developed in close interaction with certain types of experimental
analysis; conseqpently it will be both natural end convenient to organize
this presentation around the theoretiéal treatments of a few standard
reference experiments.

At the level of experimental Interpretation, most contemporary

learning theories utilize s common conceptualization of the learning

situation in terms of stimulus, response, and reinforcement. The stimulus
term of this triumvirate refers to the envirommental situation with respect
to which behavior is being observed, the response term to the class Of
observable behaviors whose measurable properties change iﬁ some orderly
fashion,during learning, and the reinforcement term to the experimental

operations or events believed to be critical in producing 1earning, Thus,
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in a simple‘pairednassociate experimeﬁt concerned with the learning of
English eguivalents to Russian words, the stimulus might consist in
presentation of the printed Russian word alcne, the response measure in
the relative frequency with which the learner is able to supply the English
equivalént from memory, and reinforcgmgnt in paired presentation.. of the
gstimulus and response words.

In other chapters of this volume, and in the general literature on
learning theory, the reader will encounter the notions of sets of responses
and sets of reinforeing events. In the present chapter, mathematical sets
will be used to represent certain aspects of the stimulus situation. It
should be emphasized from the outsét5'hoﬁEVEr,‘that the mathematical models’
to be considered are somewhat abstract and that the empirical interprete-’
tions of stimulus sets and their elements are not to be considered Fixed
and immutable:. Two main types of interpretation’Will be discussed: 1in
one of thesé the empirical correspondent of a stimulus element is the full
pattern of Stimulation effective on a given trial, in the other the
correspondent of anuélement is a component, or aspect, of the full pattern
of stimulation. In the former case, we speak of "pattern modelsg" and in --
the latter of "component models" (Estes, 1959%).

There are a number of ways in which characteristicg of the stimualus
situation are known to affect learning and transfer. Rates and limits of
conditioning and learning generally depend upon both stimulus magnitude,
or intensity, and‘upon stimulus variability from trisl to trial. Retention
and transfer of learning depend upon the similarity, or dommunality, between

the stimulus situations obtaining during training and during the test for
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retention or transfer. These aspects of the stimulus situation can be
given direct and natural representations in terms of mathematical sets
and relations between sets.

The basic notion common to all stimulus sampling theories is the -
conceptualization of the totality of stimulus conditions “that may be
effective during the course of an experiment in terms of a mathematical

get. Although 1%t is not a necessary restriction, it is convenient for

mathemetical reagsons %0 deal only with finlte sets, end this limitation

will be assumed throughout our presentation. Stimulus variability is
taken into account by assuming that of the total population of stimuli
avalilseble in an experimental situation, generally only a part actually
affects the gubject on any one trigl. Translating this idea into the

terms of a stimulus sampling model, one may represent the total popula-

‘tion by a set of "stimulus elements” and the stimulation effective on

any one trial by a sample from this set. Many of the simple mathematical
proberties of the models to be discussed arise from the assumption that
these trial samples are drawn randomly from the population, with all
samples of a given size having equal probabilities. Although it is
sometimes convenient and suggestive to speak in such terms, one should
not agssume that the stimulus elemen?s are to be identified with any
gimple neurophysioliogical unit, as, for example, receptor cells. At

the present stage of theory censtruction, we mean to assume cnly that
certain properties of the set-theoreiicszl model represent certain
properties of the process of stimulation.. If these assumptiovns prove

to be sufficiently well substantiated when the model is tested against
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behaviocral data, then it will be in corder to lock for neuro-
Physiological variables which might underlie the correspondences.
Just as the ratio of gample zize to population size i1s a natural

way of representing stimulus variebility, sample size per se may

be teker as a correspondent of stimulus intensity;, and the amount

of overlap (i.e., proportion of common elements) between two stimulus
sets may be taken to represent the degree of commmality between

two stimulus situations.

Our concern in this chapter 1s not to survey'the rapidly
developing area of stimulus ssmpling theory, but simply to present
some of the fundamental mathematicsl techniques and illustrate their
applications. For general background, the reader is referred to
Bush (1960), Bush and Estes (1959}, Estes (1959a, 1962), and Suppes
and. Atkinson (1960). We shall consider first, and in some defail,
the very simplest of all learning models - the pattern model for
simple learning. In this model, the population of available
stimulation is essumed to comprise a set of distinct stimulus
patterns, exactly one of which is sampled on each triai. In the
important special case of the one-element model, it is assumed that
there is only one such pattern and ?hat it recurs intact at the
veginning of each experimental trisl. Granting that the one-element
_model represents a2 radical idealization of even the most simplified
conditioning situations, we shall find that it is worthy of study
not only for expositional purposes but also for its value as an

analytic device in relation to certain types of learning data.
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After a relatively.thorough,treatment of pattern models for simple
acquisition and for learning under probabilistic reinforcement schedules,
we shall take up more briefly the ponéeptualization of generalization

and transfer; the component models in which-the patterﬁs of stimulation
effective on individual trials are tfeated, nottas distinct elements, but
as overlapping sampleé from a common population;'and, finally, some
éxamples of the more complex multiple-process models Which are becoming
increasingly important in the analysis of diserimination learning, concept

formation, and related phenomena.

2. ONE-ELEMENT MCDELS

We begin by considering some one-element models which are special
cases of the more general theory. These examples are esgpecially simple
mathematically and provide us with the opportunity to develop some
mathematical tools which will be necessary in later discussions.
Application: of these models is appropriate if the stimulus situation
ig Sufficiently stable from trial to trial that it may be theoretically
represented to a good approximation by a single stimulus element which
is sampled with probability 1 on each trial. At the start-of a trial
the element is in one of several possible conditioning states; it may or
may not remain in this conditioning state, depending on the reinforéiﬂg
event for that trial. In the first part of this section we consider a
model for paired-associate learning which has been intensively analyzed

by Bower (1961, 1962). - - In ‘the second part of this section
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we consider a one-element model for a.tw0+choice learning situation

{avolving & probabilistic reinforcement schedule. The model generates
some predicﬁions which aré unddubtedly incorrect, éxcept possibly undér
ideal experimental.conditionsj nevertheless it provides a usefui intrb-

duction to more general cases which we pursue in Section 2.

2.1 Learning of a Single Stimulus-Response.Association

Imagine the simplest possible learning situation. A single stimuius,
pattern, 8 , is to be presented on each of a gseries of trials and each
trial is to terminate with reinforcement 6f some designated resgponse, the
"eorrect résponse" in this situation. According to stimulus sampling
theory, learning occurs in an all-or-none fashion with respect to 8
This means that: |

1. If the correct response is'not originally conditlcned fo
("connegted to"). S , then,until learning occurs, the probability of the
correct response is zero.

2. 'There is a fixed probability c¢ that the reinforced response
will become conditioned to S on any trial.

3. Once conditioned to. 8§ -, the cofrect response occurs with
probability one on every subsequent trial. ..
These assumptions constitute the simplest case of the "one-element. pattern
‘model. " learning situations which completely meet the specifications
laild down above are as uﬁlikely to be realized in psychological experi-
ments as perfect vacuums or frictionless planes in the physics iaboratory.

However, reasonable approximations to.these conditions can be attained.




Ao and .E' "T"'

The requirement that-the_same stimulus pattern be reproduced on each
trial is probably fairly well met in the standard paired-associate
experiment with human subjecﬁs. In one such experiment, conducted in
the laboratory of one of the writers (W. K. BE.), the stimulus member of
each item was & trigram and the correct response an English word, e.g.,
s R .

xvk house
On a reinforced trial the stimulus and response members were exposed
‘together, as shown. Then, affer several such items had received a
single reinforcement, each of the stimuli was presented alone, the
ﬁsubject being instructed to give the correct respbﬂse from memory, if
he could. Then esach item was given a second reinforcement, followed by
a second test, and so on.

According to thé assumptions of the one-element pattern model, a
subject should be expeéted to make an incorrect response on each test
with a given stimulus untii 1earning oceurs, then a correct response on
every subsequént tiial; if we represent ar error by a 1 and a correct
response by a 0, the protocol for an individual item over a series of
trials should, then, consiét in aAsequence of O's preceded, in most

cases, by a sequence of 1's. Actual protocols for several'subjecfs are

shown below:
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a 0 0 0 0000 00 0
b 1.1 11111111
¢ 1 000000 O0O0O0
i 00000CO0O0OO 0
‘e 1100000000
£. 11 000000 00
g 111110000 0
n 1000000100
i 11110611000

The first seven of these corrgspond Eerfectly to the idealized theoretical
picture; the last two deviate slightly. The proportidn of "fits" and
"misfitsf_in_this_sgmple ;s about the seme as in the fu;l set of 80 cases
from which the sample was taken. The occasional lapées, i.e., errors
Tollowing correct responses, may be symptomatic of a forgettingrpro;ess
which should be incorporated_into the theory or they may be simply the
result.of_minor uncontrolied variables in the experimental situation__
Which are best ignored for theoretical purposes. Without judging this
issue, we may conclude that the simp;e_oneuelément model at least merits
Turther study.

Before we can make gquantitative predictions we need to knqw the
value of the conditioning parameter Ce Statistical learning theory
includes no formal axioms specifying precisely what variables‘determine
. the value of ¢ , %but on the basis of considerable experience we can
safely assume that this parameter will vary with characteristics of
the populaticns of subjects and items represented in a particular

experiment. An estimate of
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the value-of ¢ for the experiment under,cbnsideration isreasy to come by.
In the full set of 80 cases (4O subjects, each tested on two items), the
proportion of correct responses én the test glven after a single
reinforcement waé .39. According to the model, the probability is ¢

that a reinforced résponse will become conditioned to its paired stimulus;
consequently, e is the expected proportién of succésstl cqnditionings
out of 80 cases, and theréfofe the eﬁpected proportion qf correct reéponses
on the subsequent test. Thus we may éimply take the obseérved propoftién,
.39, as an estimate of c

In.order to test the model, we need ndw to derive_theoretical_

expresglons for other aspects of the data. BSuppose we consider the
seqﬂénces of correct and incorrect responses, 000, 001, étc., on the.
first_three-trials. According to the modei, a correct_reSponseIShould
nevér,be'followed-by an error, so the probability of the sequence 000 is
simply ¢ , and the probabilities of 001, 010, 011, and 101 all zero.
‘Tb cbtain én error on the first trial fbliﬁwed by a correct response on.
the second,'COnditioning must fail on the first reinforcement but oceurs
on the second, and this joint event has probability (1-c)e . Similarly,
the probability that the first'correct‘response occurs on the third tfial
ig glven by (l—c)ec and the probabililty of no correct response in

three trials by (l~c)3.  Substituting the estimate,.39.fof ¢ in each
of these expressions,'wé obtain the predicted values which are compared

with the corresponding emplrical values for thils experiment in Table 1.

Table 1 about here
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Table 1

Observed-and predicted (one-element model) values for response sequences

over first three trials of & paired assoclate experiment.

S Obsérved - ' Theoretical

Sequence¥ _ . Proportions _ Proportions
© 000 . o o .36 : . L .39
ool B o2 o 0
o0 IR oL . -0
011 : O ‘ 0
100 et 2k
':101- | -0 | 0
S110° | 10 L1k
111 | 3 o .23

‘¥ (0 = correct response

1 = error
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The correspondences are seen 1o be dbout as close as could be expected

‘with_proportioné based on 80 responséJséquenees;'

2.2 Palred-Associate Learning

In order to apply therone—elemgnt model to paired-associate
experiments.infolﬁing fixed listé dffifemé; it is necessary to aﬁjust
“the "boundary conditions" appropriately. Consider, for example, an
experiment reported by Estes, Hopkins, and Crothers (1960). The task
assigned thelr subjects was to learn associations between the numbers
1 through 8, serving as responses, and eight consonant trigrams, .serving
as stimuli. . Each subject was given two practice trials and two test |
trials. On the first practice trial, the eight syliableenumber pairs.
were exhibited singly in a random order. Then a test was given, the
syllables alone being presented singly in a new random order and. the
subjects attempting to respond to each syllable with the correct number.
Then four of the syllable-number pairs were presented on a -second
practice trial and all eight syllables were included.in_a.final test trial.

In writing an expression for the probabllity of a correct response
on the first test in this experiment, we must take account of the fact
that after the first practice trial, the subJects kneﬁ that the responses
were the numbers 1 - 8, and were in a position to guess at the correct
ansvers when shown syllables that they had not yet learned. The mini-
mum probability of achieving a correct response to an unlearned item by
guessing would be 1/8. Thus we would have for P s the probability of

a correct response on the first test,
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po = C+ (l-C)/S s

i.e., the probability ¢ that the correct association was formed plus the

probability (1-¢)/8 that the association was not formed but the correct
response was achieved by gueséing, - Betting this expression equal to the
observed proportion of correct responses on the first frial for the twice
reinforced items, we readily obtain an estimate of ¢ for these ex-

perimental conditions,

Lok

¢ + (L-¢)(.125)

[a)
[

£ 32

Now we can proceed to derive expressions for the joint probabilities of
various combinations of correct and incorrect respongses on the first
and second tests for the twice reinforced items. For the probability

of correct responses to a given item in both tests, we have

by, = © * (1-¢)(.125)c + (1-¢)°(.125)% .

With probability c;? conditioning ocecurs on the first reinforced trilal,

and then correct responses necessarily occur on both tests; with probability
{(1-¢)c(.125) , conditioning does not occur on the first reinforced trial

but does on the second and a corrept response 1is achieved by guessing on

the first test; with probability (l-c)e(.125)2 , conditioning occurs on
ﬂneither reinfqrced trial but.cor;ect_rgsponses are achieved_by_guessing

on both tests. Similarly, we obtain
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= (1-¢)?(.875)(.125)

(o]
|

ol
By = (1-e)(875)[e + (1-c)(.125)] -
~and
By = (1-0)7(.875)7 .

Substituting for ¢ 1In these expressions the estimate computed above, we
arrive at the predicted values which we compared with the corresponding

observed values helow.

QObserved Predicﬁed
pOO .35 . .35
Poy 05 .05
P10 2T 2k

Although this cbmpérison revéals some disparities which we might hope

to reduce with a more elaborate theory, it is surprising, to the writers
at least, that the patterns of observed response proportions in both
EXperiménts considerea can be predicted és well as they-aré by such
ah(extremeiy simple model.

Ordinarily, experiments concerned with paire&;a550ciate learning
are.not limited fo a couple of‘trials,'like those jﬁst éonSidered, but
contintie until the subjects méet SomE'criterion of learning. Under these
circumstances it is imﬁractical-tb derive theofetiéal expressidns fdr‘ail
possible sequences of correct and incbrrect‘reSPOHées. A reasoﬁahle goal

is, instead, to derive expressions for various statistics which can be
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conveniently computed for the data of the standard experiment; examples of
_such statisfics_are the mean and variance errors per item, frequenciles - -

-of runs Qf errors or correct responses, or serial correlation of errors

over trials with any given lag. Bower (1961) is responsible for the first
major analysis of this type.. We shall use some of his results to illustrate
application of the one-element model to a. full "learning-to-criterion”
experiment.

As a reference experiment for this application, we shall use one of.
Bower's exHEriments.(;96l)}n “Essential deﬁails of the experiment are as
folliows: A list of ten items.was learned by 29 undergraduates to a
criterion of two comsecutive errorless trials. The stimuli were different
.pairs of consonant letters and the responses were the integers L and 2;
-each response was assigned as correct to a randomly selected five items for
each subject. A response was obtained from the subject ‘on each presenta-
tion of an item and he was informed .of the correct answer following his
response.

_As in the preceding application, we shall.assume that each item . in
the:list is_to_be represented theoretically by exactly one stimulus element
wﬁichwis sampied with probability 1 when the item is presented; and that
the correct response to that item is conditioned in an all-or-none fashion.
On trial n of the experiment an element is in one of two "conditioning
stgtes”: in state € the element is conditioned to the correct response; -
in state C the element is not conditioned.

The response the subject.makes,depenﬁs on his conditioning state. When

the element 1s in state C , the correct response occurs with probability 1.
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The probability of the correct response when the element is in state c
Gepends on the experimental procedure. In Bower's experiment the subjects
were told the r regponses avallable to them and each occcurred equally
often as the to-be-learned response. Therefore, we may assume that in the
unconditioned state the probability of a correct response ls % , where
r is the number of alternative responses. -

The conditioning assumptions :can.readily be restabed in terms of the
conditioning states:

1. On any reinforced trial, if the sampled element is in state E;
it has probability ..¢ of going into state C.

2. The parameter c¢ 1s fixed in value in a given experiment. -

3. Transitions from state ¢ to state C have probabilitj ZEYO.

We shall now derive some predictions frqm the model and compare these
- with observed data. The data of particular intefest will be & subject's
sequence of correct and incorrect responses to a specific stimulus item
over trials. Similarly, in deriving results from the model we shall only
consider an isolated stimulus item and its related sequence of responses.
However, when we apply the model to data we assume that all items in the
list are comparable, i.e., all items have the same conditioning parameter
¢ and all items start out in the same conditioning state (C).
Consequently the response sequence asgsociated with any given item is
viewed as a ssmple of size 1 from a population of sequences all generated
by the same underlying process.

A feature of this model which makes it especially tractable for

- purposes of deriving various statistics is the fact that the gequerces




A. and E. -15-

~of trensitionsibetween states (C  and .C : constitutes a Markov chain. .This
means that, given the state on any One trial,'we can specify the proba-
bility of.each_state on the next trial without regard to the previous
history. ';f:we represent byr Cn and En the events that an item is in
the conditiqned or_unconditioned state,_respectively, on trial n , and by
'qll and qu. the probabilities of transitions from state C -tb staﬁe C

and from C. to C, respectively, the conditioning assumpticns lead

' 2
directly to the relastion

Q;See Feller (l957),fof'a diScussion of conditional probabilities. In
brief, if Hl,...,Hﬁ' are a set.of'mutually ekplusive.events of which

one ﬁeceséarily oceurs, then any event A caﬁ occur oniy-in conjnnction
with some Hj " Bince the AH'j .are mutually exclusive, their probabi-
dities add. Applying the well-known theorem on compound probabilities, we

obtain Pr(4) = )  Pr(AH.) = 3 __ Pr(a[H,)Pr(H,) .
A D

4y = PrlC )
0, =Pr(c lc)=c ,
-and
1 0
Q= ) ’
c _ l-c

-where @ 1s the matrix of one-step transition probabilities, the first
-row and column referring to C' and the Seéond row and column to C . Now
the matrix of probabilities:for ﬁransitions between any two staftes in n

trials is simply the nth power of Q', as may be verified by mathématiéal
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induction (see, e.g., Kemeny, Snell, and Thompson, 1957, p. 327},

T o 1.
q = [l—(l-c)n (1-c)n} :

Henceforth we shall assume that all stimulus elements are in state C .at =
the onset of the first trial of our experimenti ‘Given that the state is
'C on trisl 1, the probability of being in state C at the start of trial

n ‘is (l-’-c:)n—l

, which goes to 0 as n becomes large, for - ¢ > O.
Thus, with probsbility 1 the subject is eventually to be_found'in-the
conditioned state.

. Next we prove some theorems aboutﬂﬁhg Qbservable_SeQuence of
correct and incorrect responses in terms of the underlying éequence of
unpbservablq conditioning states. We define the requnée raﬁdom variable .

IO if & co¥rect response occurred on trial 'n

[1 if an error occurred on trial n
By our assumed response rule, the probabilities of an error given that
the subject is in the conditicned or unconditioned state, respectively,

are

gnd

Pr(A_=1[C.) =1 - <.
n I xr

To obtain the probability of an efror‘on trial n, namely

Pr(A = 1), we sum these conditional probsbilities weighted by the

probabilities of being in the respective states:
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PrA ;_1)' = Pr(4 'llcn')Pi"(cﬁ) + Pr(gﬁ ,=',1-|En.)1=r(."é-n) '

(1)

(1 - H(a-e)™

Consider next the infinite sum of the random-variabies‘él, é2, és,.o.

which we denote zg_; specifically,

=2_ A -

n=1

"

o1

But E(E) =) E(A) =3 Pr(a =1)

1

2;; (1;‘ %)(l#c)n-l. . . : {2)

It

(1 - /e .

 Thus the number of errors expected during the learning of any given item
is given by Bq. 2.

Bguation 2 provides an easy method for estimating ¢ . For any
given subject we ecan obtain his average number of errors over stimulus
items, equate this number to the right-hand side of Bq. 2 with r = 2,
"and solve for ¢ . ‘We thereby obtain an estimate of e for each subject,
and inter-subject differences in learning are reflected in the variability
of these estimates. Bower, in analyzing his data, chose to assume that c
was the same for all subjects; thus he set E(E} equal to the observed-
number of errors averaged -over both list items and subjects and obtained
g single estimate of ¢ . This group estimate of ¢ simplifies the

computations involved in generating predictidns. However, -it has the
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disedvantage that a discrepancy between observed and predicted values
may arise as a consequence of assuming equal ¢fs When,.in fact, the
theory is correct but ¢ varies from subjéct to subject. Fortunately,
Bower has obtained excellent agreement between thecry and observation
using the group estimste of ¢ and, for the particular conditions he
irvestigated, any increase in precision that might be achieved by
individual estimates of ¢ does not seem crucial.

For the experiment described above, Bower reports 1.45 errors per
stimulus item averaged over all subjects. Equafing EQE) in‘Eqd 2
o 1.45, with r =2 , we obtain the estimste ¢ = .34k, ALl predictions
that we derive from the model for this experiment will be baséd on this
single estimate of e . It shoﬁld be remasrked that the estimate of ¢
in terms of Eg. 2 represents only one of many methods that could have
been used. Which method one selects depends on the properties of the
particular estimator (e.g., whether the estimator is unbiased and effi-
clent relative-to_other.estimatofs)° Parameter estimation is a theory in
its own right, and we shall not be able to discuss the many probléms
involved in the estimation of learning parameters. The reader is referred
to Suppes and Atkinson (1960), and Estes and Suppes (1962), for discus-
sions of various methods and their properties. Associated with this.
tdpic is the problem cof assessing the statistical agreement between data
and theory, once parameters have been.estimated; that is, the goodness-
of-Tit between predicted and observed values. In our analysis of data in
" this chepter we shall offer no .statistical evaluation of the predictions
but shall simply dgéplay the results for the reader's inspection. Our ..

reason is that we present
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the data only to illustrate features of the theory and its application;
these results are not intended to provide a test of the model. However,
in rigorous analyses of such models the problem of gocdness-of-fit is
extremely important and needs careful consideration. Here again the
reader is referred to Suppes and Atkinson (1960) for a discussion of
some of the problems and-possible statistical tests.

By using Eg. 1 with the estimate of c¢ obtained above we have
generated the predicted learning curve presented in Fig. 1. The fit is
sufficiently close that most of the predicted and observed points cannot

be distinguished on the scale of the graph.

Insert Fig. 1 about here

As a basis for the derivation of other statistics of total errors,
we require an expression for the probability distribution of gg. To
cobtain this, we note first that the probability of no errors at all

occurring during learning is given by

(/1) + (1-e)(/r)% + ...

C

o9) .
=c/r ) [(l-c ]’ = = b/r ,
e )/ r[1-(1-c)/r] /

c . . .
where b = E_TT_ET7;' This event may arise if a correct response cccurs

by guessing on the first trial and conditioning cceurs on the Tirst
reinforcement, if a correct response occcurs by guessing on the first fwo
trialg and conditioning occurs on the second reinforcement, and so on.
Similarly, the probability of no additional errors following an error on

any given trisl is given by
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¢ +c (l-c)/r+ ...

o8] .
C Z {(l-c)/r]l = ﬂl—i'w; =b .

i=0

To have exactly k errors, we must have a first error (if k > 0),
which has probability 1 - b/r, k - 1 additional errors, each of which
has probability 1 - b, and then no more errors. Therefore the required

probability distribution is

Pr(£= 0) = b/r
Pr(E = k) = b(1-0/r)(10)1 | for x >1 (3)

Equation 3 can be applied to data directly to predict the form of the
frequency distribution of total errors. It may also be utilized in
 deriving, e.g., the variance of this distribution. Preliminary to

coﬁpﬁting the variance, we need the expectation of KQ,
i

E(2%) % K2 B(1-b/r)(1-b)5"t
~ k=0

- 00 .
b(1-b/r) > [k(k-1)+k] (1-b)5 T
k=0

I

e 9]
(1L-p)b{1-b/T) 2 [1«;(1;-1)+k]('1-10)“'2 s
k=0

where the second step 1s taken in order to facilitate the summation.

Using now the familiar expressiom,

o'l

*

& k
S (1-b)* =
k=0

for the sum of a geometric series together with the relations




a ko k-1
s (1-b)" = -k(1-b) s
a2 k k-2
—5 (1-b)" = k(k-1) l—b) ,
db '
and
O (e8]
a d k a1 1
-y g ()= e (1) s - () = s
£ db db £ b b .
oo 2 2 o - e
d k d k a~ .1 2
Y ()= =5 ) (1) =—5 () =5,
k=0 @b db” k=0 av b
we obtain
—2 2(1-b 1
E(A7) = b(1-b/r) ( 3 ) =]
' b b
and

Var@ = E@E) - EE(Q]Q

2{1-b) -

b(1-b/r){
o3

F 1. (1 - —) /
b2

I

'(i - %)(2c—cr+r-l)/02r

(£-1) (2e-ertr1) _(e-1) (crtge-gorto-1) _ (1), (.2c—1)l(l—.r)']
- re

re re - re - re rc
= B(E)[1+B(E)(1-2¢)] . ) (1)

Inserting the estimstes Eggl = 1.45 and ¢ = .344 from Bower's date
in Eq. 4, we obtain 1.kl for the predicted standard derivation of total
errors, Which may be compared with the observed value of 1.37.

Another useful statistic of ithe error sequence is E(A A +k);
namely, the .expectation of the product of error random varisbles on

trials n and n+k. This quantity is related to the aubocorrelation
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between errors on trials n+k and trial n. By elementary probability

. theory,

Bt = Bl 40508

Prgxmk = 1]_131?1 = l)Pr(&n =1) .

But for an error to occur on trial ntk it must be the case that
conditioning has failed to ocecur during the intervening k . trials and

that the subject guessed incorrectly on trial n+k. Hence

1A = 1) = (l-c)k(l - %) .

Pr(w%nJrk T Tl

Substituting this result into the preceding expression, along with the

result presented in Eg. 1, yields the following expression:

B A ) = (1 - Do) 1)t - D
- (1 - %)Q(l_c)nﬂﬁ-l i (5)

A convenient statistic for comparison with data (directly related to the
average autocorrelation of errors with lag k, but easier to compute)

-is obtained by summing the cross product of 4%n and rﬁn+ over all

k
trials. We define c, @as the mean of this random wvariable, where
@0
% = 2 Pliad,)
n=1
- 1 k
= E(A) (1 - 2} (1-c)” . (6)

To be explicit, consider the following response protocol running in time

from left to right: 110101001000C. The observed values for ¢, are

¢, =1, ¢, =2, ¢, = 2, . and so on.
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c

‘The predictions for c 5

5 and ¢, computed from the c ' estimate

g 5
given above for Bower's experiment were .479, .310, and .201. Bower's -
cbserved values were .486, .292, and .187.

Next we consider the distribution of the number of errors between
the kth and k+lst success. The methods to bhe used in deriving this
result are general and can be used to derive the distributiOn of errors
between the kth and k+mth success for any non—negative‘integer n .

'The only limitation is that the expressions become unwieldy as m
increases. We shali define gk as the random variable for the number
of e:roré-between the kth and k+let success; its values are 0,1,2,...

An error following the kth success can only coccur if the kth success
itself occurs as.a result of guessigg; that is, the subject necessarily

‘is in state C when the kth success occurs. Letting_ gk dencote the

probability that the kth sucdcess oceurs by guessing, we can write the

_probability distribution

1 -q 8 ' for 1 =20
Pr(gk = i_) = ¢ _ (7)
(1-c)at 8, for 1> 0

\
where € = (l-c)(1 ~ %) . . To obtain Pr(J = 0) we note that O errors

k
can occur in one of three ways: (1) The kth success occurs because the
subject is in state C (which -has probability _l-gk) and necessarily a
correct response occurs ‘on the next trial; (2) the kth success occurs
by guessing, the subject remaining in state [ and again guessing cor-.

rectly on the next trial [which has probability gk(l—c)(%)] }j,or

(3) the kth success occurs by guessing but conditioning is effective
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on the trial (which has probability gkc). Thus Pr(gk =0) =1 - &,
+-gk(l~c)(%) +gc=1-ag - Theevent of i errors (i >0) et~
ween the kth and k+lst successes can occur . in one of two ways:

{1) The kth and k+lst successes occur by guessing [with probability -
gk(lnc)ifl(i - %.i %] or {2) the kth success occurs by guessing and

conditioning does not take place until the trial immediately precedihg

the k+lst success [with probability: gk(l-c)l(l.- %)1c]_. Hence
. i+l 1,i1 . i 1,i .
Pr(q = 1) = g (1-¢)" (1 - 2)7 T + g (1-c) (1L - Z)7e

= g (1 - DM 1-0) [ + Z(1-c)] = g, &' (1-0) -

From Bq. [ we may obtain the mean and variance of Aﬂk ; hemely
oo a8, _ :
CE(Z) =) 1 Eely = 1) =i - (8)
i=0 ' '
and
| - . .2 2
vgrggk) = § i Prggk = 1) - ngk)
' -0 1i=0

o gk(lﬂx) Q?gkg ()
= = - 9
(1-0)° (1-0)° |

-
= n--—§[l + ol - gk)] .
(1-a)

In order to evaluate the guantities above we réquire an expréssion:‘
for gk . Consider gi , the probabilitY that the first success occurs
by guessing. It could occur in one of the following ways: (1) The
subject guesses correctly om trial 1 (with probability % ) or (2)
the subject guesses incorrectly om trial 1, conditioning does not occur,

and the subject‘guesses successTully on trial 2 [this joint event having
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~probability (1 - %)(l-c) %] or (3) conditioning does not occur on trials
1 and 2, and the subject guesses incorrectly on both of these trials but
guesses correctly on trial 3 (with probability (1 - %)2(1-0)2 %)
so forth. Thus
10,1 1 18, 2 1
g =2+ (1 _-_r)(l-c)r +{1 -2V (1-e)" 2+ ...
e , .
1 1.1 i
=3 Z (1 - ;J (1-¢)” = 1/(1-a)r
i=0
Now consider the probability that the kth success occurs by guessing for
k > 1 . In order for this event to occur it must be the case that (1)
the k-1st guccess occurs by guessing, (2) conditioning fails to occur
on the trial of the k-lst success, and (3) since the subject is assumed
~to be in state C on the trial following the k-lst success, the next

correct response occurs by guessing with probability gl . Hence,

g = & _y(1-cleg

3

Solving this difference equation~ we obtain

3 The solution of this equation can quickly be obtained. Tote that
g, = & (i-d)g = tl—c)g2 Similarly, g. = g,(1-c)g,; substituting
2 1 N 1 B3 2 1’

the above result for g, we obtain gy = (1—c)g§(l—c)gl = (l-c)egf .
k

If we continue in this fashion it will be obvious that g, = (l-c)k_lgl

k
g

k-1
gk = (l"”C) 1

Finally, substituting the expression obtained above for 8, lyields

g = (1-¢)/(x ~az)* . (20)
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: ﬁe may now combine Eqsr 7fand lOI insertiné our-original estimate f
.:of_ e;_, to obtain predictions about the number of errors between the.
kth and k+lst success in Bower's data. To illustrate, for k.; i,
ithe predicted mean is 361 and the observed value lS 350. |
To conclude our analysis of thiSInmiel we consider the probability

"ﬁk that'a.response sequence to & stimulus 1tem-u1ll.exhibit the property -
of.no errors following the kth success. This euent_can occur in one
‘of two ﬁays: (1) fhe:kthrsuccess occurs whenitne subject:is in state.
_C [which we have already calculated to be l—gk], or (2) the kth
“success occurs when the subject is in state G and no errors occur on H
'subsequent trials Let b denote the probability of no more errors

following a correct guess. Then

L}

Y

1~ g (10) . (11)
iBut the probability of no more errors following a successful guess is -
- simply

4 4.

b=c+ (l-e)s e+ (1-c)2(%)20 +

e
a+c

Substltuting this result for b into Eq 11, along with our

expre551on for gk in Eq lO we obtain

e a(l-c)k_l
.- .

Q)
(a+e)(r - an)" B
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Observed and predicted values of Pk for Bower's experiment ars shown

in Table 2.

Insert Table 2 about here

We shall not pursue more consequences of this model.h The particular

Bower also has compared the cne-element model with a comparable
single~operator linesr model presented by Bush and Sternberg (1959).
The linear model assumes that the probablility of an incorrect response
on trial n is a fixed number p_ where P = (l-c)pn and
p; = (1- %) . The one-element model and the linear model generate many
identical predictions (e.g., mean learning curve) and it is necessary to
lock at the finer siructure of the data to differentiate models. Of the
20 possible comparisons Bower makes between the two models, he finds

that the one-element model comeg closer to the data on 18.

results we have examined were selected because they 1llustrated
fundamental features of the model and elso introduced mathematical
“techniques which will be needed later. In Bower's papei, more than 30
predictions of the fype presented here are tested, with results comparable
to those exhibited above. The goodness-of-fit of theory to data in these
instances is quite representative of that which one may now expect to
obtain routinely in simple iearning experiments when experimental
conditions have been appropriately arranged to approximate the simplifying

assumptions of the mathematicsl model.
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. -Table 2

Observed and predicted values for Dy , the probability of no errors
following the 1 oP success. (Interpret po. as the probability of no

errors at all duriné the course 6f'learning).

k Observed p Predicted D,

0 . .255 256

1 628 636
2 812 822
3 . 869 .912

y o 928 957
> .963 979
6 973 -990
990 -995
-8 990 997
9. .993 - 998
- 10 .996 . -999
11 - 1.000 ~ 1.000
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Concepts of the sort developed in this section can be extended to
more traditional types of_verbal learning situatiqns iavelving stimulus
similarity, meaningfulness, and the like. For example, Atkinson (1957)
has presented a modei for roté seriél ;earning ﬁhich is baséd on similar
ideas and deals with such variables as.intertfial interval, list.length,
and types of errosr(perseveratife, anticipatory, or fesponse-failures).
Unfortunately, theoretical analyses of this sort for traditional |
experimental routinéstoften lead_to ei£rémely complicated mathematical
models with the result that only = few consequences of the axioms can be
derived. Stated differently, a set of concepts may be very general in
terms of the ranée_of situations to which it is applicable; nevertheless,
in order to provide rigorous and detailed tests of these concepts; it is
frequently necessary to contrive special experimental routines where the

theoretical analyses generate tractable mathematical systems.

2.3 Probabilistic Reinforcement Schedules

We shall now examine a one-elemént model for some simple.two-choice
learning problems. ' The oﬁe-element model for this situation, as
contrasted with the paired-associate model, generates some predictions
of behavior which are quite unrealistic and for this reason we defer an
analysis of experimental data until we consider comparable multi-element
processes. The reason for presenting the one-element model is that it
represents a convenient introduction to multi-element models and permits
us to develop some mathematical tools in a simple fashion. Further, when
we do discuss multi-element models we shall employ a rather restrictive

set of conditioning axioms. However, for the one-element model we may
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present an extremely general set of conditioning_agsumptionsrwithout
getting into too much mathematical_complexity. Therefore, the analysis
of the one-elemént case will suggest lines along which the multi-element
models can be geneQalized.

The reference experiment (see, e.g., Estesrand_Straughan,_}95&;
Suppes and Atkinson, 1960) involves a long series of discrete trialg.
Each.trial is initiated by the onset of a signal. To the signal the
subject is regpire¢ to make one ofrtwp;responses whigh we denote rAl
agd A2,1 VThe t;ia; is terminate@ with an El or E2 reinforcing event;
the occurrence of Ei ;pdicgtes that.response Ai' was the correct
response for that trial. Thus in & human learning_situatien the subject
is required to pfedict on each trial which ;einforcing event he expegts
will occur by’making thg appropriate response--an Al if he expects E

1

and an A, if he expects E,; at the end of the trial he is permitted to

2 2}
observe which event actually occurred. Initially_the subject may have no
preference hetween responses, but as information aggrues.to himlover trials,
his pattern of choices undergoes systematic phanges, The role of a model is
to predict the detailed features of these__changes°

The experimenter may devise various schedules_for determining the _
sequence of reinforeing events over trials. For example, the probability
of an E, may be (1) some function of the trial number, (2) dependent
on previous responses of the subject, (3) dependent on the previous

sequence of reinforcing events, or (4) some combination of the above.

For simplicity, we consider a noncontingent reinforcement schedule. The

cage 1g defined by the conditlon that the probability of El is constant
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- over trials and independent of previous responses and reinforcements. It
‘is customary in the literature to call this probability = ; thus,

Pr(E;, ) =x forall n . Here we are denoting by E, , the event

l,n 2

that reinforcement ‘Ei occurs oﬁ trial n . Similarly, wé shall
represent by Ai,n the event that response Ai occurs on trial n .

We assume that the stimulus situation comprising the signal light
and the context in which it .occurs can be represented theoretically by a
singte stimulus eleﬁent which is sampled ﬁith probability 1 when the-
signal oceurs. At the start of a trial, the element is iﬁ one of three
conditioning states: In state ( the element is conditioned to the Al

1

response and in state to the 'AE response; in state CO the

2
element is not conditioned to eilther A1 or A2 . The response rules
are similar to those presented earlier. When the subject is in Cl or
. 02 , the Al or A2 response occurs with probability 1. In state C

we assume that elther response will be elicited equiprobably; that is,

0

I c ) = = . For some subjects a response blas may exist which
PRt O,n 2

| _ | , - | 1
would require that we assume Pr(Al,nl Co,n) =B where B # 5 . For

Pr(Ai

these subjects it would be necessary to estimate P in applying the
model. However, for simplieity we shall only pursue the case where

responses are équiprdbable when the subject is in C

0
We now present a general set of rules governing changes .in
conditioning states. As the model is de#eloped it will become obviocus
that for some.éxperiméntal problems restrictions can be imposed which
_greatly simplify the précess;
If the subject is in state ¢

and an E, occurs (i.e., the subject

1 1
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makes an Al response which is correct), then he will remain in Cl .

However, if the subject is inm Cl and an E2 occurs, then with

‘probability ¢ the subject goes to C, and with probability c' to

CO . ' Comparable rules apply when the subject is in ¢

subject is in ¢ or 02"and his response is correct, he will remain

o Thus, if the

in Cl or 02 . If, however, he is in Cl or 02 and his response is

not correct, then he may snift to cne of the other conditioning states,
thereby reduc1ng the probablllty of repeatlng the same response on the
next trlal.

Flnally, 1f the subgect is in CO and an 'El or E2 ocecurs,

then Wlth probablllty 'c“ the subJect moves to ( or 02

1 ; respeétivély,5

5

Here we assume that the subject's response does not affect the change.

‘That is, if'the:subjectiis in"'C‘_O and an El occufs; then he moves o

¢, Wwith probability e" indeperndently of whether Al”.or Ag' occurred.

‘This assumption is not necessary and We could readily have the actual

response affect change. For example, we mlght postulate <Y for an

1
or AEEE comblnatlon, and c2 for the A.lE2 or A2El

combination; that is, Pr(cl +1| B 1, 0Co, n) = Pr(c i | By wfo nCo,n
1 _ _ "t

o and Pr(cl ner | B, n52 ,0°0,n )”‘ Pr(Cy, ntl l 2, nAl nCO, ) = ¢y where
el # c" . However, such additions make the mathematical process more

compl.icated and should be. introduced oniy when the data clearly require

themn.

Thus, to summarize, for 1i,j =1,2 and 1 £ 3,
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PAC; g lBy o C) =t

. ; : = ot L
'Pr(co,n+llEj,n Ci,n) =¢
| (13)
Pr(cj,n+l]Ej,n Ci,n) =
Pr(C; o1l Co ) = ©

where 0 < c¢" < i and O0<e+c' <1

: We now ﬁse the assumptions of the preceding paragraphs and thé
particular assumptions for the noncontingent case to derive the transition
matrix in the conditioning states. In making such a derivation it.is
éonvenient.to represenf the various possible occurrenceé oﬁ a trial by a
tree. Each set of branches_emanaﬁing from a poinﬁ represents a_mutually
exclusive and exhaustivg set of possibilities. ¥or example, suppose that

at the start of trial n the subject is in state C

1 » then the tree in

Fig. 2 represents'the possible changes that can occur in the conditioning

state.

Insert Fig. 2 here

- The first set of branches is associated with the reinforeing event

on trial n . If the subject is in Cl and an El occurs, then he
will stay in state C; on the next trial. However, if an E, occurs,
then with probability ¢ he will go to C. , with probability’ ¢’ he

2
will go to Cy » and with probability l-c-c' he will remain in c -

Bach path of a tree, from a beginning point to a terminal point,

represents & possible outcome on & given trial.  The probability:of each

s
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1,n+3

CE,n+l

Q,n+l

Cl,n+l

Fig. 2. Branchipg Pprocess, starting from state C on tria
for one element model in two choice, noncontingent. case. :
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path is obtained by multiplying the appropriate conditional probabilities.
Thus, for the tree in Fig. 2 the probability of the bottom path may be

- (1- ~c-c'). Of the
1,041 1B, 10q n) = (1) (1-e-e®)
four paths, two lead from Cl to Cl 3 hence

.represented by I&(Ea’nlcl,n)PT(C

by =PelCy 10

l,n) = 1+ (l-n)(l-c—p')

‘Similarly, pj, = (i-w)e’ sand Py = (1-w)e , where Py, denotes .the

probablility of a one-step transition from Ci ta C

J

For the CO state we have the tree given in Fig. 3. On the top

" branch an El event 1s indicated and by Eq. 13 the probability of going

Insert Fig. 3 here

o € is ¢ and of staying in Cy

: holds for the bottom branches. Thus we have

is 1l-c¢" . A similar snalysis

Po. = 7€
: w {1a "
N N |}
Poo = l-c
Combining these results and the comparable results.for 02 yields.the
following transition matrix:
_ Cy Co Ca -
Cl' 1 - (1-w)(c'+c) e'(1-x) - e(1-n)
e % et Ll e1m) S
Cé- E 5'_ Ce'w - len(c'+c)
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Fig. 3. Branching process, starting from state C_ on trial n,
for one element model in two choice, noncontingent ¢ase.
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As in the case of the paired-associate model, a lérge number of
predictions can be derived eagily for this proceas. However, we shall
only select a few which are useful in clarifying the fundamental properties
_ of the model. We bégiﬁ by considering the agymptotic probability of a
particular conditioning state ﬁnd,‘in turn, the asymptotic probability of
an Al response. The following notation will prove useful: Let
[Pij] be the transition matrix and define Pg?) as.the proﬁability of
being in state J on ftrial r+n , given that at trial r the subject

was in state i. The guentity is defined recursively‘

(0 e Z o)

13 ij iv VJ

-

Moreover, if the appropriate limlit exists and is independent of 1 , we

set

(n)
1)

u, = lim p
n -

The limiting quantities uj exist for any finite-state_Markov chaln
that is irreducible and aperiodic. A Markov chain is irreducible if there
.is no closed proper subset of states; that is, no proper subset of states
such that once within this set the probability of leaving it is O . ¥For

example, the chain whose transition matrix is

1 2 3
1 T3
2|y
3 L1/3  1/3
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'is redueible because the set {1, 2} of states is a proper closed subset.
A Markov chain is aperiodic if there 1is no fixed pericd for return to.

any staﬁe, and periocdic if a return to some initial state J is impossible
except at t , 2t , 3t , ... trials for t > 1 . Thus the chain whose

matrix is

1 2 )
L 0 -.l 0 |
2 0 ' g 1
3 1 0 ' 0

.has reriod t = 3 for return to each state.

If there are r states, we call the vector u =Eul,u2,.,,,ur] the

stationary probability vector of the chain. It may be shown [Feller (1957),

Kemeny and Snell (1959)] that the components of this vector are the solutions

of the »r 1linear equations

LD LR )
v=1
I
u, = up ., (15)
v=1 '
. iy
U =2 NP,

r
such that E u, = 1 . Thus to find the asymptotic probabilities uj
v=1

of the states, we need find only the sclution of the r equations. The
intuitive basis of this system of eguations seems clear. Consider a two-

state chain. Then the probability of being in state 1 on

Pn+l
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trial nt+l 4is the probability of being in state 1 on trial n and golng
to 1 plus the probability of being in state 2 on trial n and;gqingqto 13
- that is

Phig = PPy * Py (1)

But at asymptote =u and 1 - P = Uy ,  whence

n+l Pn. 1

Uy = Pyi¥y * Bpy
which is the first of the two equations of the system when r =2

It is clear that the chain represented by the matrix P of Eq. 1lb
is irreducible and aperiodic;i.thus the asymptotes exist and are indepen-
dent of the initial probability distribution on the states. Let
[pij] (i, = 1,2,3) beany 3 x 3 ﬁransition maérix, Then We-seek,fhe

numbers u, .such that wu. = .u 7. and u, = 1 ,. The general
‘ J . o d z;: VPVJ Z:: o 8

It

solution,is.given by uj Dj/D where

=
|

1 = Pay(1 - Do) + 2oy
o) = p5lpl'2 + P52 (l - pll) (16)

5= (1 - pp) (- mp) - PPy

jw
|

D, +D, + D,

U .
I

Inserting in these equations the equivalents of the Pij from the

transition matrix and renumbering the states appropriately we obtain

= 1 i
Dy = me"{e + c'x)
Dd‘=.ﬂ(l - qyet (e’ + 2¢).
D, -

(1= m)e"[e + e (1 - x)] .
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Since --D is the sum of the Dj's and since :uj-= Dj/D ‘we may divide

the numerator and denominator by ‘(c")2 and obtain:

n[pten]
'Lll = -
alp+en] + w(l-w)ele+2p] + (1-n)[p+e(l-x)]
(17)
w = n(l-ﬁ)e[e+2p]
O nlotex] + n(l-n)ele+2p] + (L-n)fp+e(l-x)]
v = Lo w -y
, \
“where p = é% and € = %%
By our response axioms we-have
Pr(A, ) .= Pr(C, ) + % Pr(C. )
1,n’ “1,n 2 "7V 0,n
for all n'.'-Hence
lim Pr(A, ) =u ++u
: ~i,n - L 2 70
n-— o
nfptep + %ﬁe] + ﬁg [e-ep- %52 ]
= — ' . (18)

.2 2 2
nle +2ep-2¢] + n [2e-€ ~2epl+pte.

:An inspection of Eq. 18 indicates that the asymptotic probability of

an Al response is a function of =x, p, and ¢ . As will become clear later

1
the value of Pr(Al OO)- is bounded in the open interval from 5 to
)
2 . ,
- 3 whether Pr(A )} is above or below = depends on the
Y- L. .
o+ (1-x)

values of p and e .
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We now consider two special cases’ of our one-element model., The first
case is comparable to the multi-element models to be discussed later, whereas

- the éecond case is, in.some respects, the complement of the first case.

Case of ¢' = O. Let us rewrite Eq. lh with c' = 0. Then the tran-

sition matrix will have the following. canonical form:

L %
c, | 1_Q e(l - x) | e(l - x) 0
P=C, I e 1 - en 0 ‘ (19)
C, i R S | e"(1 - n) 1 --c“.‘ '

We note that once the subject has left'state C. he can never return.. In

0

. . - Tl g - {] n-1 . s P
_ fact it is obvious that E&(Co,n) "Br(co,l)(l, e") 7"  where Pr(CO’l) is
the initial probability of being in CO 0

is not part of the process and the subject in the long run fluctuates between

. Thus, except on early trials, C

¢, ‘and C, being in C

1 2 , on a proportion =«  6£ thé'tria}s.-

From Eq. 19 we have also

= Pr(C

"
l’n)[l-c(l—n)] + Pr(CE,n) cr + Pr(CO,n) c"x .

That is, the probability of being in -Cl con trial n + 1 1is equal to the

probability of being in Cl on trial n times the probabllity Pyq- of
going from . Cl to ‘Cl plus the'probability-of-ﬁeing,in C2 times Ppy

plus the probability of being in co times - Dy -

For simplicity let
X =I¥(Cl’n), yh==fw(02,n) and z = Pr(CO,n> . Now we know that

n

2, = 2y (1)
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:é‘_ n'-l- .
and also that x +y +2z =1 .or v, = L-x - zl(l - ")

Meking these substitutions in the recursion above yields

-1 wan=L1
Yy

e"n(1 - e")®

5
|

+ exfl -x, - Zl(l - C

41 T xn[l -e(l -n)] + Zy

1- c")nul n{e" - e) + e .

il

kn(l ~ c) +-zl(

This difference equation has the following solutionéz

g . '
' The solution of such a difference equation can readily be obtained.
. Consider Xpep = 8% + bt + 4 where a, b, ¢ and d are constants,
- Then
Ly . - , Xp = ax, +tb+d .

' Similarly X5 = 8X, + be + & and substituting (1) for X, we obtain

;(2) _ x3-= aaxl + ab + ad_+ be + 4 .

ax_ + bet + and substituting (2) for x, we obtain

" Similarly ), 3 3

(3) ' X, = aﬁxl + 8% + 8°d + sbe + ad + be® + d .

If we continue in this fashion it will be obvious that for n > 2

| n-2 . n-2 .
' n=1_- : i n- Cyid
x =& "x +d - a + a 2b 3 (a) .

it .
1=
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Carrying out the summétions yieids the desired results. See Jordan (1950,

p. 583-584) for a detailed treatment.

I R e G i ]

Pr(A :L n) =5 =[x —rtPr(Co 1 Ec‘(Cl l)](l - -c) |
(20)
-B(C, 1) - 2/2)(1 - S

If ’Pr'(CO,l) = 0 then we have a simple exponential learning function starting
at Pr(Gl,l) and approaching = at a rate determined by c. LT Pr(Cq 1) 40,
then the rate of approach is a function of both ¢ and e H

We now consider one simple seguential prediction to 1llustrate another
feature of the one-element medel: for  ¢'“= 0. Speeifically, consider the prob-
ability‘of an A response on trial n + 1 given a reinforced Al response on

1

trial n; namely-PT(A Wote first of all that

1l B0 A ) .
Br(A) g By o By WP (B o By ) =Be(A) By A ) Further ve may write

Pr(Al;n+l El,n Al,n) ) EEEEEKAi:n+1 ci;n+1 El:n Alan cj,n)
2

= %SEET( 1, n+l 1,n+l El n Al n CJ n)P?(ci,n+l]El,n A1,n Cj,n) ‘
s . . . _ i

Pr(El;nlAl,n cj,n)Pr(Al,nch;n)Pf(Cj,n)”°




A. and B. -41-

But by assumption the probability of a response is determined solely by the

) =

Further, by assumption the probability of an El event

conditioning state, -and hence Pr(Al n+llci,n+l El,n Al,n Cj,n
?T(Al,n+llci,n+l)

is independent of other events, and hence ‘Pr(E A c } = . Substi-

l,n[‘l,n J.,n

tuting these results in the above expression we obtain

Pr{A |E

1

1,n+l Tt §:: Pr(Al n+1lcl n+1) Pr(ci,n+l{El,nAl,an,n)

A L)
Lin "1,n l,J

. Pr(Al,n[Cj,n') PI'(C )

NPRY

Both i and j run over O, 1 and 2 and therefore there are nine terms
in the sum; but note that when either i or j is 2 the terms

Pr(A. and Pr(A, |C, )} both equal O . Consequently, it
l,n' 7 j,n

1, n+llcl n+l)
suffices to limit i and J tc O and 1 , .and we have

Pr(A E A. )

l,n+l "1,n "1,n
1
- iZO Pr(hy 1€y ne) Pr(_C:L n+l{El nA1,n On) T8y ‘[Cl,n) Pr(cy )
. 1 : - ’
+on g Pr(Al,n—l—l[Ci_,.n+l)Pr'('ci,n+l[El n A1 n Co,nBrldy ,lCo JIPr(Cy )

Slnce the subgect cannot leave state Cl cn. & trial.when Al ‘is reinforced,

1, +1[El nAl nC1, Il) =1 and Pr(C

[c

we know that Pr(C E

Oy +lI l,nAl,nCl,n) = O

further, Pr(A 1 . Therefore, the first sum is simply nPr(Cl n)u

l,ntl' "1, n+l)
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o] . P y i . . Al
For the second sum Pr(?l,n+l[El,nAl,nCO,n) = ¢" and
1
= - _" “u = = s e
Pr(co,n+l[El,nAl,nCO,n) =1-c" . Further Pr(a ..1C, ) =5 ; hence

.For. theisecond sum we obtain

SO S DO | |
e Ft 2(; —‘c ) E}Pr(po,n)

Combining these results

. . = V | ..:.".‘. 1 . tt _. ] i }
,Pr(Al,n*lEl’nAl’n) = n{fr(cl,n) + 2_Pr(CO,n)[c + (1 -c¢ )2] .

But Pr(gl,nA

_1,n) ?-Pr(El,nlAl,n)Pr(Al,n)‘= nPr(A

1 n) whence
2

Pr(Cl,n)+ 5 WPT(CO,H

Pf(Al,n)

1,n+1JE1;nA1,ﬁ) =

Ole" + (1-e") 2]
Pr(a 3l

We know that Pr(Cl n) and Pr(Al n) both approach- m in the limit
Ed >

and that Pr(C Y approaches O . Therefore, we predict that

0,n

1,n+1 )=1.

lim Pr{A LI

n — Co

|E

‘This prediction provides a very sharp test for this particular case of
‘the model and one that is certain to fail in almost anylexperimental situa-
~tion. That is, even after a large number of trials it is hard to conceivg
'df.aﬁ expefimental-procédure.sﬁéh that a response Wili.be repeafed ﬁith f
'jprobdbility 1 if it occurred and wvas réinférced on the Pfece&ing-triélu.
3Later we shall considef a8 mﬁltieelement.model which proviaes an excelieﬁt
description of many sets of data but is based on eésentially the same condi-

tioning rules.specified by this case of c¢'= 0. ¥t should be emphasized that
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deterministic predictions of the sort given in the equation above_aré
peculiar to cne-element models; for the multi-element case such difficul-
- ties do not arise. This point will be amplified later.

Case of ¢ = 0. We now consider the case in which direct counter-

conditioning does not occur, i1.e., ¢ = 0, and thus p=0 and 0 < ¢ < .
With this restrietion the chain is still ergodic since it is possible
'to_go from every state to every other state, but transitions between

Cl .and C, must go by way of C, . Letting p = 0 in Eq. 18 we obtain

0

2
n o+ %ﬁ(l - n)e

1,00) =72 y

\ - (21)
n + w{l - n)e + (1L - u).

Pr{A

From Bg. 21 we can draw some iﬁteresting conclusions about the
relationship of the asjmptotic ré5pqnse probabilities to the ratio
€ = %% . ‘Differentiating with respéct to € , we ¢btain

3 ' ﬂ(l—ﬂ)(% - %)

— Pr{a ) = -
% Lot E e 4 aline)”

Ir :r(l-n)(l -q) #£0(i.e., x# i) then Pr(A ) has no maximum
o . 2 a . 1,00 .

- for e in the open interval (0,0}, which is the permissible range on «.
In fact, since the sign of the derivative is independent of ¢ we know
that Pr(Ai OO) is either monotone increasing or monotone decreasing in €
. 3 o . . )

strictly increasing if n(l?n)(% -~} >0 (i.e., n > %) and decreasing if

'ﬁ(l-ﬂ)(%~n) <0 (ive., n < %).. Morecover, because of the monotonicity of

Pf(Ai OD) in € , it is easy to compute bounds from Eg. 21. Firstly, we
El . : .

hel]od

see immediately that the lower bound (assuming x > %) is lim Pr(A:L OO)=
' ' € —» CO 4

.




A, and E. -L4L-

2
Secondly, when e is very small, Pr{A } approaches ————31———d7§ . TNote,
Y s I : Y=
- - + {(1-n)
however;, that Eq. 21 is inapplicable when € = 0 3 for if both c = Q0 and
¢! = 0 the transition matrix {Eq. 14) reduces to
1 0 G
P = e"x ime" " {1l-x) 5
0 C 1
L el
‘and 1f the process starts in Cqy ,ET(Al co) =x ., But for ¢ > 0, if
5.

o> %, Pr(Al oo) is a decreasing function of ¢ and its values lie in
. -5 .

~the half open interval

1 ~
5 SP“(.L.A_l ) < -7 -
; w4 {lex)

Tt is readily determined that probability matching would not be predicted

]
in this case. When %w is greater than 2 , the predicted value of

Pr{A; ) is less than x , and vhen this ratio is less than 2 , the
. 3 .
predicted value of ET(Al oo) is greater than = .
L 2

:Finally we derive Pr{A E

1,neL! l,nAl,n) for this case. The derivation

is -identical to that given for the case of c¢' = 0 . Hence

b

- .]_‘ . | _ H __‘_1_-_
+.2 uo[c +.(1 c") 2]

Him Pr(Al,n—i—llEl,-nA}_s ) = T
n - : - U.l + -2" u

0

Note however that for c = 0 s The quantity Uy is never 0 (except for

1, 1;n

n=0,1) , and consqueptly Prgél,n+l|E

A ) is always lesgs than 1 .
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'Cohtingent reinforcement., ‘As a final example we shall apply the

one-element model to a dgituation whére the reinforcihg event on trial n

is contingent on the response on that trial.' Simple contingent reinforce-

ment is defined by two probabilities %) and %, such that

Pr{E

l,nIA

l,n) =M1 and P'Et'(El,nI‘LXQ,n)'= “21 °

We consider the case of the model in which e¢' = 0 and Eh(CO l) = 0.
b

That is, the subject is not in state C, on trial 1 and (since c' =

0

he can never reach CO from Cl or 02. Hence, on all trials he is in
¢ or G

1 02 and transitions between these states are governed by the

- single parameter c. The trees for the C and 02 states are given

| 1
“in Pigure 4.

Insert Fig. 4 about here

The transition matrix is

- € ¢ .
c, l—(l—nll)c (l-ﬂll)c
P = s
02 Cﬂgl l-CﬂEl

and in terms of this matrix we may write

l,n+l) = Pr(gl,n)[l-(l-nll)c] + Pr(CE’n)anl .

o).
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l,n+l

2,n+l

,n+l

Fig. 4. Branching proééss for one element model in two;choice,
contingent case.
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Butb Pr(pgjn) = 1Z~Pr(pl’n) ‘and Pr(_gl’n) = Pr(_Al’n)
“hence

11)c" ext

Pr(A Y [=(Len

Ay gey) = Pr(a

1,n 21 21

This difference equation has the solution

Pr(Al,n

where

) = = ﬂEl
Ler_ _+x

Pr(A .
11721

'y

1,

. The asymptote is independent of ¢ , and the rate of approach is

determined by the quantity .C(l“ﬂli+ﬁgl)o

IR I G PR

) = Pr(AleO)_- [Pr(Al,c;j - Pr(Al}l)][l—qﬁlunll+g21)]

n=1

. It is: interesting to.-nofe that

the learning function for’ Pr(Al'n) in this case of the one-element model
2 ;

is identical to that of the linear model-(qf,-Estes and Suppes, 1959¢) .
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5. MULTI-ELEMENT PATTERN MODELS

3.1 General Formulation

In the literature of stimulus sampling theory a varlety of proposals
have been. made. for conceptually-répresenting the stimulus situation. Funda-
mental to all of these suggestions has been the distinction between pattern
elements and component elements. TFor the one-element case this distinc-
-fion does not play a serious role, but for multi-element formulations
“these alternative representations of the stimulus situations specify
different mathematical processes.
| In component models, the stimulating situation 1s represented as a
population of elements which the learner is viewed as sampling from trial
to trial. It is assumed that the conditioning of individual elements to
regsponses occurs independently as'the.elements are sampled in conjunction
with reinforeing events, and that the responserprobability.in the pres-
ence of a sample-containing a number of elemeﬁts-is determined by an
averaging rule. The principal consideration has been to account for
~ response variability to an apparently congtant stimulus situation by
.rpostulating random fluctuationslfrom trial to. trial in the particular
éample of stimulus elements affecting the learner. These component
models have provided a mechanism for effecting a reconciliation between
-the picture of gradual change usually exhibited by the learning curve
and the all-or-none law of association.

For many experimental situations a detalled account of the quanti-
tative properties of learning can.be given by component models that
assume .discrete associaﬁionsqbetween responses and the independently

®
varigble elements of a stimulating situation.. However, -in some casges
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predicticns from component models fail, and 1t appearstthét.a.simple
-acecount of the 1earning'process requires the assumption that responses

- become associated, not with separate components or aspects of a stimulus
situation, but with total patterns of stimulation'Canidered ag unkte.

The model. presented in this section is intended to represent such a case.
In it we assume that an experimentally specified stimulating -situation
can be cpncéived as an assemblage’ of distinct, mutually execlusive patterns
of stimulation, each of which becomes conditicned to responses on an
all-or-none basis. By "mutually exclusive" we mean that exactly one of
the patterns occurs (is sampled by the subject) on each trial. By "distinct"
we mean that no generalization occurs from one pattern to ancther. Thus
the clearest experimental interpretation would involve a set of patterns
having no'common elements (i,e., common_proberties or components)n In
practice the pattern model has also been applied with considerable success
to experiments in which the alternative gtimuli have some common elements,
but nevertheless are sufficliently discriminable so that generalization
effects (e:g., "confusion errors") are small and can be neglected without
serious error.

In this presentation we sghall limit consideration to cases in‘ﬁhich
patterns are sampled randomiy with_equal'iikeliheod go-that, 1f there
are N patterns, each has probability"% of being sampled on -a trial.
This sampling assumption'represents‘only one way of formulating the model
and 1is presented here becéuse it generaﬁes g fairly simple mathematical
process and provides a good account of a variety of experimentsl results.

However, this particular scheme for sampling patterns has restricted -~
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appliecability. For example,‘ih certain experiments it can be demonstrated
that the stimulus array_tb Whicﬁ ﬁhé subject responds is in large part
determined by‘eVenfs on previous-trials; that is, trace stimulation asso-
ciated With previbﬁs responses and rewards determine the stimulus patterﬁ
* to which thé subject responds. When this is the case, it is ﬁecessary to
postulate a.more general rule for sampling patterns than the randém scheme
proposed above. (é.g., see the discussion of "hypothesis models” in
Suppes .and.Atkinson, 1960).

" Before stating the axioms for the pattern model to be considered in
this section we define the following notions. As befdre, the behaviors
available to the subjecf are categorized into mutually éxclusive and exhaus-
tive response classes (Al’AEf""Ar)-' The possible experimenter-defined
outcomes of a trial (e.g., giving or withholding reward, unconditionéd:
stimilus, knowledge of results) are classified by their effect on response
probability and are represénted by a:mutuallygexclusive;and:éxhaUStive set

of reinforeing events (EO, E E.) - fhe event Ei(i#O) indicates

l} v eny

that response Ai is reinforced and E represents any trial outcome

0
whose effect is neutral (i.e., reiﬁforces none of the Ai‘S ). Thé
subject'!s response and the experimenter-defined outcomes are observable,
but the occurrence of Ei is a purely hypotheticgl event -that represents
the reinforcing effect of the trial ocutcome. Event Ei is said to have
occurred when the outcome of a trial is such as to increase the probability
of response Ai in the presente of the given stimulus--provided, of course,
that this probability_is not. already at its maximum value.

We now present the axioms. The first group of axioms deals with the

conditioning. of sampled patterns, the second group with the sampling Of_

patterns, and the third group with responses.
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Conditioning Axioms

Qo every trisl each pattern'éﬁ-conditioned to exactly one response.

If g pattern is sampled on a trisl, it becomes conditioned with

probability ¢ to the response (if any) that is reinforced on the

trials if it is already conditioned to that response, it remains sO.

If no reinforcement occurs on a trial (i.e., E occurs), there

0

is no change in conditioning on that trial.

Patterns that are not sampled on a trial do not change their condi-

tioning on that trial.

The probability ¢ that a sampled pattern will be conditioned to

2 reinforced response is independent of the trial numbex and the

preceding events.

Sampling Axiocms

Exactly one pattern is sampled on each trial.

Given the set of N patierns available for sampling on a trial, the

probability of sampling a given pattern is 1/N , independently of

the trial number and the preceding events.

Response Axiom

-On any trial that response is made to which the sampled pattern. is

conditioned.

‘Later in this section we applylthESe axioms to & two-choice learning

experiment and to a paired-comparison study. First, hoﬁever, we shall

prove several general theorems. Before we can begin our analysis it is-

necessary to define the notion of a coﬁditioning'State, For the axioms

above, all patterns are sampled with equal probability, and it suffices
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o let the state .of conditioninglindicate_the number of pattérns cqndi-
~tioned to each response. Hence for r resPOﬁses the conditioning states
19 k2 seney kr > where ki =0, 1, 2,..%, N
and kl + k2 + ees + kr = N ; the integer ki denotes the number of

" are the ordered r-tuples < k

pattems conditioned to the A, response. The number of possible condi-

i ,
N+ § - l) . (In a generalized model which permitted

different patterns to have different likelihoods of being sampled, it

‘tioning states is (

wduld be necessary to specify not only the number of patterns conditioned
to a response but also the sampling probabilities asgocliated with the
pattérns{)

For simplicity, in this section we limit consideration to thé case
of two-alternatiﬁes'except for one example where r = 3 . Given only .
. tw§ alternatives we .denote the conditioning state on trial n of an
experiment as Ci,n where 1 =20, 1, 2,..., S H the.subscript i.lindi-

cates the number of'patterns conditioned to A

, eand N-1i +the number

© conditioned to A, .

Transition Probabilities. Only.one pattern is sampled per trialj -
therefore,. the subject can go from state Ci to only one of the three

statés C "y, Or C on any glven trial. The probabilities of

i-1° Ci i+1

- these transitions depend on the value of the conditionihg parameter ¢ ,

\

the reinforcement schedule, and the value of 1 . We now prdceed to
"~ compute these probabilities. .

If the subject is in state - Ci on trial n and an E. occurs;

1
~then the possible outcomes are indicated by the tree in Figuré 5.

Insert Fig. 5 about here







A- El.nd E- _513._

i,n
Ci_+l,n+l
Cq,ntl

Fig. 5. Branching process for N element model on a trial when the

subject starts in state Ci and an E event occurs,

1
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On the uvpper méin branch, which has proobsblility % , a pattern that is
conditioned to Al is sampled and, since an El reinforcement occurs,

the pattern remaing conditioned to Al . Hence, the conditioning state

on trial m + 1 is the same as on trial n (see Axiom C2}. On the

~ lower main branch, which has probability Eﬁi s 8 pattern conditioned to
A2 is sampled; then With.prdbability ¢ the pattern is conditioned to
Al and theusubject moves to conditicning state Ci+l s, Whereas with
probability 1-c conditioning is not effective and the subject remains

in state C; . Putting these results together we obtain

. N-%
P#(Cy 00 e 1B n Cin) N
(22a)
al, e s o i
Pf(Ci’n+llEl,n Ci,n) =lec+cgE .
Similarly, if an E2 occurs on trial n ,
” _ o X
'Pr('ci--l,n+l’E2,n '?i,n) R
(22b)
_ N-i
Pf(_Ciﬂn+_1|E2,n ci)n_) = l-c +c ==,
By Axiom C3, if an EO occurs then
¥ = o 22 ]
Pr(Ci’n+l|Eo,n Ci’n) 1 (22¢)

Noting that a transition upward can occur only when a pattern condi-

tioned to A2 is sampled on an E trial, and a transition downward can

1
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occur only when a pattern conditiomed to A, is sampled on an *EE trial,

1

-we can combine the results from Egq. 22a-c to obtain

. =

Pr(ci+l,n+1lci,n) T Pi(El,nlAE,n Cy,n) (2%2)
. R :

Pr(cinl,n+lIQiﬁn) =¢ NIk(EQ,n[Al,n 1,n) (23b)

Pr(pi,n+llci,n)

i
=1l-c + ¢ [NETtE )

l,nlAl,n Ci;n

N-i .
- TH('EQ,nI%,n Ci,n) (23¢)

+ H('EO,-H [ Ci, l'l ):|

;fgr,the probabilities of énevstep transitions between states. Eaquation 23a,
for example, states that the probability of moving from the state with i
elements conditioned to Al to the state with i +1 elements conditioned
to %L)-is the product.of the probability gﬁi that an element not already
conditioned o A, is sampled and the probability can(El’nlAgyn ci}n)
that, under the given circumstances, conditioning occurs.

As defined earlier, we have a Markov process in the conditioning states
if the probabllity of a transition from any state to any other state
depends ét most on the state existing on the trial preceding the transi-

tion. By inspection of Eq. 23 we see that the Markov condition may be

satisfied by limiting ourselves to reinfqrcemenf schedules in which the

probability of a reiﬁforcing event E. _depends at most on.the response

i

of the given trial; that is, in learning-theory terminology, to
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nonecontingent and simple contingent schedules. This restriction will: be
assumed throughout the present section except for a few remarks dn which”
we explicitly consider various. lines of generalization.

With these restrictions in mind, we define

n,. =Pe(E, _[A, )
44 Jyt 1,013

where Jj = 0 to r., 1i-= l Jto r o, and E Ty. = 1 . That is, the
reinforcement on a trlal depends at most on the respouse of the given

trial; further, the reinforcement probabilities do not depend on the trial

- number. We may then rewrite Eq. 23 as follows:

Ned
= ¢ == Dhia
9,441 = ¢ 7 Ter (2hea)
o S = i - .
= - = — it B —_— !f . 2 l
G,g =L CTF fyptCoFtie . (W)
‘ i | o ”
= - -5 ’ ’ ’ (2
9,11 7 ©§ M2 o (Bhe)

fey

Note that we use the notation a4 in place of Pr(C 4 n)';‘ The -

jsn+l

‘reason l1s that the transition probabilities do not depend on n , given

the restrictions on the reinforcement schedule stated above, and the

simpler notation expresses this fact.

-Regponse Probabilities and Moments. By Axioms S1, 82, and Rl we =

know that the relation between response probability and the conditioning

state is.simply
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Hence

N
Pr(Al,n) =§H‘(Al,nici;n)k(ci,n) ’
(25)
-t |
o N

‘But note that by definition of the transition probabilities qij.

Pr(Cy ) =BCq pq)agy +B(C) o g)agy + cre +B{Cy g dayy

N ~ (26)
= %B(Cj,n-l)qji ]

The latter expression, together with Eq. 25, serves as the basls Tor a

‘general recursion in Pk(Al :
,
_ . W,
Pria, ) = Zi=0 P r(C, o g)ey -

Now substituting for qj; in terms of Eq. 24 and rearranging the sum we
B . Ao . .

have
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_ N 5 ' : N 12 )
Pr(Al,n) - %;% N Pr(cl n- l) : Cﬂl2.i=l ;5 Prcci,n-l)'
N-1

1§N 1!
Sy g 2 Pr(ci n- 1)

N-L .. "
ey E:: Liillégiil Pr(g
1=0 ?

)
N i,n-1

+

!i 1)
+ con Z:: N2 Pr(Ci n- l)
The first sum is, by Bq. 25, Pr(4, n l)n Let us define
L -
N 12 .
a2,n = §=O_ ;5 Pr(Ci’n) ; then the second sum is simply -cm,, aE,n—l .

‘ 1,n- l)
+ Pr{C ,nwl)] = -engy [PI'(A:L 0 l) - a2,n-l] _and so fgrth. Carrying out

- Similarly the third sum is -cn, Pr(A Pr(c ) - Oy
N : n-1 2,n-1

the summetion and simplifying we obtain the following recursion in

_ml,n) :

"Pr'(Al,n) =1 - § trp t )| B L) fy (27)

This difference equation has the well-known solution {(cf. Bush and

- 'Mosteller, 1955; Estes,_l959b; Estes and Suppes, 1959)

n-1

Pr(Al ) Pr(f; o) - [ Pr(-.;‘al,m) - _Pr(Al,l)] [1- Hlrp + 7510 ,(28)
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where

(A
Pr(,l,oo =3
At this point it will also be instructive to calculate the vari-
‘ance of the distribution of response probabilities Pf(Al n[ci n) .
2 3

The second raw moment as defined above is

N .2 2

' N ki .
= a2,n =2 l_Pf('Ci,n) =2_ F ZH(C

1=0." 1=0 N j=0 'j"n”l)q*ji )

Carrying out the summstion as was done in the case of Eq. 27 we obtain

2c '
%on =% o1 [ L-w (“12_-* "21)]

] 1 2 1 C
'+IELA1,n—l)[Cﬁ12 gﬁ + Cily ¢ ( i ﬂé)] + ;5 fnp » £

2,n

»

Subtracting the square of I?(Al}n) as given in Eq. 28 from O
yields the variance of the response probgbilities. The second and

_ higher.mﬁments of the response probabillities are of experimentsl inter-
-est primarily because they enter into predictions concerning various

sequential statistices. We return to ﬁhis point later.

Asymptotic Disbributions, The pattern model has one particulariy
advantagedDus: feature not shared by many other learning models that
have appeared in the literature. This feature is a simple calcula-

‘tional procedure for generéting-the complete asymptotic distribution
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of conditioning states and thérefore the asymptotic distribution of
responses. . The deri%ation-to be given assumes.that all elements

. A A of the transition matrix are nonzero; the:
q;,l—l ? 31,1 ? q1,1+l g

same technique can be applied if there are zero entries, except, of’-

course, that in forming ratios one must keep the zeros out of ‘the
denominators.
As in Sec. 2.3, we let 1 lim Pr(C, n) = u, . The theorem to be
n - 0o ds i
proved is that all of the asymptotic conditioning state probabilities
uy can be expressed recursively in terms of ug 5 since the uifs : '

must sum Lo unity, this recursion suffices to determine the entire

distribution.

By Eq. 26 we note that

and hence

We now prove by induction that a similar relation holds for any adjacent

pair of states; that is

u, . S
i q1+l,1

U, G . ‘
i1 % ie

For any state i , we have by Eg. 26,

u, = U, . .t u. 9. . Fou, X .
i Ti-1 ql-l,l i ql,l Lo il q1+l,:1.

Rearranging,

“i(l"qii) =Yy Ye1,1 T Y Y,
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~However, under the inductive hypothesis we may replace ui;i by

its equilvalent Uy Qi,iél//ﬁai-l,i . Hence

I

O " 0 O N

iyliagg) = = %-1,1 ot

+1 %4411

= + ‘ L
Uy 941 7 a1 Y11
QI‘

gl -y "@1,1-1) = % 44,1 C

However 1 - @y 4 - Q41 %% qe1 SRS Gy Gyt g T

and therefore

u

i _ Qi+1,i
Yl 4,4
which concludes the proof.

Thus we may write

Ga 412 $2. o1
u, = —— —_— o= e ==,

1, = u,, Uy, =7T—nu
L a5 %07 2T 1T gy gy o

and so forth., Since the ui‘s mist sum to unity, Uy glso is deter-
mined. To illustrate the application of this technique we consider

some simple cases, For the'noncontingent case digcussed in Sec, 2.3

A= My =Ty

Lot = “12 = ﬂ22 .
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By Eq. 24 we have .
i,i+1 ~ ° N
T . :i : - ) -
= cF (1 -x)

9,i-1

Applying the technigue of the previous paragraph

and in general

Yk (w -?k.+ 1)n‘

uk.-l - k(l = ﬁy ’

This result has two interesting features. First, we note that the
. asymptotic probabilities are independent of the conditioning para-
meter ¢ .« Second, the ratio of U to U is the same as that

of neighboring terms

B R e N B L

in the expansion of [x + (1 = n)]N'., Therefore, the asymptotic

probabilities in this case are binomlally distributed. For a
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population of subjects whose learning is deseribed by the model,

the limiting proportion of subjects having all N patterns condi-

tioned to A, is xN 3 the proportion having all but one of the

1
N patterns conditioned to A, 1is Nt (1 - x) ; and so on.

For the case of simple contingent reinforcement,

u, (W - k=« 1)n21c kit o (N -k +-1)n21

M1 N | ¥ K2

Again we note that the u; are independent of ¢ . Further the ratio

uk -to uk—l ‘is the same as that of

( ] Ty ® 12 (k-l) "1 l “§2k+l .

Therefore the asymptotic state probabilities are the terms in-the

expansion of

Moy T

+
+ 3‘(12 1{21 4 Jflg

T2
Explicit formulas for state probabilities-are useful primarily as
intermediéry expressions in the derivation of other quantities, as will
be seen below. In the special case of the pattern model(@nlike other
-types of stimulus, sampling models) the strict determination of the
response on any trial by the conditioning state of the trial sample
permits a relatively direct empirical interpretation, for the moments

of the distributitn of state probabilities are'ideptical with the moments
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of the response random variable. Thus, in the simple contingent case
we have immediately for the mean and variance of the response random
va:iable"rﬁh

k N-k

-0 (o) e
o 4} i N‘.F F?l_+ #12_ B ﬁ21_+ ﬂlE__ T5q f ﬂ33x
and
o ‘ a . _.k Lo Nek
N2 s n : o
'k i} 21 12 \ 2
) -3 5 (1) | _ [m(a )]
_ n =1 NE ‘k) _ﬁgl + 0 T n
0 Toy Typ
- 2
(pp + 7pp)

'A bit of caution is neéded in applying this last expression to data.
If we select some fixed trial n?,(sufficiently large éo_that;thef:,'_
learning process may be assumed asymptotic), then the theoretical var-.

‘iance for the Al response totals of a number of independent samples.

: Moo T
of K subjects on trial n is simply K”*‘“;L“JEL—E

(nay + 73p)

theorem for the variance of a sum of independent random variables.

by the familiar

However, this:exﬁféSSion does not hold for the variance of 'Ai”'respoﬁSe
totals over a block of K successive trials. The additional consid-
erations involved in the latter case will be discussed in the next

section.,
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3.2 Treatment of the Simple Noncontingent Case

In this section we shall consider various predictions that may be

derived from‘the pattern médel_for simple predictive behavior in a two
choice Situation.with nénépntingent reinforcement. Each trial in the
reference experimeptlbegins with presentation of a reaiy signal;.the
subject's_fask is to respond tolthe siénal by operating one of a pair

of responge keys, A

L, or A2 , indicating his prediction as to which of

two reinforcing lights will appear. The reinforcing lights;ére pro-
‘érammed by the expe%imenﬁér_to occur in réndom sequence, exactly one on §=
each trial, with proﬁabilities which are constant throughout the series
and indééendent of the subject;s behayior.

For illﬁstrative purposés,_ﬁe gshall use data from two experiments
of this sort. In one of.thgse, henceforth designated the .6 series,
thirty subjects were run,-eagh for a éeries_of 240 trials, with probar_
bilities of .6 and .k for the two reinforcing lights. Details of the
experimenfél procedure,-and a more comflete analysisgof the data than
we shall undertake here, are given by Suppes and Atkinson (1960, Ch. 10).
Jn the other experimént, henceforth designated the .8 series, eighty
subjects were ruﬁ, eaéh.fbr a serieé,of 288 trials, with probabilities
of .8 and .2 for fhe two reinforcing lights. Details of.the procedure
and results héve been reportéd.by Friedman et.al”(1960). A possibly
important difference between the conditions of the two experiments is
that In the ré series the subjécts were new to this type of experiment

whereas in the .8 series the subjects were highly practiced, having had .

experience with a varlety of noncontingent schedules in two previous

experimental sesslons.
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For our present purposes it will suffice fo consider only thé'
-gimplest possible interpretatibn of ﬁhé experimental situation'in
terms of the pattern model. Lét: Oi" dénote the moré frequently
occurring reinforciné light and Cé .the less frequent light. Wé-thep
postulate ‘2 one-to-one c0rre6pondencé between the appearance of light
0, and the reinforcing event Ei' which is associated with A, (the
response of predi#tiﬁg‘ Oi } . Also we assume that the experimental
conditions defermiﬁe a set of N distincﬁ stimulus péfterns, éx&ctiy
one of which is present at the onset of any given trial. B8ince, in
experiments of the sort under consideratidn, thé expérimentéf usually
presents the same ready signal at the begiﬁning of e%erj triai,.oﬁé
might assume that .N would necessérily equal ﬁhity. -Héwéver,.we shall
not impose this restriction on the model. Rather, we shall let ‘N'
appear as. a free péraméter in fheoretical expressions; then we.éhall
éeek to determine from the data what:vélue of N is reqﬁired o) miﬁi-
mize the disparitiés between theoretical and observed valﬁés. .

If the daté of a particular experiment yield an.estimate of N
greater than unify, and if.with'this esfiméfe the mbdel provideS a
satisfactory account of the empirical relationships in.question; wé .
shall conclude that the learning;pfocess prbceeds aé.described byrthe
model but that, regaraless of.the experimenter}s intention, thé éﬁbjécfs
are sampling a‘pbpglatioﬁ bf stimuiué patterns. rThe pétﬁéfn éffeéﬁi#e
at the onset of a given trial.might comprise the expefimentéris ready
signal together with stimulus traces (perhaps verbally mediated) of-ther.

relnforeing events and responses of one or more-pfeceding trials.
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It will be apparent that the pattern model could scarcely be:
expected to prov1de a completely adequate account of the data of two—
choice experlments run under the condltlons sketched above. Flrstlyp
if the stimnlue patternslto Wnich theleubject‘responde include cues
 from preceding eventls, then.it is extrenely unlikely that all cf the
available patterns would haﬁe equal sampling probablllties as assumed
in the model. Secondlp, the different patterns must have component

cues in common.end these nould be expected to yieid transfer effects
(at least on early triale) sc that‘the regponse to a pattern first
sampled on trial =n Would ee influenced by conditioning that occurred
when compcnents of that pattern were present on eerlier trials. .How—
ever, the pattern model assuﬁes that all of the_patterns available for
sampling are.distinct in the.sense that reinfcrcement of a response to
one pettern.has no effect on response probabilities associated with
other patterns. |

De5p1te these compllcatlons, many 1nvest1gators (e.g., Suppes and
Atkinson, 1960, Estes, 196lb Suppes and Ginsberg, l962b, Bower, 1961)
‘have found it a useful strategy to apply the pattern model in the simple
fcrm presented in the preceding section. The geal in these applications
is not the perhaps impcssible one of accounting for every detaill of the
experimental results, but rether the more modest, yet realinable, one
of obtaining valuable information about verious.theoretical assumptions
by comparing manageably simple models thatlenbcdy different combinations
of assumptions. This procedure will be illustrated in the remainder of

the section.
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Seqnential Predictions. We begin our application of the pattern

model with a discus51on of sequential statistlcs. It should be empha-
sized that one of the major contributions of mathematlcal learning
theory has been to provide a framework w1th1n which the sequential
aspects of learning can be scrutinlzed Prior to the development of
mathematical models, relatively little attention was paid to trial by
trial phenomena, at the present tlme, for many experimental problems,
such phenomena are viewed as the most interesting aspect of the data.

Although we consider only the noncontingent case, the same methods
may berused to ohtain results for more general-reinforcement schedules.
Wé'shall-develop the proof's in terms.of two responses but the results
hold for any number of alternatives. lIf therelare r responses in:a
given enperimental application, any one response can be denoted‘ Ai.
and the rest regarded as members of a.single class, A2 . |

We consider first the probability of an A, response given that

1

it occurred and was reinforced'on the preceding trial; i.e.,

'.Pr(Al n+l|El nAl n) . It is convenient to deal first with the joint
probability Pr(A A, ) , then to conditionalize later. First

1, n+l i,n l n

we note that
Pr(A]_ n+lE]_ nl, n Z Pr(A n+lcj,n+lEl,nAl,nCi,n) 4 ‘ (50)

and that Pr(Al n+lcg,n+lEl nAl n i n) may be expressed in terms of

'conditional probabilities as




B Pr(A [c )Pr(C,

j,n+lEl,nAl,nCi,n j,n+1|E

1,0+l l,nAl,nci,n)Pr(El,nIAl,nci,n)

. _Prml-- nl i, 2V Pr(Cy | )

s

But from the sampling and response axioms .the probability of a response |
on trial n is determined solely by the conditioning state on trial

n; i.e., the first factor in the expansion can be rewritten simply as

" ~

Pr(A) nerfCsne) -

Further, by Axiom Rl, we have Pr(A. - c

[ ‘.... ) _ J. .
1, n+l Jantl N

For the noncoptingent case the probability of an E on any trial is

1

independent of previous events and‘conseQuently we may write

pr(E, |A ) = x.

i,n"1, ncl 7

Next, we note that

o o 1 ,.ir 1=
Pr(.CjJ n+l El:nAl)nci: n) =9 o
| DR 0 L, if 14§ .

IR
‘That is, an element conditibned'to  Ay is sampled on trial n (since
- an Al response occurs on n ) and3thus.by Axiam €2 no change in‘the.
coﬁditioning state can occur. | |
Putting these results together and Sﬁbstituﬁiﬁg in Eq..io we

obtain
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. . 2
1 i .
Pr(A) aa® nhy ) = % 2 2 Pr(Cy g [By why €y n)PR(C )

]
=
ol
zv]
]
[
I_l
-
B
S

1
A
R

; S | (31a)

'and'

T K
AL ) = === 2,n : = 2,n
1,0 1,n Pr(El’nAlyn) Pr(Al,n)

E

1,01 . (31b)
In order to expresswthig conditional probability in terms of the
pavameters n , ¢ , N, and Pr(Al,l) , Wwe simply substitute into Eq. 31b
the expression given for Pr(Al,n) in Eq. 28 and.the corresponding
expression for Qé,n ; that would be given by the solution of the
difference equation, Eq._29} Unfortunately, the expression so obtained
is extremely cumbersome to work withb‘”Conseqﬁently'if is usually
preferable in Wﬁfking.with data to proceed in a different way.

. :Suppose tbe=data to be1treated_consist_of_proportionS'of ocourrences
of ?hg Various;trigrams_ Ak5n+lEj,ﬁAi5n' over blocks of M -trials..
If, for example, M =5, .then in the protocol. .

mpisl T 2 15-' ) - 5V

Event Alﬁl | AlEl A2El AlEl AlE2
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there are four opportunities for.such trigrams,:mThe;combinafion~

Al n+lE1 nAl L occurs on two of - these, Aé,n+lEl,nAl,n on one,

and Al,n+l 1, nA2 on one; hence the proportions of occurrence of
these trigrams are - .5 , .25 , and .25 , respectively. -To deal
theoretically with gquantities such as these, we need only average both
sides of Eq. 3la {and the corresponding expressions for other trigrams)

over the appropriate block of trials, obtaining, e.g., for the block

running from trial n through trial n+M-1

n+M L ' n+M-1

Pll}_ M Z Pr(A]_ n +]_ 1, n' 1, n') = Za 2,nt = CXQ(H,M). (,523«)

where aé(n,M) is the average value of the second moment of the response
probabilities over the given ftrial block. By strictly analogous methods,

we can derive theoretical expressions for-other trigram proportions, e-.g.,

n+M-1

1
Z PI'(Al n'+l 1, n'AQ,n

1
Il

Pi12 1t[(l- .ﬁc)al.(n:l‘?) + = -Oy(n M)] (32v)

n+M—

EE::: Pr(A '+l 2,n' l n' )

_PlEl (1-?1)[&2(%34) - % al(_nJM):’ 2 (‘520)

1 n+M-1

EES Dt T S

(l-:t.)[al(n_,M) T ag(n:M):} H (526-)

and s0 on; the quantity ai(n,M) ~dencting the average Al probability -

(or, equivalently, the proportion of A

1 responses) over the given

 trial block.
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Now the average moments '&i can be treated as parameters.to be
estimated from the_data in order to medlate theoretical predictions. To
illustrate, let us consider a sample of data from the °_8,series. Over.
the first 12 trials of the = = .8 series, the obgerved proportion of
Al .responses for the group of 80 subjects was .63 and the observed
velues for the trigrams of Eq. 32a-d were p 1, = .379 Do = .168,
Doy = .061, and Pos = 0357, Using P1yq bo estimate’ aé(l,lE) .

we have from Eq. 32a

19 = 8[g0,)]

‘“which'yields as our estimate

o
O:2(1.912) = °)'|'T .t
Now we are in a position to predict the walue of. Pipop * Substituting

..the appropriate parameter values into Egq. 32d, we have

Piop = 2(:63 - 47) - o2,

which is not far from the observed value of .03%5. Proceeding similarly,

we can use Eq. 32b to estimate % , viz.

P p = +168 = .8 [(1 - %)(065) + % - ,47],
_.fromlwhich ,
2
= <135

With this estimate in hand, together Wwith -those already obtalined for
the first and second moments, We can substitute inte Eq.-32c¢ and predict

the value of Pipy ¢
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Doy = -2 [47 - .135(.63)]

1.

LoTT

-which is somewhat high in felaticn to the observed valpe of .061.
It should be menfioned that the simple estimation method used above
for illustrative purposes would be replaced, in a serious application
of the model, by a more systematic procedure. For example, one might
simultanépusly estimate &é' and % by least squares, employing all
eightrof the Pijk 3 this procedure Would_jield a better overall fit of
the theoretical and observed values. ;
A limitation of the method just described ié that it permits esti-
mation of the ratio % , but not‘estimationﬁpf c and N separately.
Fortunately, in thelésymptotic case, the expressions for the moments
oy are.simpié éndugh'so that expfesSioné for the trigrémé in terms.of
the parameters are manageable; and it turns out to be easy to evaluate
 the conditioning pﬁrametér-and the number of.elementé'from these expres-
sions. The limit of al,n for large n 1s, of course, % in the

simple noncontingent case. The limit, aé‘, of Obrn may be obtained
) 2

from the solution of Eq. 29; however, a simpler method of obtaining

" ‘the same result is to note that, by definition,

z 1
CX2 = i _"2 ui 3

' where u, again repréBents the asymptotic probability of the state in

which i elements are conditioned to A

1 - Recalling that the u,
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‘are terms of the binomial distribution, we may then write

Q
i

e

a

L .3:2_2 12 (N} ‘n:i(l-st)N-i

N i +

Thie sumation is- L second raw moment of the binomial distribution

with raramster n  and sample size N + Therefore

2
it

A [Nﬂ(l-ﬂ) +N2112]/Nd

= ’t—(%'-ﬁl P

Using Eq. 33 and the fact that lim Pr(A, ) = we have

|E

o T Tt
C Hm Pr(Ay g l,nAl,n) =a(l-F)+§

' By ildentical methods one can establish that

- 1im Pr(Al,n+l_|_E_:l,_n32,n)' T ,’,t.(l_ N ) 7+_'I—\I- ’
o N L 1 l-c
.lim_Pr(Al,n+l|E2,nAl,n) = =(1 '-N_) N
‘and _ ' '
o o 1
s llm PI'(Al’ n+l|E2:nA2:n) B ﬁ(l N ).

2

(33)

- (3ha)

- (3kD)
(3he)

(34)
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With these formulas in hand, we need only apply elementary
probability.theory to obtain eXpressiohs'for'depéndéncies of responses

on responses or responses on reinforcements, viz.,

1-c) (1~

;im Pr(Al,n+l[A1,n) - F_+ T | | (35a)
Lim Pr(A | 1 | yoq .o leedt ©(350)
'- 1,n+1-A2,n IR _

" lim Pr(A1 +lIE_l,n); (1- %{)n + % o -'(35¢)
1im Pr(Al,n+l|E2,n) = (1 - ) - - (35d)

Gi#enra_set of trigram proportions from the asymptotip_data of a
two~choice experiment,.we-are now in a position to achieve & rigorous
‘test of the model by using part of the data to estimate the pérameters
‘c-'énd‘_N » and then suﬁstituting these estimates inﬁo_Eq. 34a-d and
'55a4d'to.predict the values of ail'eight of thésé séquential statistics.
We shall 1llustrate this procedure with the data of .the 6-series The

observed transxtlon frequenc1es F(A. E,

i, n+l|

5n k ) for the last 100 -

trials, aggregated over subJects, ‘are as follows:

AL A

AlEl o _7&8._- 298
AlEg _59% . .3h2
;geEl - he2 506

ASE,. 186 26k
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An estimate of the asymptotic probabllity of an Al response given
an AiEl évent on the preceding trial can be obtained by dividing
the first entry in row one by the sum of the row; i.e.,

Pr(Al[ElAl) = 7&5//f7&8 T:Egg) = 715 . Bqt, %f we turn to Eq. 3ha

we note that 1lim Pr(A

1y 1 .
l,n+l[El,nAl,n) =n(l - T )-+-§ . Hence, letting

715 = 6(1 - %),+ % , we obtain an estimatéTmof W= 3.48 . Similarly

»

T‘For-any one subjectgi N must, of course; be an integer. The fTact
that our estimation procedures generally yield non-integral values for
N may signify that N varies somewhat between subjJects, or it may

.simply reflect some contamination of the data by sources of ‘experimental’

error not represented in the model. .

Pf(%llElAg) = 4§?/<zh§2 fg306) = .6 .which_Py Eq. 34b is an estimate

‘; : % 3 using our values of =x and N we find that

o
Haviﬁg éstiﬁated_.c  énd N we may now generate-prediqﬁions for ..
any of ouf-aéyﬁpfoﬁiquuéﬁtitiesQ Taple 3 presénts predigted gpd
observed values for the quantitiés éiven in Eg. 3bka to Eq. 35d. Consid-
ering that only two degrees of freedom have been utilized in estimating
parameters, the close correspondénce'between theoﬁetical and observed
quantities in Table 3 may be interpreted as:givihg'considerable support

to the agsumptions of the model. A similar anal&éis of the asymptotic

Insert Table 3 about here
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Table 3

Predicted (pattern model) and observed values of sequential statistics

for final 100 trials of the .6 series.

Asymptotic -
Quantity . Predicted - Observed

: Pr(Ai|ElA1) - .15 715

Pr(A, [B,A, ) LS4l 535

Pr(Al{ElAe) ' 601 .601

PT(Al[E2A2) 428 - 413

Pr(Al|Al) 645 o 641

Pr(A, [4,) <532 R
 Pr(a|E)) o .669 ' 667

Pr(4, [E,) 496 489




. i R . A :
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data from the .8 series, which has beén reported elsewhere (Estes,1961b;
Estes and Suéﬁes, 1962), yields éomparable aéreement between theoretical
.ahd.obserﬁed triéraﬁ pfoporfions. ' The estimate of .c/N for”thé .8 -
data is very close to that for the .4 data (.172 vs .174), but the
eétimates of ¢ and N.(.31 and l.éh, respectively) are both smaller
for ﬁhe .8 data. it appears that the more highly practiced subjeété of
the .8 series are, on the average, sampliné from a smailer popﬁlatiqn
”_of sﬁiﬁuius patterhs and at thé same time'are iess responsive'ﬁo.the :
reinforcing lights than the more naive éubjects of the .6 séries;

:Since no model can be expected to give a perfect account of fallible
data arising from.real experiments (as distinguiéhed from the idealized
' e@eriménts to which the model should apply strictly), it is difficult

1o knoﬁ how td“évaluate'the goodness—of-fit of theoretical to observed
values. in praétice, investigators uéually'proceed on a lérgely
“intuitive basis, evaluating the fit in a'given inéfance against that
'-_Which it appears réasonable to hope for in the light of what is
knéwn ébout the ?recision of expérimental.control and measureﬁent.
-Staﬁistical'£ésts 6f goodnéss—of—fiﬁ are sometimes possible (discussions
of some tests which méy be used iﬁ conjunction.with stimulus sampiing
models aré given by Suppes and Atkinson, 1960, and by Estes and Suppes,
1962); howevéf, statistibal tests are not entirely satisfactory |
taken by themselves, for a sufficiently precise test will often indi-
cate significant differences bebween theoretical and observed values
even in cases where the agreement is as_close as could reasbnably bé'

hoped for. Generally, once a degree of desériptive accuracy has been
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attained which appears satisfactory to investigators familiér with the
given area, further progréss must come largely via differenfial tests of
alternative models.

In the case of the two-choice noncontingent situation, the ingre-
dients for one such test are immediately at hand; for we developed in
Sec. 2.% a one-element, guessing state model that 1s comparable to the
‘N-element model with respect to the number of. free parameters, and which
to many might seem equally plausible on psychological grounds. These
models both embody the all-or-none assumption concerning the formation
of learned associations, but they differ in the means by which they
escape the deterministic features of the simple one-element model. It
ﬁill be recalled that the one-element model cannct handle the seguential
statistics considered in this section because it requires, for example,
a probability of unity for response Ai on any trial following a trial
on which Ai occurred and was reinforced. In the N-element model (with
N> 2), there is no such constraint, for the stimulus pattefn present
on the pfeceding reinforced trial may be replaced by another pattern,
possibly conditioned to a different response, on the following frialo
In the guessing state model, there is no strict determinacy since the
Ai response 1.Mmay. occur on the reinforced trial by guessing, if the

subject -is: in state C

0 and, if the reinforcement was not effective,

a different response 1mgyt occur, again through guessing, .on the
following trial.
The case of the guessing state model with ¢ = 0 (¢ , it will be

recalled, being the counter-conditioning parameter) provides a two
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-parameter model which may be compared with the two-parameter, N-element
model. We will require an expression for at least one of the trigram
proportions that have been studied above in connection with the N-element

model. Let us take .Pr(Al,n+lEl,nAl,n) for this purpose. In Sec. 2.3

we obtained an expression for Pr(A Ey nAl_n) for the case with
. > ¥

l,n+l[

¢ = 0 and thus we can write at once

’ ‘ _ _J_-_ " ! __u._J;] i
CPr(Ay) B A ) - “{fl,n *3 uo,n[c * (3-e") 3 } f (56a)

Since we are interested only in the asymptotic case, we shall drop the
n subscript from the right hand side of Eq.,56a and have for the desired

theoretical asymptotic expression

Pipp = TI[ul'*“o(-l'* c") %] . | - (36b)

Substituting now into Eq. 36b the expressions for Uy and Uy derived
in Sec. 2.3, we obtain finally
_ 2 [+ (1-n)e(i-c")] |
P11 = & 5 ‘ . (36¢)

L[ +.(l;ﬂ)2 + n{1-n)e]

To apply this model to the asymptotic data of the .6 series, we may
first evaluate the parameter ¢ by setting the observed proportion of
Al responses over the terminal 100 trials, .593, equal to the right

hand side of Eq. 21 and solving for e , viz,
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wlx +-(l-n)‘§ ]

593
o fng + (l-nar)2 + n{l-n)e

6(.6 + .2¢)
52 + 2he 7

and
g = 2.315 .
Wow. introducing this wvalue for ¢ into Equ.56c, and simplifying, we

obtain the prediction

P = 2782 + °OTTS c”.f

Since the observed value of Plll for the .6 data is .249, it is apparent
that no matter what value (in the admissible range 0 < c¢" < 1) is
chosen for the parameter ‘c" , the value predicted from the guessing
state model will be toc large. Further analysis, using the methods
illustrated abdfe, makes it clear that for ﬁo conibination of paraﬁeter
estimates can the guessing state model achievé.ﬁredicti§e éccuracy'
comparable to that demonstrated for the N elgment medel in Tabkle 3.
Although this one comparisﬁn'daﬁﬁ6t be¢§onsiaered decisivé, one might

. be d1nclined to suspect that, for interpretation of two-cheoice, proba-
bility learning, the notion of a2 re-accessible gueSSing'staté'is on the
wrong tréék,;ﬁheréés the'N?elémeﬁt'sampling mﬁdelwﬁerits further
inves‘tﬁigat’ioﬁ°

Mean and variance of A, response proportion. By letting

1

Myq = fpy = X in Eg. 28, we have immediately an expression for the
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probability of an A, vresponse on trial n ‘in the noncontingent case,

1
- vizg.

n-1l
c

'Pr(Al’n) - - [n - Pr(Al,l)_j(;;L - 67

If we define a response random variable ﬁh walch equals 1 or O
according as Al or A2 R respectively, OCCUrs on trial_ n , .then the
right side of Eg. 37 also represents the expectation of this random

variable on trial n . The expected number of A

4 Tesponses in a

series of X ‘trials is, then, given by the summation of Eq. 37 over

trials,
E(4) = Z_I E(A ) =Kr - Z[n-Pr(a DIL-Q-51. (38
S n= _ ‘ g _ _

In’ experimental applications, one is frequently interested in the learning

curve obtaiﬁed by pl0tting the proportion of A, responses per K-trial

1
block. ~ A theoretical expression for this learning function is readily
obtained by an extension of the method used to derive Bg. 38. Let x

be the ordinal number of a K-trial block running from trial K(x-1) + 1

to Kx where x =1, 2,..., and define P(x) as the proportion of

Ay responses in block x . -Then’
.1 Kx K(x-1
P(x)=2|> Pr(a, )~ > _ pr{a )
K =1 1,n ey 1,n

_# “.%% [f-;.Pr(Al,l% {l - (1 - %)K] (1 - %)K(xf}). (39a)
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The value of Pr(A “should be in the .neighborhood ‘of .5 if response

1',1)
bias does not exist. However, to allow for sampling deviations we

may eliminate Pr(A

1 1)- in favor of the observed value of P(l) . This -
s . . T R .

can be done in the following way. Note thét

P(1) = x - g5 [ - :Pr(.Al,l-)] - -9

Solving for [x —‘Pr(Al l)] and substituting the result in Eq. 39a, .
b oo R A SUk _ . - : R

we obtain

K(x-1)

P(x) = n - [xx - P(L}](X - {T}) © (39D)

. Appllcatlons of Eq. 39b to data have led to results that are -
satisfying in some respects but perplexxng in others (see, e.g., HEstes,
,l959a). In most ipstanpes the,implication that_the‘learning curve should
have = -as an asymptote has been borne out (Estes, 1961b,1962), and -
fqrﬁher? with a suitable choice of. values for ¢/N , the. curve represented
by Eg. 39b has served to describe the course of learning. However, in
experiments run with naive subjects, as has been nearly always the case,
the value of /N required to fit the mean learning curve has been
substantially smaller than the value required to handle the sequential
statistics discussed in the precedlng section. Consider, for example,
the learning curve for the “6 serles plotted by 20 trial blocks. The
observed value of P(ls is .48 and the value of c¢/N estimated from
the sequentlal statlstlcs of the second 2O-tr1al block 1s .12. With

these parameter values, Eq. 390 ylelds a predlctlon of 59 for P(3)
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and the theoretical curve-is essentially at asymptote from block L on.
The empirical learning curve, however, does not approach .59 until block
6 and is. still short of asymptote at the end of 12 blocks, .the mean

proportion of A, responses over the last five hlocks being .593

1
(Suppes and Atkinson, 1960, p. 197).

In the case of'fhe‘,8 series there is a similar disparity between
the value of ¢/N estimated from the sequential statistics and the value
estimated from the mean learning curve. As we have noted above,-an

optimal account of the trigram proportions Pr(Ak n+lEj e ) requires
2 A o F4

n
a c¢/N value of approximately .17. But if_this estimate is substituted
into Eq. 3%a, the predicted Al frequency in the first block of 12
trials is .67, compared to an observed value of .63, and the theoretical
curve runs appreciably above the empirical curve for anbther five blocks.
A ¢/N walue of .06 yields & satisfactory graduation of the observed
mean curve in. terms of Eq. 3%a, and a fit to the trigrams that does not
.look bad by usual standards for prediction in learning'experimentsn
However, comparing predictions based on the two ¢/N estimates for the
trigrams which contain this parameter, we see that the estimate of .17

is distinctly superior. For the trigrams averaged over the first 12

trials, the result is

Observed Theoreticals -¢/N = .17 Theoretical: ¢/N = .06

P12 L1680 - ATT ' ‘ .,11@
Pioy . 061 073 o o L087
9212’- g1 119 a ©.152

Doy e - N
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© The' reason for this discrepancy in the value of c/N required. to
give oétimalfdescriptions of-twordiffefent aspects of the data 1s not -
clear even after much investigation;r.ane contributing factor might be
individual differences in learning ratés (c/N values)'among_subjects;
_these would be -expected to affect the two types of statistics differently.
However, -in the case of the .8 series, when a more homogeneoﬁs subgroup _
of Subjects'(the-middle 50 on total A frequency) is analyzed, the
disparity, although somewhat reduced, is not eliminated; optimal C/N
falues for the mean curve and the trigram statistics are now .08 and .15,
respectively. The principal source of the remaining discrepancy in this
homogeneous subgroup is & much smaller increment in Al frequency from
the -first to the second 12-trial bléck than was predicted. Over the
first three blocks the -obs-erved-pr_oportioﬁs were 633, ;665 and .790;
‘the proportions predicted‘frOm'qul59a'with “¢/N = .15 rTun 657, .T79
and .800. A possible explanation is that in the early part of the series
thé subjects-are ré5ponding to cues, perhaps verbal in character, -which
are discarded {(i.e., are not reSampled)fwhen‘they‘fail.to elicit consis«
teﬁtly correct responding. An interpretation of.this sort could be
incorporated into the model and subjected to formal testing, but this
has nbt yet been done. In any event, one can see that analyses-of data
in térms of a_model-enables us to defermine,precisely-which_aspects of
the subjects' behavior dfe and whilch are not accounted.for in terms of
a particular set of assumptions.
Next to the mean learningrﬁurve, the most frequently used behaviorél

measure in. learning experiments 1s perhaps the variance of response
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)occurrepqgs_inAa p1oqk:of:trials1,‘Prgdicting this variance from a
theoretical_mg@el:;s an exceedingly taxing~éésignmén$;.for_the effects-ﬁ
Ccof individual differeﬁcesﬂin iearning rate, together with those of all
sources of experimental error not represented in the model, must be -

' expected to increase the observed response variance.'rHowever, this
statisticZis_relatively_easyrto compute for the pattern model, and the
deviation may”servé as a prototype for deviations of similar expfessions
in other ledrﬁing models: For simplicity, ‘we shall limit consideration

‘here to the casge of_the=variance'0f A re3ponsé frequency in a trial

1
block after the mean curve has reached asymptote.
As . a preliminary to computation of the variance, we require a

statistic which is also of interest in its.own'right, the covariance of

A

b responses on any two trials; that is (using the notation of Eg. 2-5),
Cov(ﬁh+k§n) = E(ﬁn+k%n)_' E(A, 1 B(A,)
R (40)
. Pr(Al,n+kAl,n) --Pr(Al;n+k)IT(Al,n)

First, we can establish by induction that

Pr(A | K1, ) ==ﬂFT(Al:n) ) [HFT(Al,n) - Pr(Al;nﬁlAl,nJ]'(l".%)k-l °

This formula is cbviously an identity for k = 1 . Thus, assuming that
| the formula holds=for-trials n and n + k , We may proceed to establish

it for trials n and n +k + 1 . First we use our standard procedure
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to expand the desired gquantity in terms of reinforcing events and states
of conditioning. - Letting 'Cj n denote the state in vhich exactly J '
: 3

of the N elements are conditicned to response Ai,' we may write®

E (Al ntiirtyn) = Z Prfy nent®s,neC j,n+kAl o)

’

_ ZJ Pr(Al n+k+l|E1,n+kCJ,n+kAl n)Pr(_Ei',f'n'mc,j,‘n%kAl,n)"
) . . :

Now we can make use of the assumptions that specify{the-noncontingent :

case to simplify_the;second;factor tof rPr(cC, ). and

,n+k 1,n’

(}—ﬁ)Pr(C nach 1, o) for i=1,2, respectively.. Also, we may apply .

 the learnlng;axlpms_to_the\first_faétpr,'thaining

SN I A € Sl L 5.0
Pr(Al n+k+1|E1,n+kC;,n+kA1,n)_ e (-5 5

cy J c

= - s

G-PFtw

and
LA Y - gy Jd | |
?I(Al,n+k+llEB,n+ij,n+kAl,n) R (1 N) N .

Combining;theée results, we have

Jyntkil,n

Pr(Al n+k+lAl n) - ?{ [(1 - ﬁ) ’1% Fﬁ] + (1—::)(1 - —) Q}Pr(c A

II

3 J,n+k 1,n

)Pr(A ) + s PT(A )

1, n+k l n N

)
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Substituting into this expression in terms of our inductive hypothesis

yields

1,n+k+l1,n

Pr(A A )= (1 - %) xPr(a; ) - [ﬂPr(Al, ) - Pr(Al p+1ty, n)]

. ° k-1 ! . c . -
"oy g Prla )

. .
ﬂPT(Al,n)‘“ [nPr(Al,n) Pr(Al n+lAl n)] (1 - %) ,

,as'required.
We wish to take the limit of the right side of Eq. 40 as n - @ in
order to obtain thé'covarianCe'df the'résponse.raqdom variable on any two

trials at asymptote. The limits of Pr(A and Pr(A )  we know

1, +k
" to be equal tom , and from Eq 55 we have the expre551on ﬂ + na{l-x ﬁL——l.

1,n+l1"1,n
in Eg. k4O, ylelds the simple reésult -

e for the limit of Pr(A A ). Maklng the appropriate substltutions

o o | | k1
llm COVQA +kvn = ﬁ?ﬂ;:[ﬂe ;:“2".“(1'“)(lﬁc ](l'" ﬁ) ST " .

n(1l-n}{1-c) (- E)k-l
fNow we are ‘ready to compute .Var(gk) , the variance of A, response

frequencmes in a: block of K trlals at asymptote, by applylng the stan-

dard theorem for the variance of a sum of random variahles (Feller, 1957)

: Var(AK) llm K. Va.r(A ) + 2 E >__—_ Cov(wn-i-,jﬂnﬂ)
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Since

- . _ ‘ | )
lim E(ﬁn) =g+ 1+ (l-nt) - 0=mx,
n - o

the limiting variance of nén; is simply

_ - B .

1im Var(A ) = 1im E(A ) - lim EB{(A) =% - x
. A T . M) ]l .
n — _ n-—=ow ‘ n = :

'Substltutlng thls result and that for lim- Cov(A ) into the general

-expression for VarQ%K) » we obtain

Kn(lﬂnatzzﬂl—“Mu ‘"’“__;_

Varg:éK) = 2
- Kn(ion) + 2"(1‘“%(1‘0) Z:l-lc\-f [1-(1::;:'%).",“'1] )
o J= | S B
- (1on) + 220 “)(1'03 _'-11[1-(1 2]

"-Appiication_ofwthis formila can be.convenientlyril;ustrated iﬁ terms
'éf the aéymptotic data for the .8“serie$..'Least squéreé determinétioné
~of % and N from the trigram propbrtiéﬁé:(ﬁsing Eq. 5ha~d)-yie;ded
estimates of ;17 and l;8h, respectively (Estes and Suppes, 1962).
'”Insefting these values inﬁo Eq;fh2; we obtainrfor*a.ﬁS trial block at
':iasymptoté;' Vaf{ék) = 57)5@& this variance édrresponds £§ a*standajd
.fﬂeviatioh of 6.12. Thé observed standard deviation for the f£inal 48
ﬁrialnblock was 6.94. - Thus, the theory predicts a variance of the ?ight
lorder'qf.mégnitude,'buﬁ,‘asfdhticipatéd,*undéréstimates the cbserved |

value.
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Of ‘the many_other,statiSti;g that can'bejderivéa from,thé'N—elemeﬁf
model for two-choice learning data, We shall give one final exasmple,
selected primarily for the purpose of réviewing the'techniéﬁe for
“deriving sequential statistics. This technique is so generally useful
that the major steps should be emphasized: first, expand the'desired'
expression in terms of the conditioning states {as done, for example,
in the case of Eq. 30); second, conditionalize responses and'réih*
forcing events on the preceding sequence of events, introducing what-
ever simplifications are permitted by the boundary conditions of the
case under consideration; third, apply the axioms and simplify to
obtain the appropriaté'résult, These steps will now be followed in
deriving an expression of considerable interest in its own right,--
_the probapiiity of'éhjuAl 1fesponse follbwing a sequence of exacth 

v El reinforcing events:
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= Pr(a

l,n+v[ l,n+v-1’ﬂﬁgl;nE2,n-1) T (1_ ) l,n+vEl nty-1° B gF

PT(A 1,n E)Hfl)

—k
1 (L-w) 1,

Pr(A

l, n-[—‘\)ci,,n_'_vEl, n+v-—l. R :-'E

=l,nE2,n-le,n-l}f-ﬂ

Z Pr(f; vl :.,n+vE1 nv-1r By B n 90y noa)
l-ﬁ) i, -

13?(01 y :r1+vl 1, n+v=1"" “-El,-nE2,-h‘lCJ,n."l) '

L R e L LNl CHNED

i IZ PT(C R TSI RO DL L C/SIED)

-
T

= Z (1- sl){l (1 - sl)(l - —) }+ c. ﬁ{l (1 -l-'J.——-)(l - —)}}Pr(cJ e i)
=0 L
NoT i eV Jd .1 ¢ V] |
:% - -p) -y 50 -p [l )
B G D T M- G
C C'v . . L!-
= l—l:lv-(l - ﬁ)Pn-l](l - 'ﬁ) . (£3)

The derivation has a formidable appearance, mainly because we have
spelled out the steps in more than customary detail, but each step can

regdily be Jjustified. The first involves simply using the definition of

a conditional probability, Pr(A|B)= P—%TBL’ together with the fact that
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_in the'simpie'noﬁcontingent case, Pr(E ) ‘n and Pr( ) = l -
‘for all n, and Pr(El n+VEl v~ l..uEl nEE - l) =7 (l n) ?he
~second step introduces the condltionlng states Ci,n+? and Cj,n~l :

denotlng the states in which i elements are conditioned to Al on
Ctrial n+ vV oand J elements on trial n - 1, respectifély;. Their
insertion into the fight-hand.expressibn of%line'l is permiésible-since 
thersummation of Pr(ci) over all values of i_'is unify.énd.similarly.
for the summation of Pr(C ) . - The third step is based solely on |
:repeated appllcation of the deflning equation for a condltlonal
_probabillty,‘which permits the expanSLQQ_ _ | S :

: Pr(ABC.. ...J) = Pr(A|BC....J)Pr(B[C.. J) .'.APr(.J) . -The fourth step

: ihvolves assumptions of the modelﬁ the condltlonallzation of Al n+v

gon_ﬁhelpreceding sequence cgn be reduced to Pr(Al,n+vl 1, n+v)

since, -according to the theory, the preceding history affects response_,
probability on a given trial only insofar as it determines the state
of conditioning, i.e., the proportion of elements conditioned to the

given response. The decomposition of Pr(El,n+Q-l"’ E2 n-l‘ 3,n- l)

into ﬁ?c;-n)Pr(cj is justified by the special assumptions of the

,n—i)

simplé noncontingent case. The fifth step involves calculating, for
- each value of J on trial n -1 ,uthe_expected,proportion of elements

cdnditioned to Al on trial n + v . There aré two main branches to

the process starting with state C, on trial n -1 . In one, which

by the axioms has probability 1 - ¢ %. , the state of conditioning is

'un¢hanged by the E, .event on trial =n - 1 ; then, applying Eq. 357

2

5__with 7 =1 (since from trial n onward we are dealiﬁg_with a sequence
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of E,8) and Pr(A

= 4, we obtain the expression 1-(1- i)(l- E)v

l,l)

for the expected proportion of elements connected to Al on trial n + V
-in this branch. In the other branch, which has probability ¢ % appli-

cation of Eq. 37 with =« =1 and Pr(Al l) = Qﬁi yields the expression
> .

= vV
{}—(l - gﬁi)(l - %).} for the expected proportion of elements connected
to Al on trial n + Vv . Carrying out the summation over J , and using

the by now familisr property of the model that

b= PrA (0) =P

d
TGS n-1

M=

2

J

1l
(e

we finally arrive at the desired expression for probability of Al'
folidwing exactly v Es

Application of Eq. 43 can conveniently be illustrated.in_tefms of
the .8 series.. Using the estimate of .17 for % (obtained previously
from the trigram statistics) and taking Poq= .83 {the mean proporticn
of A responses over the last 96 trials of the .8 series), we can

compute the following values for the conditional response proportions:

v 0 1 2 3 4
Theoretical .689 .Th2 .786 .822 .852

Observed .695 .787 .838 .859 897

It can be seen that the trend of the theoretical values represents gulte
well the trend of the observed proportions over the last 96 trials.

Somewhat surprisingly, the observed proportions run silightly above
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the predicted values. There 1s no indication here .of the "negatiwve
recency effect" (decrease in Al proportion with increasing length of

the El sequence) reported -in a number of published two-choice studies

{e.g., Jérvik,.l95l;‘Nicks, 1959). It may be significant that no nega-
‘tive recency effect is observed in the .8 series, which, it will be
recalled, involved well-practiced subjects who had had experience with a
wide range of = values in preceding series. However, the effect is
observed in the .6 series, conducted with subjects new to this type of
experiment (cf. Suppes and Atkinson 1960, pp. 212-213). This differential
result appears to support the idea (Estes, 1962) that the negative recency
phenomenon is attributable to guessing habits carried over from everyday
lifg-to the experimental situation and extinguished during a Long:training
series conducted with noncontingent reinforcement.

Wé‘shail conclude our analjsis of the N-element pattern model by
proving & véry general "matching'theoremm"'_Thelsubsténce of this theoren

is that, so long as either an E or an E, reinforecing event occurs

1 2

on each trial, the proportion of Al responses for any individual subject

should tend to match the proportiocn of El events over a sufficiently
- long series of trials regardless of the reinforcement scheduie.

For purposes of this derivation, we sﬁéil identify by a subscript
b4 the.probabilities_and events associated.with the individual x in a

population of subjects;. thus le:h: will denote probability of an Al
3

regponse by subject - x on trial n , and 'Exl,n - and AXl;n will denote
random variables which take on the values 1 or O according as an El
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event and an A, response do or do not occur in this subject's protocol

1

on trial =n . With this notation, the probability of an Al

response

' by subject x on trial. n + 1 can be expressed by the recursion

c
Pri,n¥1 = Pxi,n +:ﬁ(Exl,n'-ékl,n

) - B

The genesis of Eq: 44 should be‘reasonably obvious if we recall that

P

l.n is equal to the proportion of elements currently conditioned to
2

response. This proportion can change only if an E.. event

the iA 1

1

‘oceurs on & trial when a stimulus pattern conditicned to A2'_is'sampled,

~in which case E _

=A - =1-0=1,; or if an E,  event ocdcurs on '
=xl,n “xl,n

2

a trial when a pattern conditioned to A, -is sampled, in which case

1

E

wxl,ﬁ';éxlgn =0-1=-1. In the former case, the proportion of pat--

ternswconditioned to A increases by l'-if'cOndi_tion’ing is effective

N
(which has probability c) and in the latter case this proportion
decreases by % (again with probability c¢).
- Considering now a series of, say, n¥ trials: we can convert Eq. 4%

-into an analogous recursion for response proportions over the series: .

simply by summing both sides over n and dividing by  n¥, viz.

n¥* n* n*
A _1 5 cLEST@ a1
n* Z Prl,ptl ~n*F L= Px1,n THF N wx]l,n *xl,n
n=1 4 n=1 ? n=1

Now we subtract the first sum on the right from both sides of the

equation, and distribute the second sum on the right yielding

P - P '
xl,n+l “x3,1 1 ¢ _ _l e
n* T n* N > gxl,n n* N 2 ﬁ1xl_n

E
i
t
{
|
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The 1imit of the left side of this last equation is obvicusly zero as

7

n¥ =00 3 thus, taking the limit and rearranging, we have

T Equa_tibn L5 hbl‘ds oﬁly.if ',the two Ilimj.ts exisf, whiéhl{\rill .be the case
if the re‘i'nforcing eveﬁt on t;-iél n” depends at most lon the ":Outc'.;omes .of
éome finite number of pr_-ecéding ti'ials. When this Iréstxrict.ion. 1s ﬁoﬁ |
satisfied, a substantially equivaient theorem can be Iderived simply by.
dividing both sides of the e-qua.,fcion:immediately precedi.ng.'by _ }l]%gg «Er:acl,n

before passing to the limit; that is

n¥ "N N ¥ ’
g ’Exl,n % E\xl,n

Except for special cases in which the sum in the denominators converges,

the limit of the left-hand side is zero and

n+*
Z'A}(l:n
Lim .i;l =1 .
n*¥ — 00 <
> Ean
n=1
1 1 <
lim == A =  lim = E . (45)
i* -0 & % LD x5 oo B paf TR : '
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To appreciate the strength of this prediction one should note that
iffholds for the data of an individual subject starting at any arbi-
tfarily selected peint in a learning series, brovided only that a suffi-
éiently long bloék of trialé following that point is available for
analysis. Further, it holds fegardless of the valﬁes.of the parameters
N and c (provided that the latter is ndf zero) and regardlesé of tﬂér
wéy.in which the schedule of reinforcement may depend on preceding eﬁents,
.The trial number, the subject's behavior, or even events outside the
system (e.g., the behavior of another individual in a competitive or
cooperative social situation). Examples of empirical applications of
this theorem under a variety of reinfOrcement'schedﬁles are to be found

in studies reported by Estes, 195T7a and Friedman; et. al., 196G.

3.5 Analysis of a Paired Comparison Learning Experiment

In order to exhibit a somewhat different interpretation of_the.axioms
‘of Sec. 3.1, we shall now analyze an.experiment'involﬁing a paired-
.comparison procedure. The experimental situation consists of a sequence
of discrete trials. There are r objects, denoted Ai(i='l to r). On
each trial two (or more) of these objects aré presented to the subject
and he is required to choose between them. Once his response has been
made the trial terminates with the subject winning or losing a fixed
amount of money. The subject's task is to win as frequently as possible.
There are many aspects of the situation that can be manipulated by the
experimenter; for example, the Strategy by-whigh the experimenter makes

available certain subsets of objects from which the subjects must choose,
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the schedule by which the experimenter determines whether the selection
cof & given object leads to a win or: logs, and the amount of money won or
lost on each trial.

The particular experiment for which we shall essay a.theoretical
analysis was reported by Suppes and Atkinson {1960, Ch. 11}. The problem

for the subjects involved repeated choices from subsets of a set of

three objects, which may be dencted A1 ,.A2 , and A On .each trial

3
_one of the following subsets of cbjects was presented: (AlAB) ,‘(:4&11315:)‘_q
(A2A5) 5 or (_AlA2A5) . The subject selected one of the cbjects in the
presentation set; then the trial terminated with a win or a loss of a
small sum of Iﬁoney° The four presentation sets. (AlAE)', (3145) P

{AEAB) and-(A1A2A5)_”occurred with equal probabilities over the series

of trials. Further, if object Ai was selected on a trial then with
prcbability ki the subject lost and with probability 1 = hi he won

the predesignated amount. More complex schedules of reinforcement could
be used; of particular interest ig a schedule where the likelihcod of &
win following the selection of a given object depends on the ofther
avaiiable objects in the presentation group. For example, the probsbility

of a win following an A, choice could differ depending on whether the

1.
.(AlAej 5 LAIAB) or .(AlAEABD presentation group occurred. The analysis
of.these.more complex schedules does not introduce new mathematical
problems and may be pursued by the same-méthods we shall use for the

- simpler case.

Before the axioms of Sec. 3.1 can be applied to the present experi-

ment we need to provide an interpretation of the stimulus situation.
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confronting the subject from trial to trial. The one we select is some-
what arbitrary snd in Part ‘4 alternative interpretations are examined}
QOf course, discrepancies between predicted and cbgerved quantities will
indicate ways in which our particular analysis of the. stimulus needs to
be modified.

We shall represent the stimulus display assoclated with,tbé presen-
tation pfnthe pair of objects (AiAj) by a set sij of stimutus
patterns of size N ; the triple of objects (A1A2A5) will be represented

by a set of stimulus patterns S of size N¥ . Thus, there are four

123 _
sets of stimulus patterns, and we assume that the sets are pairwise
disjoint {i.e., have no patterns in c—ommo.nz)n Since, in the model under
consideration,; the stimulus element sampled on ény trial represents

the full pattern of stimwlation effectivé on the trial, one might wonder
why a given combination of objects, say (AlAE) , should have more than
qne element associated with it. Tt might be remarked in this connection
that in.introducing a parameter N to represent set sgize, we do not
necessarily assume N > 1 . We simply allow for the possibility that

such variations in the situation or different orders of presentation of
-the same set of objects on different triasls might give rise to different
stimulus patterns. The assumption that the stimulus patterns associated
with a given_presentation set are pairwise disjoint does not seem appéalw
ing on common sense grounds; nevertheless it is of interest to see how
far we can go in predicting the data of a paired-comparison learning

" experiment with the simplified model incorporating this highly restrictive

assumpticn. -Even though we cannot attempt to handle - the positive and
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negative transfer effects that must cccur between different members of -

the set of patiterns associated with.a given combination of objects during
learning, we may hope to account for statistics of asymptotic data.

When the pair of objects (AiAj) is. presented the subject must
select Ai or Aj {i.e., make response Ai or Aj)g hence all pattern
elements in -S:.L:j become conditicned to Ai or Aj u‘ Similarly all

elements in 8 became conditicned to Al s A, or A

o 5 Whep {AiAj)

123 .
is preéented the .subject samples a single patterg from 'Sij and makes
the response to which the pattern is conditloned.

The fih%l steiaj befofe applying the_axioms of BSec. 3.1, is to
provide an interpretation of reinforcing events. Oﬁr.analysis is as
follows: If (AiAj) is presented and the A, object is selecﬁedﬁathen
(a) the Ei reinforcing evenit occurs if the Ai response is ﬁgl}owed
by a win and (b} the .EJ event occurs if the A, résponse is folibwed
by .a loss. If {AiAjAk} is presented and the Ai object is seleétedg

1then.(a),the Ei event occurs if the Ai regponse is followed by a win

occurs, . the two events having .equal probabllities

and {b) EJ or E

Af the Ai‘ response is followed by a loss. This collection of rules
represents only one way of relatlng the observable trlal outcomes to the
hypothetical reinforcing events. For example, when Ai is selected
_given (AiAjAkﬁ__and followed by a loss, rather than having Ej Of .Ek
occur with equal likelihoods, one might postulate that they occur with é

probabilities dependent on the ratio of wins following Aj responses to

wins following. Ak responses over previous-trials. Many such variations

in the rules-of correspondence between trial ocutcomes. and reinforcing
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events -have been explored; these variationsbecome particularly important
when the experimenter manipulates the amount of money won or ‘lost, the
magnitude of reward in animal studies, and related variables (see Estes,
1960b; Atkingon, 1962bj;and Suppes and Atkinson, 1960, Chapter 11; for .
discussions of this point).

In analyzing the model we shall use the following notation:

Agl;J)‘= occurrence of an Ai response on the nth presentation
+3 :
of (AiAj) [note that the referencé is not to the nth
trial of the experiment but to the nth presentation of
| (AiAj)] .
W(ij) = a win on the nth i A)
W, =a. on presentation of (Ai 5)
Léla) = a loss on the nth presentation of (AiAj) )

‘We now proceed to derive the probability of an Ai response on the

nth presentation of (AiAj) 3 namely Pr(Ailg)) . First we note that the
. 2

state of conditioning of a stimulus pattern can change only when it is
sampled. Since all of the sets of stimulus patterns are pairwise disjoint
the sequence of trials on which (AiAj) 1s presented forms a learning
process that may be studied independently of what happené on other

trials (see Axiom C4); that is, the interspersing of other types of trials

t

between the nth and n +,lS presentation of (AiAj)'ihas no effect on

the conditioning of patterns in set Sig .

We now want to obtain a recursive expression for Pr(Ag;i))_o This
2

can be done by using the same methods employed in the preceding section.

But to illustrate another approach we proceed differently in this case.
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3 J ) \}i B J = -
Let PI"K_A . s 3= V and Pr (Aj 5 ) =1 ¥ a Then the pos sible

changes in y, are given in Figure 6. With probability 1 - ¢ no

Tnsert Figure 6 about here

 change occurs in conditioning regardless of trial events and hence
Vps1 = Y 5 with probability ¢ change can occur. If Ai occurs and
4dg followed by a win then_the sampled element remains conditioned to

Ai 3 however, if a loss occurs the sampled element {which wasuconditioned

. : - L ' B 1 o
to Ai) becomes conditioned to Aj end thus 'y . =y, -§- IF Aj
occurs and is followed by a win then Yol =¥, 5'however5'if it is

followed by a losgs the sampled element {which was conditioned to AJ}

.y o1 P -
becomes"condlt;éned to Ai s hence Y41 =V, + T Putting these
results together weé have:

v =y {1 - e} +y ley (1 =2 )]+dy = ;Yicy Al
“n+l nto - ntUnt ic% 9 N i’

+y,le - 71 =2 )]+ Gy + Ple(d - 3]

Which simplifies to the expression

ey = T, [L - Efxi + xj}] + % Ay {46)

n+l N N

Bolving this difference equation, we obtain

| n-1
pr{attd)) I prialtdY L - S, +0) (47
il T R TAT L Ak R AR
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B
e

Fig. 6. Branching process for & diad probablllty on a paired
comparison learning trlal.
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We now consider Pr(A §125)), for simplicity let a = Pr(A(lEB))
’

ﬁ =

N Pr(AéliB)) and 1 .0 - B = Pr (A(Lg))). The possible changes in
’ . -

n n 5,n
an are given in Figure 7. For example, on the bottom branch conditioning

Insert Figure 7 sbout here

is effective and an A, response occurs which leads to a loss; hence

3

Ei or_E2 occur with équal probabilities. But an A3 followed by El

1 . :
makes « vl - an + N’ wnile A3 followed by E2 makes an+l = Gh .

Compbining the results in this figure ylelds the following difference

equation:

ccnﬂ = {1 - c)cxn + an[car;(l - xl)] +[o£I1 - ﬁl-g].['ca.nxi.]

| Sy L L
+ an[.cﬁn(l - hg-)] —+ [an + ﬁ*][cﬁnxa §] +an[ct3nh2 3

_A+ ocn[-c(l' -0 = B - )]+ lay + le(i-a - B, %}

1
+ an[c(l - czn - Bn))\.B 5

Simplifying this result we obtain

c . c .
&g o=a {1 21\1* (2n + )}ean B (- ?“5) + oy Mg v (48a)

By a similar argument we obtain

. . .
Pasy = ‘-3n[l' zw (2hp+ )]W aww (M = s) g hs e (4ED)
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O5n+l

(]
n+l

n+l

an+l

o
n+l

0
n+l

n+l

an +1

Fig. 7. Branching process Tor a triad prqbability on
paired comparison learning trial.
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Sclutions for the pair of difference .equations given by Eq. 48a and 48b:

.are well known and can be obtained by a number of differerit technigques
P. 130-133;
(see Goldberg, 1958,/or Jordan, 1950)}.  Any solution presented can be

verified by substituting into the appropriate difference eguations.
However, for now we shall limit'conéideration to-asymptotic results.
In terms of the Markov chain property of our process it can be shown

that/the limits O = -lim & and B.= lim B exist. Letting
' ' 0 — o n-— oo

=0 =0 and B =B =B in Eg. 48a and 48b we obtain

(04 :
Tn+l n

a(?xl + xa) =-§(x2 - ;5).+ kB

1

a(exa + A

3)

a(}1 - xB) * s

Solving for & and P , and rewriting we have .

‘ A
. (123), . 273 . . o
lim Pr(A> ) = - - ‘ (49a)
1,n Alke +-klh5 o+ k2k5 ?
. (125) Mg
lim Pr( ) = {490}
: A5 n g Ty gk .
and '
_ A h
. 123) 172
Lim pr(al1®3)y o . (49¢)

The other moments of the distribution of response  prcbablilities can

-be obtained following the methods employed in Sec. 3.1; and, at.,
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asymptote we can generate the emtire distribution. In particular, for
set Sij the asymptotic probability that k- patterns are conditioned

to A, and N -k to AJ. is simply -

IR h,  (\N-k
- IN J -1 .
(k} ST LR
For the set 8123 the asymptotic probability of kl patterns conditioned

: : = N¥) i
ﬁo Ay 5 ko to AE_’ and k5 to A, (where k) o+ k, + k3 N¥) is

>

. - \IN¥ X K, k

j*! 1 ol 3
— - (Aodz) T(anz) T(AAs)
kl.kg.k5, Mhy xly% + x2x3 2 37 173 12

In analyzing data, it also is helpful to examine the marginal
limiting probability of an 'Ai response, -Pr(Ai) , in addition to the
other quantities mentioned above. We define Pr(Ai) as the probability

of an Ai response on any trial (regardless of the stimulus display) once

the process has reached asymptote. Theoretically

Pr(a)) = Pr <A(12)>Pr(D(12)- + Pr(a lB))Prc ) + er(al2))ee(p22))
Pr(ay) = pr(ag ey + ex(aff2) hoe(29)) pr(a{23)ex(o(1%)) |
and

1

Pr(.A5)' 1 - Pr.(Al) - Pr(Ay) ,
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where Pr(D(lJ)). is the probability of presenting the pair of cbjects

(AiAj)_;

The experimental results we consider were reported in preliminary
form in Suppes and Atkinson, {1960). Two groups were run each involving
L8 subjects; subjects in one group won or lost one cent .on each trial,
and those in the other group,wbn or lost five cents on each trial. We
shall consider only the one-cent group, for an.analysis of the differen-
. tial effects of the two reward values requires a more elakorate inter-
pretation of reinforcing events. Subjects were run for k00 trisls with

the following reinforcement schedule
Ay =1/3 , h = 6/10 , Mg =.8/10 .

Figure 8 presents the observed proportions of A, o A, and A5

Tnsert Figure 8 about here

responses in successive 20-trial blocks. The three curves appear to
be very stablie over the last 10 or so blocks; comsequently we treat the
data over trials 30l to 400 as asymptotic.

By Eq. 47 and Eq. 49a-c we may generate predictions for Pr{AElgg)

and PrﬁAgliS}) « Glven these values and the fact that the four presen-
i,

tation sets occur with equal probabilities we may, as shown above, generste
predictions for Pr(Ai Qaj‘o ‘The predicted values for these guantities

and the observed proportions over the last'lOO trialé ére.presented in

Table 4. The correspondence between predicted and observed values is
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Fig. 8. Observed proportion of Ay responses in successive 20-trial blocks for paired

comparison experiment.
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Insert Teble 4 about here

-very good, particularly for Pr(Ai,oo) and Pr(Agfgg)_- The largest
discrepancy“is fo; the triple presentation set, where we note that the
obsérved value of Pr(Ai?is)) is .04l above the predicted value of .507.
The statistical pfoblem of determining whether or not this particular
difference is significant is a complex matter and we do not undertake

it here. However, it should be noted that similar discrepancies have
been found in Gﬁhgr studies dealing with three or more responses (see
Gardner, 1957;:Detambel, 1955) and it may be necessary, in subsequent
developments of‘the,tﬁeOry, to consider some reinterpretation of rein-
foreing evgnts in.the mrltiple responge case.

In order f§ maké predictions for more complex aspects of the data
it is necessary to obtain estimates of ¢ , N and N¥ . Estimation
procedures_of fhe sort referred to in Sec. 3.2 are applicable but the
analysis becomes tedious and such details are not appropriate here.
However, some comparisons can-be made between sequential statistics
that do not depend bn parameter values. Foﬁ example, certain nonparametric
comparisons can be made between statistics where each individually
depends on ¢ and N , but where the difference is independent of these
parameters. Such comparisons are particularly heipful when they permit
us to discriminate among different models without intrecducing the com-

plicating factor of having to estimate parameters;
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Table U4

Thecretical and observed asympiotic chelce proportions

_fdr paired-comparison learning experiment.

Predicted Observed
Pr(a) o A e
Pr(h;) . C 0 | .29
Pria;) ek e
Pr(él(?g)) ' ':'_:'j.eua e
Pr(Al('-B)_-)_' _' 706 | ;706
Po(s, () _: s '-  561
Pr(.{xl(.lei)) .507 | 548"
Pr(Az('lEB)).-_. 28 258
Pr(AB(jlei)-)- | .2;1 ) .19k
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To indicate the types of comparisons that are possible, we may -
consider the subsequence of trials on which (AlAE) is presented and,

_in particular, the expression

e

(12) 1,(12),02),(12), G2)

12)
Pr(A) iy 1,n "n-1

1)

That is, the probability of an Al -response on the n+18t ﬁresentation
i : qnth i

of (A1A2) given that on the n presentation of_ (AlAE) an A

ocecurred and was followed by.a win, and that on the n-18% presentation

of (AlAE) an A2 occurred followed by a win. To compute this proba-

bility we note that

12) (12),{12) (12),(12)
pe(al12) [3(12),(12),(32),(12) Pr(—*’*i,m)-lwz(i )A:(L,n)wlgw-l 'nml)
1,n+1 l n Ppa1’ A2 Pr(WCle) (lE)w(lE)A2

n l,n n-1

Now cur problem is to compute the two quantiﬁies on the right-hand side
of this equation. We first obserwve that

ee(a(12) {32),(12),02), (22)

1, n+l n l,n n=1 A?,n

12 iz 12 12 12 12 12
B é:g Pr(AE nll S,nil é : £ n)wﬁ l) ! n)lci nzl)
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o2
1,

elements are conditioned to A, and WN-i to A, -on the nth  presen-

where denotes the conditioning state for set 812 in whieh 1

tation of (AiAE) . Conditionalizing and applying the axioms,we may

.expand the last expression.linto

12 12 12 12) {12).(12) (12) (32)
?ZJ Pr(A g. n-)+1 ,g nll)Pl‘(Cg na)—llw( )A](. n) i—l)Aé n)l j(. nnl)

B e =R

I

Further, the sampling and response axioms permit the simplifications

Pr(A:(LliJ)rllC,(jlzgw)rl) =y
WD)
and
(2) |,02) ) _ et

A2 1fn-1) =%

Finally, 1In order to carry out the summation, we make use of the relatiom
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1 for 4= g
(12) |W(12) (12) (12) (12) (12) :

Fr (CJ n+l l n n -1 n-l i,n-1

) =
0 for 145

-which expresses the fact that no changevih'the-cgﬁditiOning state can
'oécur if the pattern sampled lesds to a win (see Axiom C2). Combining

_these results and simplifying we have

(50a)

o (A(lall r(lle)AJ(Lli)Wx(i)Aéli)l) = (1 - 2)(3-2 )Z( ) (N— )P (c1 n) )

Similarly we obtain

| | | | | (500)
Pr(w(lE) ;(Lli 1(11?) 2 ) (51,'- y )(1 ) Z ( )P (cgli)l) ,
and fiﬁally, taking the quotient of the léstltwn expréssibﬁs;
Z( , (N- )P (Cf.li)l
Pr(A](_liz-llw(lz) 9? I(lﬁ)Aé )l) = : ' ) (500)
+
' E E%: N )Pr(Cl n- l)

We next c0n51der ‘the same sequentlal StatlSth but wath the re8ponses

reversed on trlals n and n -1 H namely
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(12) (2020,02)

(12}
: Pr(Al n+lIw AE n n—l l n-1

Interestingly enough, if we compute

Pr(A(lE) (la W( 2) (12) )

1, n+l n 2 n n-l l n-1
and

(12),(12) (12) ,(12)

Pr(W, ™Ay WA L

_they turn out to be expressed by the right sides of Eq. 50a and 50b;
respectively, Hence, for all nu ,

(12) ,(12),(12),(12)

|W 1,n n -1 sn-1

Pr (A A ) = Pr(A( AW

1, n+l

Comparable predictions, of course, hold for the subsequences of_trials
on which (AIAE) or (AQAB) are presented.

Equation 51 provides a test of the theory which does not depend on
parameter estimates. Further, it is a prediction that differentiates
between this model and many other models. For example, in the néxt‘
section we consider a certain class of linear models, and it can be
~shown that they generate the same predlctlons for the quantltles in
Table 4 as the pattern model HOWEVer, the sequentlal eguallty‘d;splayed

in Eg. 51 does not hold for the linear model.
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To check these predictions, we shall utilize the data over all trials
of the '(AlAE) subsequence and not restrict the analysis to asymptotic

-performance. Specifically we.define‘

Z pr(al12) {12),(12) (12)A212)

112 l n+l n l n n 1
12) . (12) (12)..(12) (12
C101 Z Pr (A:(L n?Fl IEL ) é n)'wr(l-l) §. n)l)

ZP (w(l?) A(12012,02)

l n n -1

- (132, 32) (12)Ac12) )

s n»l 1,n-1

‘But by the results just cbtained we have {5, = §112 and §21'= §12

ot

for any given subject. Further, if we define 'ﬁijk -as the sum of the
le 's over all subjects then it follOWS -that Q ;112 independent
of intersubject differences in c¢ and N . rSimilarly ;12 ='C21 e

Thus we have a set of predictions which are not only nonparametric but
which require no restrictive assumptions on varlabllity between subjects.
Observed frequencies corresponding to these theoretical gquantities are

as follows:

'5121 = 1k '5.112 = 138
6, = 243 b -
10y /Loy = 576 b1rp/E1n = 566
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Similarly, -for the -(AlAB) subsequence

615 = 67 - 6

3 §113

= 120 ; = 122

S5/ 851 = 555 gllﬁ//gl3 = -2

ts

Finally, for the- (AEAj) subsequence

_2232 #_hE' §223 =-49.

549 s%/_g25 - 563

It

Cozp ;32

Further analyses will be required to  determine whether the pattern
model gi#es an entirely satisfactory interpretation of paired-comparison
learming, It is already apparent, however, that it may be very diffi-
cult indeéd to find another theory that takes us further iﬁ this direc-

tion than the pattern model with equally simple machinery.
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k. A CQMPONENT MODEL FOR STIMULUS COMPOUNDING AND GENERALIZATIQN

_451 ‘Basic Concepts; Conditioning and Response Axdioms

‘_In the preceding section we simplified our analysis of_leayning ih
..terms;of the N-element, pattern model by assuming that all bf.phe patterns
involved.in a given experiment are disjoint, or at any rate that generali-
éatipn_effects_from.one stimulus pattern to another_are negligible. Now
we shall go to the other extreme and treat problems of simple transfer
of training between different stimulus situations that have elemeﬁts in
common in a purely cross—sectional'ﬁanner; with no reference to a leafning :
process occurring over trials. Again the basic mathematical apparatus
will be that of sets and elements, but with a reinterpretation which
" needs to be clearly distinguished from that bf the pattern model. In
Sections 2 and-3 we regarded the pattern 6f”stimuiation effecfivé-bn any
frial as a siﬁglé element sémpléd.from a largér set of such patterﬁs;'
now we shall_considgr the trial pattern as itself coﬁstitufing é.seﬁ of
:éléﬁents,sthe'eleménts représenting the vérious components or aspects pf
“.the stimulus situafion which may be sampled by the sﬁBject in differihg
'combinat'iﬁn_s on different trials. We shall proceed first to give the
two basic axioms tﬁat.estéblish the dependence of respoﬂse‘probabilit§
én the conditibping state of the stimulus. sample. Then some theorems
will be derived that specify relétionships between response.probabilities '
in overlapping stimulus sambles,'and these will be illustrated in terms
of applications to expériments on simple stimulus compounding. Consi-
deration of the process whereby trial samples are drawn from a larger

stimulus population will be deferred tc Section 4.2.
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P

The basic axioms of*the”éomponent model are as follows:

--Cl. The sample s- Qi,stimulation effective on any trial is partitioned

into subsets si(i =1, 2,...r; Where r is the number of response

alternatives), the i-th subset containing the elements conditioned

to (or "connected to") response A .

-C2, The probability of response Ai in .the presence of the stimujus

sample s 1is given by
N(s.)

-4

Pr(a;fs) = sy

‘where N(x) denotes the number of elements in the set x .

In C1 we modify‘the usual.definition of a partition to the extent of
permitting some of the subsets to be empty; that is, there may be some
response alternatives Which are conditioned to none of the elements of

5 . We do mean to assume, however, that each element of s‘ is condi-
tioned to exactly one response. . The substance of C2 is, then, to make
ﬁhe probability that a given response will be evoked by 8 equal to the

proportion of elements of s that are conditioned to that response.

4,2  Stimulus Compounding

An elementary transfer situation arises if one reinforces two
responses, each in the presence of a different stimiulus sample, then
combines all or part of one sample with all or part of the other to

form & new test situation. To begin with a special-case, let us consgider
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an experiment conducted -in the laboratory of one of the writers

(wk.5.).2

8This experiment was conducted at Indiana University with the assistance

of Miss Joan SeBreny.

In one étége of the experiment, a mumber of disjoinfréamﬁleéfof three
diétinct'cues draﬁn from a.lérge populatién vere used asrthe stimulus
members of pairedéassoéiate-itéms,hénd vy the usual method of paired

. preséntétion oﬁé responsé-wéé réinforcedﬁin_the presence of éomé of
théée éamples and a different respéﬁse ih.£he preseﬁce of othefs;:-Thé”
Aconsﬁituent.cués,:inﬁeﬁdedhﬁo‘serve“as-the:empiricalréountefpéfts of--
stimuluslelémeﬁts,.ﬁére various typéwriﬁer symbols, which for pfésénﬁ
pufpoées we éﬁdli désignaté'by-sméll letters é; b, ¢, etc., and the

"

' spoken aloud. Instructdions

responses were the.numbers "one and‘ﬁtwé,’
" to the subjects indicated that the cues reﬁréséﬁted syﬁpﬁoﬁs'ahd“thé{:‘
ﬁﬁmbers diseases with which the symptoms‘wérefaSSOéiated. .Folloﬁiﬁg
the tfaining'triéls,.néw combinatidns of "éjmpféms" ﬁéfe foﬁﬂed; andzéhe
.suhjécts were instructed to make their best gueSSes'ét éhe:édrrectJ
diagnoses. L |

Suppose now that response A, had been reinforced 4in the presence

1
of the sample (abc) and response AQ in the presence of the sample
(def). If a test trial were given subsequently with the sample (abd),
direct application of Axiom. C2 yields the prediction that response Al'

should occur with probability 2/3. Similarly, if a test were given - .
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with the sample (ade), response A, would be predicted to occur with
probebility 1/3. Results obtained with hO subjects, each given 2k tests. of
each type, were as follows: _ ‘
Percentage oveérldp of training and test sets 66T 333
Percentage response 1 to test set . 669 - U332

Success in bringing off a priori predicfions of this eort depends

not only on the basic soundness of the theory but also on one's success
Ain realizing various simplifying assumptions in the experimental situa-

-tion. As mentioned above, it was.our intention in designing the experi-

ment Just clted to choose cuee, a, b, c, ete., which would take on the
role of stlmplus elem.en_ts° Actually, 1n order to Justify our theoretical
predictioﬁse it was necessary only that the cues behave as equal-51zed
sets_ef.eiements. To bring out the importance of the equal ‘N -assump-
tion, let us suppose that the individual cues actually eor;e8pond to

sefs 8 s sb?-efc., of elemegts. ‘Then, glven the seme.traininé (response
Al reinforced to the combination__abc' and response _A2 tp._def),_and
assuming the training effective in conditioning all elements of each_

subset to the reinforced respomse, application of Axiom €2 yields for

the probability of respomse A to abd

) a b

where we have used the obvious abbreviation N(Si) = This equation

N, -
reduces to Pr'(Allsasb,sd) = 2/3 only if N =W SN, . SR S~
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'Tn this éxperiment we depended on commonsense considerations to
choose cues which could be expected to satisfy the egual-N requifement,
and &lso counterbalanced the design of the experiment so that minor
deviations might be expectedlto average out. Sometimes it may not be
possible to depend on commonsense considerations. In that case; one
can utilize a preliminary experinrent to cbeck on. the simplifying -assump-
tions. Suppose, for example, we had been in doubt as to whether cues a
and b would behave as equal-sized sets. To check on this, we could
have run.a preliminary experiment in which we reinforced, say, response
A, to a and response A2 to b , then tested with the.compopnd ab.

1

Probability of response 'Al -to ab  is, according to the model, given

N
a

N +N °
8

o
Pr(51|sasb) = -

which should deviate in the appropriate direction from 1/2 if Na and
Nb are not equal. By means of calibration experiments of thise sort,
sets of cues. satisfying the equal-N assumption can be assembled for use
‘in further research involving applicatioﬁs-of the model.

The expressions cbtained &Eove for probabilities of response to
stimulus compounds can readily be generalized with respect both to set
sizes and level of training. ©Suppose that a collection of cﬁes a;b,Covn
corresponds to a colleetion bf étimulus sets 8.1 Sy sc,non of sizes
‘,NA’ Nb, I\Tc_,wo and that sgme rgsponse Aﬁ is conditiongd to a p?opora

tion Paj of_thezélements in 5., & proportion 'ij of the elements
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in s and so on. -Then probability of response -Aj to a compound of

these cues is, by Axiom (2, expressed by the relation

Nop  +Np . +ND . + eue

: apaJ bpr .cpcg (52)
N +N “N .- '
a b c

Pr(Aj[Sa’Sb*Sc’°'")’=

Application of Eq. 52 can be illustrated in terms o¢f a study of
probabilistic discrimination learning reported by Estes, Burke, Atkinson,
and Frankmann (1957). In this study the individual cues were lights
which differed from each other only in their positions on a panel. The
first stage of the experiment consisted in discrimination training
according to a routine which we shall not describe here except to szay
_that on theoretical grounds it was predicted that at the end of training
the proportion of elements in a sample assoclated with the i-th light
conditioned to the first of twe alternative responses would be given by
Pgq = f% . Following this training, the subjects were given compounding

tests with various triads of lights. Considering, say, the triad of

L] : - —.._l —-——t2
lights 1, 2, .and 3, the values of Pi1 should be P11 T T30 Poy T30
-2 : SN =N - N
-and P31 =13 5 assuming Nl = N2 = N5 =.N , and substituting these

values into Eg. 52, we obtain.

N o em 3N
Pr(a,|1,2,3) =222 B _ 2 _ 15

Bl 3

as the predicted probability of response 1 to the compound 1,2,3. Theo-
retical values similarly computed for a number of triads are'compared with

the empirical test proportions reported by Estes et. al., in Tgble 5.
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Insert Tabie 5 abbut here

An important consideration in'applications of models for stimulus
compounding is fhe question of whether the experimental situation contains
an appreciable amount of ﬁaékground stimulation in addition to the controlled
gtimuli manipulated by the experimenter. Suppose, for example,'we are
interested in the problem of whether a compound of two conditioned stimuli,
say a light and a toﬁe, each of which has been paired with the same uncon-
&itioned stimulus, may have a higher probability of evoking a conditioned
response (CR) than either of the stimuli presented separately. To ana-
lyze this problem in terms of the present model, we may represent the
light aﬁd the tone by stimilus sets 5 and S Assuming that asza
result of the previous reinforcement the proportions of conditioned
elements in s ; and s_ (and thefefére the probabilities of CRs to the

Li T

 stimuli taken separately)} are and PT ; respectively, application of

P
Axiom C2 yields for the probability of a CR to the compound of light and

‘tone presented together, neglecting any possible background stimulation,

NLPL + NTPT
NL + NT

Pr(CR|L,T) =

Llearly, the probability of a CR to the compound is simply a weighted
mean of =8 and Pp > and therefore its value must fall between the
probabilities of a CR to the two conditioned stimuli taken separately.

No "summation" effect is predicted.




—




A. and E. -117a-

" Table 5

~ Theoretical and observed proportions of response AI: .

to triads of lights in stimulus compounding test.

pried  meoretiesl  Observed
1,2, .15 | .22

4,5, 6. . 58 . n

i, 3,11 . .38 . A1

T, 8, 9 | 62 09

o2, 10, 12 - .62 - .58

1o, 11, 12 S f85 : T
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Often, however, it may be unrealistic to assume background stimula-
tion from the apparatus snd sufroundihgs to be negligible. ~In fact, the
experimenter may have to count on an appreciéblé amount bf background
stimulation, predominantly conditioned fo behaviors incompatible with

1t

the CR, to prevent "spontaneous" occurrences of the-ﬁo»be—conditioned
response during inféf%éls betweéﬁ;pfééenﬁations Of'tﬁé éxperimentally
‘controlled stimuli. ILet us now expand oﬁr representation of the condi-
tioning situation by defining a set 55 of background elemgnts, a propor-
tion Py of which ére conditioned to the CR. For simplicity, we shall
.consider only the special case of 'pb = 0 . Then the theoretical proba-
bilities of evocation of the CR by the light, the tome, and the compound

of light and sound (together with background stimulation in each case)

are given by

7L

Pr(CR|L) = ;=575 »
. b

Il

NPy

Pr(CR|T) = ;75 >

and

Nppp + Nppp
N_+N +N§ °

Pr(CR|L, T)

respectively. Under these conditions it is possible to obtain a summa-

tlon effect. Assume, for example, that NT = NL = Nb and P > Py
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g0 Pr(CR|T) > Pr{CR|L) . Taking the difference between the probsbility
of a CR 10 the compound and prdbabiiity of a CR to the tone élone,

we have

Pp*t D P
Pr(CR|T,T) - Pr(CR|T) = — 5 L. 2?
“Pp * PPy, = Py
= =
2
Pr, ™ Pp

which is positive if the inequality "2PL > PT holds. Thus, in this
case, probability of a CR +to the compound will exceed probability of
8 CR to either conditioned stimulus alone, provided that P is not
more than twice P, -

The role of background stimiili has been particularly important in
the interpretation of drive stimuli. It has been assumed (Estes, 1958,
1961a) that in simple animal learning experiments;(e.go, thoge involving
the learning of running or barfpressing'responses with food or water
rewardg.the,stimulus sample to which the arimal responds at any time is
compounded from several sources--the experimentally controlled conditioned
stimulus (CS) or equivalent;.stimuli, perhaps lérgely inﬁra-organismic
in origiﬁ;.coﬁtfolled by the level of food or water deprivAtioﬁg.and
extraneous stimuli whiéﬁ ére no£ systeﬁatically correlated with.reward
of the'reépénse undergoiﬁg training-and therefqre remain for the most

part connected to competing responses. it is assumed further that the
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HSiZES-Of samples Qf:elements assoqiatgd with the CS and with extraneous
sources, s, and 5k ; are indepenégnt Qf drive,.but.that-the-size of

the sample of drive-stimulus elements, Sp s increases as a functioh.of 
déprivation. in most simple reward—learning'exﬁeriments, conditioning

to the CS- and drive.cues would proceed concurrently,.and one might
5expéct that at a given stage of léarning'the proportions.of-elements in
samples from these sources condltloned to the rewarded response, R,
' Would be equal i.e., pc = Pp If this were the case, then probability
of theVrewarded response would be indebendent of deprivation; for, lefting.

D and D' correspond to levels of deprivation such that Ny < N,

‘'we have as the theoretical probabilities:of response R at the two

' “ deprivations,
' 'Ncp + N :
¢ "pPp
Pr(Rles,D) =
¢ D
©and -
: Np.,+N_p -
- ¢fc " Tptpe
y 0o .
Pr(R[cs,D ) W T,

.If the same tralning were glven at the two drlve lévels,_then we wouid
_have PD PD' . as well as PC = pD 3 in thls case the dlfference-between
': the two expr6551ons is zero. Considerlng the same assumptlons but w1th
_extraneous cues taken exp11c1t1y into account we arrive at a qulte |
.dlfferent plcture. In this case, the two expre351onslfor response

- Probability are
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NePe + Npppy + Ny
NC_+ N.. + N

il

Pr(R|CS, D,E)

and

1

No *+ Npe *+ Hg

Pr(R|CS, D', E)

Now, letting Po=Pp=DPp =D, and for simplicity taking Py = 0,

we obtain for the difference

N, + N, N, +

pr(R|CS,D',E) - Pr(R|CS,D,E) = p NC - ﬁD' — - Nc-+;ND .
. - : g Tl g Mg F A T g
sy - 1) o
= . . 2
(Mg + Wy + W) (N + Ny + Ng)

D

which is obviously greater than zero given the assumption NDr > ND .
Thus, in this theory, the principal reason why probability of the rewarded
response tends, other things equal, to be higher at higher deprivations

is that that the larger the sample of drive stimuli, the more effective

it 4s in outwelghing the effects of extraneous stimuli.

4.3 Sampling Axioms and Major Response Theorem of Fixed Sample Size
Model
In L:2 we considered some transfer efféects which can be derived
"within a component model by coﬁsidering only relatioﬁships'among stimulus

samples that have had different reinforcement histories. Generally,
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however, it is desirable to take account Qf-the fact that there may not
always be a one—tofone corfespondence between the experimental stimulus
display and the stimulation actually influencing the subject's behaviorf
Owing to a number of factors, e;g,, variations in receptor-orienting
responses, fluctuations in the envirommental situation, variations in
excitatory states or th;eéholdsrof receptors, the subject often may
sample cnly a portion of the stimulation made available by the experi-
menter. One of the chief ﬁroblems of statistical learning theories has
been to formulate conceptual representations of the stimulué.sampling
process and to develop their implications for learning phenomena. With
respect.to7specific mathematical properties of the sampling process,
-component médelé that héve.appedred in the literature may be claséified
into two main types: (l)}models sssuming fixed sampling probabilities
.for the.individual elements of a étimulus population, in which case
sample size varies randomly from trial 1o trial; and {2) models assuming
a fixed ratio between sample size and population;size.."The'former fypé
was first discussed by Estes and Burke Q1953), the latter by Estes (1950);
end some detailed comparisons of the two types have been presented by
Estes (l959b); Tn this section we shall limit consideration to medels
of the second type, since these are in most respects easiér'to work with.
In the remainder of this section we shall distinguish stimulus
populations and samples by using 5 , with subscripts as needed, for a
population, - and s for = samﬁlen “The sampling axioms to be utilized

are as foliows
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Sl. For any fixed,vexperimenterwdefihed stimulating situation,. sample

size and population size are constant over trials.

82, ~All gamples of the same gize have equal probabllities.

A prerequisite to-nearly all applications of the model is a theorem
relating response probability to the state of-conditioning of -a stimulus
populafion; We shall derive the theorem in terms of a stimulus situation
S containing N elements from which a sample of size W(s) = o is
drawn. on each trial. Assuming that some number “Ni.rof_the elements of
5. are conditioned to response Ai s We wish to obtain an expression
For the expected proportion of elemepts conditioned.to Ai in samples
drawn from -5 , since this proportion will;, by Axiom C2, be egual to
the probability of evocation of response Ai by samples from 5 . We
begin, .as usual, with the probability in WhiCh:WE are.interested? theﬁ,
ﬁsing thé axioms of the.model as appropriatej_ﬁroceeﬁ fo ekpand in terms

~of the.state-of conditioning and possible stimulus sampless

PrA;[8) =2 Pr(a|s)Pr(s]s) -

The summation being overall samples of size ¢ that can be drawn from & -

Next, substituting expressions fof the conditioned probabilifies, we cbitain
wt N-N,
M{s;) | Ns,)[{o-N(s,)

.'1?1‘-=(Ai‘145) };:;) -= o ° ( N)
L N N N B N . (S )

In the last expression on the right,

-represents the proba-

bility of A, in the presence of a sample of size @ containing a
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- subset 8; Of,elgments conditioned_to, Ai-;_the_product_of Pinomial
‘coefficients denotes the number of ways of obtaining exactly .N(si)

elements conditioned to A; in a sample of size ¢ , so the ratio of
this product to the number of ways of drawing a sample of size o is

: N(s;)
the probability of obtaining the given value of - cl + ‘The resulting

.formula will be recognized as the'familiaf expressioﬁ for the mean of
arhjpergeometric distribution (Feller, 1957, p. 218), .so we have the
Ppleasingly simple outcome that the probability of a response to the
stimulating situation represented by a set S is equal to the proportion

of elements of S that are conditioned to the given response;

=

Tay - i
Pr(a [8) = & - (53)
3This'resu1t may seem too intuitively obviousnto have needed a proof, -but
one should note that the same theorem does not hold in general for
component models with fixed sampling probabilities for the elements

{cf. Estes and'Suppes,;l959b),

4.4 Interpretation of Stimulus Generalization
Our approach to the problem of stimulus generaliﬁation is to
represent the similarify between twe stimuli by the amount of overlap

9

“between two sets of elements.

5

“A model similar in most essentials has been presented by Bush and

Mosteller (1951b).
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In the simplest experimental paradigm,for.exhibifing geﬁerélization,,wg
begin with two stimulus situations, represented by sets S  and S ,
nelther of which has any of its_elemgnts conditioned to a reference
response Al . Training is given by reinforcement of Al in the presence
of .:sa only until the probability of A, 1in that situation reaches

some value pali> 0 . Then test trigls are given in the presence of

Sb ; and if D, 1OV proves td_be greater than zero, We say that

gtimulus generalization~has occurred. If the axioms of the component
@odel are satisfie_dj the value of Pbl provides, in fact, .a measure

of the overlap of Sa and 'Sb ;3 for, by Eg. 53, we have immediately

. N{Sa(wsb)Pal
Pp1 T TTRIE) ’

where _Sa(]Sb denotes the-set of elements common to Sa and Sb s 8ince

the mumerator of this fraction is simply the number of elements in Sb

that are now conditioned tc response Al

.~ More generally, if the
proportion of elements of Sb conditioned to Al” prior to the experi-
ment were equal to &1 » not necessarily zero, the probability of

response Al to stimulus Sb after training in- Sa would be gifen by

_ M5, 08 e,y + [Ncsb) - M Sb)] Bp1
P—bl = _ N(S'b) y . s

or with the more compact notation N =-N(saﬂ'sb) , etc.,

_ ) bpal + <Nb - Nabjgbl
Fer T N o

. o {5ha)
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This relation can be put in.still more convenient form by letting

ab

T

=W. , viz.
b ab "

Ppp = VapPar * (L =W )e,

This equation may be rearranged to read

Py = (P oByy) gy s - - (5hw)

ol " gbl) between the post-tralning

and we see that the difference (p
ﬁrobability of Al. in 'Sa and the pre-training.probability- in Sb
can be fegarded as the slope parameter of a linear_"gradient" of
:generalization in which PBl .is:the.dependent variable and the propor-
tion of overlap~ between sé' and__sb..is the independent variable. If
we hold gbl constant and let Pal vary as the pérameter, wé geﬁeratg

.a family of generalization gradients whiéh_have their greatest disp&rities

at w. =1 (i.e., when the test stimulus S

ab b

and converge as the overlap between SB‘ and - Sa decreases, until the

is identical with sa)'

gradients meet at Py = 8 when Wab = 0 . Thus the family of

gradients shown in'Fig. 9 illustrates the picture to be expected if a

Insert Fig. 9 about here

series of generalization tesfs is given at each of several different
stages of training in Sa’ or, alternatively, at several different stages
of extinction following training in Sa’ as was done, for example, by
Guttman and Kalish (1956). The problem of “calibrating” a physical

stimulus dimension so as to obtain a series of values which represent
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1.0 7

PROBABILITY OF RESPONSE Aq
It
!

0 ..l . - . . ,

Fig. 9. Generalization from a training stimulus, Sa’ to a test

stimulus, 8 at several stages'of training. The parameters are

b?

Wab = .5; the proportion of overlap between Sa and Sb’ and
81 = »1, the probability of response Al to Sb prior to training
in- 5 .

a
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equal differences in the value of w_, -has been discussed by

ab
Carterette (1961).

One might regard the parameter v,p &8 an index of the similarity

.of Sa to Sb » In general, similarity is not a symmetrical relatiocn,
N
for w.., .18 not equal to w (the former being given by -8b. and
ab . ba % Nb
ﬁéh ) except in the special case . N& = Nb + - ‘When
a .

fNa #‘Nb , generalization from training with the larger set to a test

the latter by

ﬁith.the.smaller et will be greater than'generalization from training
with the smaller set to a test with the larger_set.(assum;ng‘that the
reihforéement given the refereﬁce.respopse Al in the presencerof the
_traihiﬁg get  Si is sugh ﬁs to establish the s&me_valge‘of Pyq in
.each case priorrto testing in 'Sj) . We shall give'no.formalﬁassgmp-
tion relating_siéé of a.étimulus set to oﬁservabie préperfies; hoyever?
it is reasonable to expect that larger.sets will he aésociated Vith\mo;e
intense (wheré the notion of intensity 1s applicable) or attention-getting
5stimuli._-Thus if Sa and Sb represent tones a8 and b of the sane
freguency but with tone a more intense than b , wé should predict
'greater generalization if we train the reference response to a given level
with a and.testlwith b than if we tr&in to the,éame level with b
cand test with a .-

It is worth noting that, although in the psychological literature
the_notion qf stimulus_generalizﬁtion has nearly always been taken to
_ refer to generalization along some physical continuum such. as wavelength
of light, inteﬁsity of sound, or the like, the set-theoretical model is

not restricted to such cases. Predictions of generalization in the case
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f of complex stimuli may be generated by first evaluating the overlap

parameter W

b for a given pair of situations a and b from a set

of observations obtained with some particular combination of values of
Pal and g1 , -then computing theoretical values of Pyq for new
conditions involving different levels of P.1 and gbl . The problem

of treating a simple "stimulus dimension' is of special interest, -how-
ever, and we shall conclude our discussion of generalization by-sketching

one approach to this problemnlo

.lOWe follow, - in most respects, the treatment given by.Wﬂ K. Estes and
D. L. La Berge in unpublished notes prepared for the 1937.5SRC Summer
Institpte in Social Science for College Teachers of.Mathematics. For

 an appfoacﬁ combining essenfially the same set-theoretical model with

_Somewhat different learning assumptions; the reader is referred to

Restle (1961).

We shall consider the type of stimulus dimension that Stevens (1957)

‘has termed substitutive, or metathetic, i;e.;.one which involves the

notion of a simple ordering of stimuli along a dimension without varia-
tion in Intensity or magnitude. Let us denote by Z a physical dimen-
sion of this sort, eag,; wavelength of visible light, which we wish to
reﬁresent by a sequence of stimulus sets. First we shall briefly out-
line the properties that we wish this représentatiqn to have, then we

shall spell out the assumptions of the model more rigorously.
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It is part of the intuitive basis of a substitutive dimension that
one moves from point to point by exchanging some of the elements of  cne
stimulus for some new ones belonging to the next. _Consequent}yy we shall
assume tha£ as values qf -ZH-Change by constant.ingrementsy_gach‘success—
ive stimulﬁs‘set Should'bé generated byldeleting;some_cpns?antTngmber
of.elementg fpom_the freceding seﬁ and adding thé same numbgr_of_new
elements to form the next set. But to ensure that the organism‘s
_behavior.éan reflect the ordering of stimuli along the Z scale without
- .ambigulity, we need also to assume that once an element 1s deleted as we
go -along the: Z . scale, -it must not reappear in the set corresponding
~to any higher . Z value. Further, in wview of the abundant empirical - .
evidence that generalization declines,in‘anjorderly-fashion as the
c-dlstance between two. stimuli on such a dimension increases, -we must.
assume -that at least up to the point where sets corresponding to larger
differences in Z are disjoint, the overlap between itwo stimulus sets
 shQuld-be directlygrelated to the interval between the corresponding
stimuli on the 4 secale. -These properties, taken together, enable us
to egtablish an intuitively reasonable;cerrespandencewbetweenweharaeteTw~
istics of & sequence of stimulus sets and the empirical notion of general-
ization along a dimension.

‘These ideas are l1lncorporated more .formally .in the following set
of axioms. - The basis for these axioms is a stimulus dimension 2,
which may be either .continuous or discontinuous, a coliection 8, of
stimulus sets, and-a function x{Z) , having a finite number of consecu-

tive integers -in.its range. . The mapping of the set (%) of scaled
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stimulus values onto the subsets (Si) of 8, must satisfy the

*

axioms:

Gl. Forall i< j<k in (_x)‘,_siﬂ'skg 55 -

IA
IA

®@. Forall 1< i<k in (x), if SIS # 4, vhere $ .is the

null set, then S, € (siUsk) .

G5. Forallh<i, j<k in (x), if i -h=%k - j, then NhisNJ.k,-

end for all i in (x), N, = N .

The set (x) may simply be a set of 7 scale values, or it may be
a set of 7 values rescaled by some transformationT .The reasons for
introducing (x) are twofold. First, for reasons of mathematical sim-
plicity we find it adfisable to restrict ourselves, at least for present
purposes, to a finité'set of Z values, and therefore to a finite col-
lection of stimulus sets. Second, therg is no reason to think that egual
distances along physical dimensions will in general correspond o equal
overlaps between stimulus sets. All that is required, however, to make
the theory workable is that for any given physical dimension, wavelength
of light,-frequency of a tone, or vhatever, we can find experimentally a
transformation x such that equal distances on.the x scale'do corres-
pond to equal overlaps.

Axiom Gl states that if an element belongs to any two sets it also
belongs to all sets which fall between these two sets on the x scale.
Axiom G2 states that, if two sets have any common elements then all of the
elements of any set falling between them belong to one or the other (or
both) of the given sets; this property ensures that the elements drop out of

the sets in order as we move along the dimension.  Axiom G3 states the
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property whichldistinguishes a simple substitutive dimension from-an
additive, or intensity (in Stevens' terminology, prothetic) dimension. -
It should_bé noted that only if thé number of values in the range of
x(7} is no greater than AN(S*) - N+ 1 can Axiom G3 be satisfied. This
restriction is necegsary in order to obtain 8 one-to-one mapping of the
x values intc the subsets (Si) Of " 8By . o

One advantage in havirg the axioms set forth explicitly ig that it
then becomes relatively easy to design experiments bearing upon various
aspects of the model. Thus, to obtain evidence concerning the empirical
tenability of Axiom Gl, we might choose a response Al and a set f{(x)
of stimuli, including a pair i and k such that 'Pr(Al!i) =-Pr(AlIk)C# 0,
then train subjects with stimulus 1 only untdil Pr(Al[i) =1, and-
finally test with stimulus k . -If Pr(Alfk) is found to be greater
than zero, it must 5e-concluded,'in terms of the model, that Sif78k'#;¢3
i.e., the sets corresponding to i- and Xk have some elements in common.
Given - Pr(Al]k)l>'O s it must be predicted that for every stimulus J
in (x} such that i< j<k, Pr(Alij) > Pr(Alik) . Axiom Gl ensures
that all of the elements of Sk wﬁich are'noﬁ conditioned to Al by
virtue of beloﬁging also to 8, must be included in - Sj ; possibly
augmented by other elements of Si ‘which are not in Sk'°

To deal similarly with Axiom G2, we proceed in the same Way to
locate two members i and k of a set (x) such that Sifjsk £ b .
Then we train subjects on both stimulus 1 and stimulus k until

PTQAlii) :-Pr{Ailk) = 1, response A, being one which before thig

1
training had probability of less than unity to all stimuli in (x) .
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Now, by G2 if any stimulus j falls between i and k , the set Sj
must be contained entirely in the union -SiL)Sk ; -consequently, we must
‘predict that we will now find Pr(A;[j) = 1 for any stimulus J such
thet i< J<k.

To evaluaﬁe Axiom G3 empirically we require four stimwli h < i,J <k,
.éuqh that 1 - h =k - J . If the four stimuli are all different, we can
'_simpLy train_subjects on h and test generalization to 1 , then train
subJjects to an equal degree on .and test generalization to k . If

the amount of generalization, as measured by the probability of the

test response, :is the same in the two cases, then the axiom is supported.
' In the special case when h =1 and j = k , we would be testing the

" assertion that the sets associated with different values of = are of
equal size. To accomplish this %test, we need only take any two neighbo:-
ing values of x , say 1 an& J , train subjects to some criterion om
A énd test on J , then reverse the procedure by training (different)
subjects to the same criterion on J and testing on i . I the axiom
is satisfied, the amount of generalization should be the same in both

directionsg.

Once we have introduced the notion of & dimension, it is natural

" to inguire whether thé parameter which represents the degree of commun- -

ality between pairs of stimulus sets might not be related in some simple

way to a measure of distance along the dimension. With one qualification,

which we will mention later, the quantity dij =1 - Wij could serve as o
a8 guitable measure of the distance between étimuli i and j . We can

check_to see whether the familiar axioms for a métric are satisfied.

These axioms are
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1. dij =:0 1f and only if 1 = J ;
2, d,, = 0
ij =~ ‘

k. Ay F il >4
where it is understood that i,.j,-ahd k are any members of'tﬁe‘setc
(x). associated with a gifen dimension. The first three of these obviously
hold,'but‘the fourth requiresra Biﬁ of.anal&éis. To carry out a proof;

~ we shall use the notation Nij for fhe number of elements c@mmon,to

Si and Sj > Nijf

for the number of elements in both 5, and 'Sj
but néﬁ in  Sk and so on. The differénce between the two sides of the
inequality we wish to establish can be expanded in terms of this nota-

tion as follows:

BEITIN Vi Ny
y +djk - dgy = - ) -5 -0
EE -, - Ny * Ty
: =%(‘,Ni,jk -_”’_'_Ni,jE *N&‘jk * ‘NEJ‘E " ikt Nij]_s - -Nij]f.:
- Mgt Woge M)
- §0%E * g -

The last expression on the right is non-negative, which establishes the
. desired inequality. - To find the restrictions under which 4 is additive,
let us assume that stimuli i, j, and k fall in the order 1< j <k

~on_ the dimension. Then, by Axiom Gl, we know_ﬁhat Nin = 0 . However
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it is dnly in the special cases when- Si and. Sk are either over-

= 0, and,therefore, that ,dijJ+ d., =d

-lapping or adjacent that N ik ik®

1jE
If is possible to define an additive distance measure which”is not
subject to this restriction, but such extensions raise new problems and
we shall not be_able to pursue -them here. |
In concluding this section, we should like to emphasize oOne dif-

ference between the model for_generalization sketched-here and scme of
,those“already familiar in the literature {see, e.g., Spence, 1936;
-Hull, 19h3), we.dq not postulate a particular_form for generalization

of response strepgth or exeitetory_tendeney, Rather, we introduce
certain assumptions about the,properties of the set of Btimuli associeted
with a sensory dimension; then we take these together with learning
assumptions and information about reinforcement schedules as & basgls for
deriving theoreticalfgrediente of generalizatioﬁ for particular types
of experiments. Under the speciai conditions assumed in the example
considered above, the theory prediets.a family of linear gradients with
very simple properties will be observed when response probability is
plotted as a functioe of distance from the point of reinforcement. Pre-
dictions of this sort may reasonably be tested by means of experiments
iﬁ which suitable measures are taken to meet the conditions assumed in
the derivations (see, e.g. Carterette, _‘1961ﬂe), But to deal with
experiments involving different training conditions, or response measures
other than relatiﬁe frequeneiee, tﬁ}ther theoretical anelyeie ie called
for; and one muet be trepared to fiﬁd substaﬁtiai differentes in the

phenotyplc propertles of generallzatlon gradlents derlved from the same

basic theory for different experlmental 51tuat10ns,
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5. COMPONENT AND LINEAR MODELS FOR STHFIE LEARNING
In this section we combine, in e‘seese1 the_theories_discﬁeeed ie

.fhe pfeceding.sectiens._ Uﬁtil now it was cenvenient for expesitionel__.

_ pufposee, ﬁq threat the'problems.of'learning end'generalizatioe:sefarately.
| We fir_'st c.er_lsi.dered_e_.type'.of iearni.ri'g model in which tf_ae differe_nt_.r_ .
e;POSéiﬁle sempies 5f sfimulation from triallto trial were assumed to'be
”entlrely dlstlnct and then turned.to an analy51s of.generalleetlon, or-
transfer, effects that could be measured On an 1solated test trlal follow-
1ﬁg a series of leernlng trlals. Predlctlon of these transfer effects
:dependedlon information concernlng the state of the stlmulus populatlon
:Just prior to the teet trial ‘but dld not depend on 1nformatlon about the
course of learn}nghover_p:ecedlng_tralping trlale. _However, in many
(perhepsemoet).learning situations,_it'is net reasoneble to_assume_thet
the.semples; or-patterns .of stiﬁuletion-affeeting fﬁe oféanism en |
-dlfferent trlals of a series are entlrely d15301nt, rather, they must
overlap to Varlous 1ntermed1ate degrees, thus generatlng transfer effects
Lthroughout the learnlng series. In the'"component models _of'stlmulus
sampllng theory, one 51mply takes ‘the learnlng assumptlons of the pattern.
medel (Sec. 3) together with the sampllng axioms. and response rule of the
_generallzatlon medel (Sec, 4) to generate anreceount.ofﬂlearnlng_for this
move generel.casé;'_ s S SR
:Sel':COmpOﬁénﬁ Models wiﬁh Fixed Ssmple Size

o As 1ndlcated earller, the analy81s of a simple learnlng experlment

- in terms of a component model is based on the representatlon of the




A. and E. -136-

stimulus as a set 8 of N stimulus elements from which the subject
draws a sample on each trial. At any time each element in the set 8
ig conditioned to exactly one of the r response alternatives Al,...,Ar H

by the response axiom of Sec. 4.1 the prdbabiiity of a response is equal

to the proportion of elements in the trial sample conditioned to that

response. At the termination of a trial, if reinforcing event Ei(i.% 0)

occurs; then with prdbability ¢ all elements in the trial sample become
conditioned to response Ai . If EO occurs the conditioned status of
elements in the sample does not chénge. The conditioning parameter c
plays the same role here as in the pattern model. It should be noted
that in the early literature of stimulus sampling.theory,_this paraméter
was usually assumed to be equal to unityo. |

‘Two general types of component models can be distinguished, For

the Tixed sample size model we assume that the sample size 1s g fixed

mmber s throughout any givern experiment. For the independent sampling

model we assume that.the elements of the stimulus set, 5, are sampled
' independently on each trial, each element having some fixed probability
& of being drawn. In this section we discuss the fixed sample size model

and consider the case in which all possible samples of size 8 are

sampled with equal probability.

Formulation for RTT Experiments. To illustrate the model we first

consider an experimental procedure in which a particular stimulus item is

-given a single reinforced trial followed by two comnsecutive nonreinforced

test trials. The desigh may be conveniently symbolized RT,T.

155 Pro-

cedures and results for a number of experiments using an RIT design
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hare been reported eleewhereﬁ(Estes, 196oa;IEstes, Hopkins aﬁd Crothers,

1960, Estes, 1961b; Crothers, 1961). For'simplicity; suppose one selects
Ca 51tuation in which the probability of.a correct response is zero before
the first relnforcement (and in which the llkellhood of a subJect' |

obtalning correct responses by gue551ng.1s negliglble on all trlals)

In terms of the fixed sample size model we can readlly generate predlc-”

tions for the probabilities, 'pij , of verious combinations of response

i on T, and response J on T, . If 1,j = O denotes a correct

response and 1,j = 1 denotes an error then

Poo = C(%}
oo = (5 L - § |
(55)
P = c{l --%)'%ir
e,
f.Pll =1l - +'c(1 - —)

To.obtain'the first result, we note that the correct reeponse can occur
on either trial oniy if conditioning occurs on the reinforced trial,
Which has probability c - On occasions when conditioning oceurs, the
‘whole sample of 8 elements becomes conditloned +0 the correct response

1 and the probability of this response on each of the test trials is % . _.

On occasions when conditioning does not occur on the reinforced trial,

probability of a correct.reSponse‘remains'at zero over both test trials.

E
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Note thap when g = =1 this model is eguivalent to the one-element
model discussed in Séc; 2.1. ‘If more than oﬁe feinforcemenf is given
.prior tQ Tl ,.fhe predictions are essentially.unchapged. In general;
for k preceding reinforcementé,.the expected prqﬁortion_of elemeﬁts
conditioned to the cérrect reéponse (i.ef,.therprobabiliﬁy of a correct
response) at the time of the first test is

es
Po=1-(L-F),

and the probability of correct responses on both Tl and T

5 is given
by
K e
: k) i k-1 syt
poo‘z‘izl(i]c(-l'c) [l'_('l_'N)] '

To obtain this last expression, we note that a subject for whom 1 of
the k reinforcements have been effective will have probability

[l-— (1 - %:Yi] of making a cﬁrrect response -on each test, and the
probability that éxactly 1 reinforcements are effective is

; k-1 .
(1;) e (1 - ¢) . Similarly,

P10~ Py = 2 (}:f) c.l(_l. ) c)k.-.l [l ) (L.- _ﬁ)l] @ %)_l' ’

i=1

and

a - c) +Z(k) (- c) 1 _1—_.. )21 .

=114

A,...M.A.,A.........
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If s = N , these expressions reduce to

o . .
=1 - (1 -

POO l_ ( . c) o

P1g =Py =0

pll - (1 - C) o

This special case appears well suited to the interpretation of data
obtained by G. H. Bower (personal communication) from a study in which
the TlTE‘.procedure was applied following varicus numbers of presenta-
ticns of word-word: paired-associates. ‘For 32 gubjects each tested on
.10 items, -Bower reports.cbserved proportions- of 'POO = .894 3
Pig = Poy = 005 , and Py = 100 .

When applied to other RTT experiments, this model has, however,
not ylelded consistently accurate predictions. The difficulty apparently

stems from the fact that our assumptions do not take account of the

retention 1655 that is usually observed from T, to T

5 (see, e.g.,

Estes, 1961b). An extension of the model which is capable of handling
retention decrement és weil as.the.acquisition ?rocess will he discussed
in Secf 5.2 below.

- For RTT experiments in which‘the probability of sucpgssful guessing
is not negligible (as in pairedeassociate tasks”invo;vingra fixed_list
of responsés which are known to the subject frpm thg start):sqmeraddi_
tional coﬂsiderations arise. Perhaps the most natural extension of the

preceding treatment is to assume that the subject starts the experiment
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with a proportion % of the elements of . a givén set Si connected to
the correct response and a proportion (1 - %)' connected +0 incorrect
responses, r being the number of alternative responses. Then for a
fixed sample size model, the probability, Py of 8 correct response to

a given item on the first test trial after a single reinforcement is

Py

= (1 - ¢) :;L + c{s ks (NN' S)/r]

C
_ﬁ' ]

n

sy 1
= -— —_ +
(l iﬂ[) r

the bracketed quantity being the proportion of elements comnnected to the
correct response in the event that the reinforcement is effective. Then
.the probabilities of varicus combinations of correct and incorrect responses

on the two test trials are given by

Pop = (1-¢) 5+ co”
r
Py = P = (lg-c)”% (l-'%)4‘0'¢(l"‘¢) ‘(56)
1,2 N2
Py = (l-_c)(l- ;) + C(l'ﬂ@) ’

8 5y 1
where @ = & + (1 - ﬁ) o
" An alternative épproach to the type of exﬁeriment in which the
subjéct QUésses on-uhléarnéd items is ﬁd assume that initially all
elements are neutral, i.e., are connected neither to correct nor to

incorrect responses. In the presence of a sample containing only neutzal
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| elements, thé subject guegsés; Wifh proﬁability % of being correct. If
the sample contains an&iéonditidned elemehfé; then the proportion of condi-
tioned eleﬁents in the sample connected to the correct response determines
its probability (e.g., if thé sample contains nine elements, three.coﬁdi—
tioned to the correct response, two cbnditicned to an incorrect reépdnse,
and four unconditioned, then the.probability of a correct response is simply
3/5). These assumptions seem in some respects more intuitively satiéfactory
than those considered above. férhéps the most important differenée with
respect to empiricsl impliéations lies in the fact thatlwith the latter.
_set of aséﬁmptions, exposure time on test trials must bé teken into ac-
count. If the étimulus exposure time is just long encugh to permit a
response (in terms of the theory, Jjust long endugh to permit the subjéct

to draw a single sample of stimulus element§), then the probabilities of

correct and incorrect response combinations on T, eand T2 are

1

1
‘POO—(l-c)"""“’E—‘i‘Cq}’ 3

T
D= Py = (L=c) % (1-3) +coi(l-o) (57)
10~ Par T T > !

1 2 2
PR CRNPSTCRNE ENCRNEID R

" b
where ¢' = 1 - (1 - &)___E___ . The factor is the probability

y H

that the subject draws a sample containing none of the s elements that
became conditioned on the reinforced trial; therefore 1 - @' reﬁresents
-the probability that é subjebt for whom the.reinforced trial was effective
nevertheless draws a sample contéining no conditicned elements and ﬁakes |
‘an incbrrect guess, whereas ¢' 1s the probability that such a subject

makes & correct response on either test trial.
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The two sets of equatlons 56 and 57 are formally 1dent1cal and thus
eannot be dlStngulShed in appllcatlon to RTT data. lee Equatlon 55,
lthey have the llmltatlon of not allOW1ng adequately for the retentlon
.loss usually observed (see, e. g., Estes, Hopkins, and Crothers, 1960)
we shall return to thls p01nt in Sec. 5.2.

If exposure time is sufficiently ;ong oﬁ the-test tfials, then ﬁe
:assume thaﬁ the susject continues to draw successive randem.saméles from
8 end only makes.a response when he finelly draws a-sample confaining
at leest che eenditionea element. Thus, in cases in which the reinferce—
ment has been effective on a previous trial.(so that 5 contains a‘sub—
set ef 8 conditionedlelements), the.subject will eventually draw a
sample contalnlng one of more condltloned elements and will respond on .
the b3818 of these elements thereby maklng & eorrect response with prob—
ablllty l .; Therefore, fer the case of unllmlted exposure time,

¢' =1 and Eg. 57 reduces to

pooz(l_c)%']'c 3
Blo=Pg = (L-c)2(1-2) , (58)
o
1
pll_ (1-0)(1“; 2

which are identical with the corresponding equations for the one-element
model of Seec. 2.2.

General Formulation. We turn now to the problem of deriving pre-

dictions from the fixed sample size model concernlng the course of

learnlng over an experlment con51st1ng of a sequence of trlals run
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under some prescribed reinforcement schedule., We shall limit considera-
tion to the case in which each element in 5 is conditioned to exactly

.one of the two response alternatives, A, or AE.’ so that there are

1
N + 1 conditioning states. Again, we let. Ci(i = O,opoeN) ~denote thg
state in which i elements of the sgt S are conditioned to Al and
N - i. to A2 - As in the pattern model thé transifion probabilities
among conditioning states are functions.of the reihforcement gchedules
and the set-theoretical parameters ¢, s, and N . Following our
approach in Sec;-B;l, we shall restrict the analysis to cases in which
'the‘frobability of reinforcement depénaé at most upen the response on
the given trial; we thereby guarantee that all elements in the transi-
tion matrix for condltioning states are constant over trials. Thus ihe

sequence of conditioning states can again be conceived as a Markov chain.

Transition Procbabilities. Let Si denote the event of drawing
7

a sample on trial n with i elements conditioned o Al' and s - i

conditioned to Aye Then the probability of ‘a one-step transition from

state 'Cj to state Cj+v is given by -
(N - j)( J
Vv 8 =V

s

where Pr(Ellss—VCj) ig the probability of an E. event given condi-

1

tioning state CJ and a sample with V elements conditioned to A2 .
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To obtain Eg. 59a we note that an E must occur and that the subject

1
musf sample exactly v' elements from the N - J elements not already
conditioned to Al 3 the probability of the latter event is the number

of ways of drawing samples with Vv elements conditioned to Aé divided

by the total nuwmber of ways of drawing samples of size s . OSimilarly

N - (J)
ay gy = e —ﬁ”— Pr(B,|s,C,) (550)
s
and - . . .
' _ i [z
_qj,j =1-c +.c [N)'PT(El[Sst) + f—(ﬁj—— Pr(Eg[sOCj)
' 5 s
+ Pr(EoIci) . - (59¢)

Although it is an cbvious. conclusion, it is important for the reader to
xealize that the pattern model discussed in Part 3 is identical to the
fixed sample size model when s = 1 . This correspondence between the
two models is indicated by the fact that Egq. 59 reduce to Eg. 23 when we
let 5 =1.
For the simple noncontingent schedule in which only the two events
El and E2 occur (with probabilities' # oand 1 -m, respectively)

Egs. 5%9a to 59c simplify to
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93,540 = % v(Nf.fv ’ (60a)
(N-J)( g
4, oy = L - W) g | . (6ow)
S
J. (N'J) -
4 5= 1l -c+cin Lﬁl + {1-x) ___§___ . {60c)
- ) (]

It is apparent that state CN is an absorhing state when =n =1 and

CO is an absorbing state when x = 0 . Otherwise all states are ergodic.

Mean Learning Curve. Following the same techniques used in connec-

tion. with Eq0927-we obtain for the component model in the simple, non-

contingent case

' -1
Pr(Al',n) =7 - [T{ - Pr(Al 1 }(1 - Eﬁsi)n J - (61)

This mean learning function traces out a smooth growth curve that can

take any value between 0 and 1 on trial n if parameters are selected
appropriately. However, it i1s important to note that for a given reali-
zaﬁion of the experiment the actual response probabilities for individual

subjects (as opposed to expectations) can only take on the values O,

L2 N-1

TR R ».1 3 d.e., the values associated with the conditioning

states. This step-wise aspect of the process is particularly important
when one attempts to distinguish between this model and models that

assume gradual continuous increments in the strength or probability .of
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.'_g response.over time (Hull, 1943; Buéh.aﬁd Mosteller, 1955; Estes
end Suppes, 1959a). o | |

To.illustrate this point we consider an eiperimént on avoidance
learning reported by Theios (1961). Fifty rats were used as subjecﬁs.
: The'apparatus was a modified;ﬁiiler—Mowréf electric shock box. The
‘animal was always placed in the black compértment; shortly thereafter.
» afbuzzer.and.light came on #S;thé door between the compartments wag

opened. The correct response (A was to run into the other compart-

l) _
':ment within 3 séconds. It Al did not occur the subject was given'a
high intensity shock (255 volts) until it escaped.ihto the other com-
.-partment. After,EO seconds the subject WaS réturned-t0 the black com-
- partment, and anofher trial Was‘given. "Each rat was run until it met
arcriterion of.20 consecutive succéssful avoldance responses.
Theols analyzes the situation in terms of a component model. in

which N=2 and s=1. Further, he assumes that Pr(A and hence

1,10 =0
on trial 1 the subject.is in conditicning state CO. Employing EqQ. 60

with x=l, N=z, .and ' s=1 we obtain the following transition matrix:

_C‘é ¢ %
c, 0 0
c, c/2 1o¢/2 0
c. | o T e Cl1-c |,

" And the expected-Probabilitf'of'an Ay résponse on trial n is readily

_bbtainéd by SPécialiZation of Eq.'6l,
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c\n=1.
f)'

Pr(Al)n) z_l - (l - 2

Applying this model Theios estimates ¢ = .43 and provides an impressive
account of such statistics as total errors, the mean learning curve,
trial number of last error, autocorrelation of errors With lags of 1,

2, 3 and 4 trials, mean number of runs, probability of nc reversals, and
many others. However, for our immediate purposes we are interested in
only one feature of his data; namely, whether the underlying response
probabilities are actually fixed at O, ;%m and 1 as specified by the
model. First, we note that it is not possible to establish the exact

trial on which the subject moves from CO to C, or from C1 to G-

1

Nevertheless, if there are some trials between the Tirst success (Al
response) and the last error (A2 response), we can be sure that the

subject is.in state Cl on these trials. For if the subject has made

one success, at least one of the two stimulus elements is conditioned

to the Al response; if on a later trial the subject mzkes an error,

.then, up to that trial; at least one of the elements is not conditioned
to - the Al response. Since deconditioning does not occur in the present
model, the subject must be in conditioning state Cl s Thus, according
to the model, the sequence of responsesafter the first success and before
the last error should form a sequence of Bernoulll trials with constant
of an Al response. Theios has applied several
statistical tvests to check this hypothesis and none suggest that the

probability p = g =

na|

agsumption is dincorrect. For example, the response sequences for the

_trials between the first success and last error were divided into blocks
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of four trials and the number af Ai respoﬁggs in each block ﬁas coﬁnted~

The obtained freqqencies for. 0,1 » 2, 3 and 4 successes were-E ) |

2., lT—, 15, and L , respéctivély; the pfedicted.binomial'frequencies

--wereuﬁil.,.1215.,-18.5 sy 12.5 and 5.1'?' The correspondence between pre—.
dieted andiobserved frequencies is excellent as indicated by a X
goodness~of-fit test.that yieldéd a value of 1.47 with L degreés of

'LIfreedom. |

Thelos has applied the same analysis to data from.an expefiment by

Solomon and Wynne (1953) where dogs were required to learn an avoidance

" - response. - The findings with regard to the binomial property on trials

after the first success and before the last error arve in agreenment with
] his oW1l déta but suggest thgt the binomial paramétef is other. than. % .
:From a stimalus saﬁpling viewﬁoint this observation would suggest.thai.
tﬂe_two-eiements are not sampled with equal probabilities.. For a detailed
discussion of this Bernoulli step-wise aspect of_certain stimulus sampling
quels, relatéd~étaﬁistical tests, and a review of relevant experimental
' data the reader is_referred:to Suppes and Ginsberg (19623);
The meén learning.curvé for'ﬁhe fixed sample éize model given by
: Eﬁ.'60 is identical té the correéponding equation for the pattern model
with the sampling ratio .%? taking the role of % . However, we need

" not look far to find a difference in the predictions generated by the

' ~two models.. If we define % L @8 in Eq. 29; i.e.,
: ' - ’ '

ZFPI(C B

i=0
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then by' carrying out the summation using the same methods as 1in the case
of Eq. 27, we cbtain

2cs , es{s - 1)

%,n =[l N R G 1)} % n-1

‘ | 2
cls s{s - 1 ' s s :
els _ 5 _ 5 2
+N[N _.‘(N—l%}al,n--l-'_gcﬂl\] Z [P0 (62)
2
C1s

The asymptotic variance of the response probabilisties for the component

model is _simply.

2
% ~ a2,ua B [Pr(Al,oo)jl _
Letting Q‘a,n = a?,n—l = o%,oo , noting that Pr'(Al,oo)' =n , and

carrying out the appropriate computations we obtain

?’io-z n(;N.- = [1\12;. E’NS-;E.J).S] ' o (63)

This asymptotic variance of the response probabilities depends in

relatively simple ways on 8 and N . If we hold N fixed and dif-
ferentiate with respect to & , we Find that Gio increases monotomi-
| cally with s ; in particuiar, then, this variance for a fixed sample
8lze model with s > 1 1is larger than that of the pattern model with

the same number of elements. If we hold the sampling ratio -= fiked

=n

‘ 2
and take the partial derivative with respect to N , we find CP to




A. and E. =150~

'be a decreasing function of N . In the limit, if N—-o in such a
fway.that % = 6 remains constant, then
) _—_ . RS .
GOO —= (1 - x) 5.8 (6k)

which, we will see later, is the.fériance for the linear model (Eétes
-and Suppes, 1959aL':in pontrﬁst,-for-the_pattern model the variance of
ﬁhe jo) V&lueé. appréachgs.'o as 'Nﬁrbeégmes lﬁfge. Wé return to
.comparisons between the two quels in Bec. 5.3.

Sequential Predictions. We now examine some segquential statistics

for the fixed sample size model that later will.help clarify relationships
'amoﬁé the varioﬁs stimulus sampiing'ﬁodels{ In:particular, we consider

the probability of an. A, response given that on the préééding trial

1

‘B E or E2 occurred.

0’ ™
Consider, first Pr(A

l,n+l|El,n) . By taking account of the condi-

tioning states on trial n +1 and trlal n and also the sample on trial

n we may write

| . .
R alE ) s EE 2 Br(A) Cs B n8 nCieon) o
: . l,n 1,j,k

where, as before, 55 4 denotes the event of drawing a sample on trial
o s ,

n with 1 elements conditioned to A, and s - 1 conditioned to A

1 2"

Conditionalizing, with our learning axioms in mind, we obtain
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Pr(A1,n+l[El}n) ? 2:: Pr(Al,n+1! Js n+l)Pr(C yn+1 El,nsi,ﬁck,n)

l n i3,k

c. Yer(s. |c¢ )

) PI'('Eljnlsi,n k,n i,n" "k,n

)Pr(Ck,n

Our reinforcement procedures depend at most on the responses of the

subject and hence Pr(E ) = Pr(E 1,n I i;th,h)'° Further

¢  if j=k+s -i

Pr(Cj,m_l[El;nsiz_n(}k’n)“.= di-c a2 5ok
0 otherwise

That is, the s - i elements ipithe sample originally conditioned to
A2 now become conditioned to Al with prdbability. ¢ and hence a
move from state Ck to ck+s-i OCCUrs. Also,“as ncted with‘regarﬂ t9
Eqn 59,

(511 2 5]

Pr(si’n]CkB } o= ( )
s

Substituting these results in our lgst expression for Pr(Al,n+llEl,n)
yields

N - kj
Vills - 4

D

Pr{C

Pr(A k;n)

"i =l k+s -1
l,n_+lIEl,n') =2 [c N * ( J

1k
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We now need the fact that the first raw moment of the hypergeometric

distribution is

[ b
=

germitting the simplification

Pr(A

But by definition

whence

Pr(A ol )

By the same method of proof we may show that

CS

Pr(a |E 3

1t

-

1,n+l 2,n)

Pr{A

l 1:1+:l.IE

O,n) - Pr(Al,ri) '

. cs '
= (1 - ﬁ) _Pr(AlJn

) Pr(Al,

1, 1l B =2 [ } Eﬁi)J Pr(Cy . p)

) +

o)

cs’
N

(65a)

(65b)

(65¢)

Finally, for comparison with other models, we present the expressionsfor

Pr(f, ne1fy, 0t 0

} . As in previous cases (e.g., BEg. 3la), we give
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results only for the noncontingent situation in which Pr(EO n) =0
and r =2 . Derivations of these probabilities are based on the same
methods used in connection with Eg. 6la.
: _ - e(s-1) cg 5 - : : 6
Pr(Al n+1F 1, nAl n) - ﬂ{[l' N-1. ]Ct 2,n al } (66)
cs ccle =1 6
= {=—{1- 1 - Ob
.Pr(Al 0B 1, nA2 TE{ (1 a ) +{1 ) ]( . ae,n)} (66b)
_ c{s~-1) c(s-1) ‘6
Pr(Al,n+lE2’nAl’n) = (1-::){[1- T JQE,n [ ST :lal,n} (66c)
c(s - li 6
. . = e - d
Pr('%l,n+lE2,-nA2,n) (1- =) [l N=-1 J(al,n "G ,n) (662)
_ M |
Prlfs neaBl,nfy, ) = “[l J X,n" %0 (66e)

Pr(Agjn-l'lEl)nAE’n-) ) ﬂ{(.l- %)(l—- Oﬁl}n):_lil— C(S }( l l’l ,1’1 } | (66f)
Pr(hy, niafa,nfy, ) = (- ﬁ)ﬂ“ -9 ]O‘l,n ) [l T Jae,n} (6%¢)

Pr(fy B nfo ) = (1- ﬁ'){l - - [1_ ch_.-ll)J(_alJn - aE’H)} . (66h)
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Application of these equations to the corresponding set of trigram
proportions for a pre-asymptotic trial biock is not particularly reward-
ing. The difficulty is that certain combinations of parameters, e,

ef{s~1) - cs »
(1 - T )(Qi,n;-cb,n) and - , behave as units; consequently, the

basic parameters ¢, s, and N cannot be estimated individuvally and,
- ..as a result, the predictions availgble from.the.simpler N-element pattern
model via Eg. 32 camnot be improved upoﬁ by use of Egq. 66. For asymptotic
: data,.the situation is somewhat different. By substituting the limiting

values for 'Qi,n and Qé,n in Eq. 66, i.e., @ == .and from Bg. 63

2 2 1-x)(N N-ele-m-2+1\1 2r{N -g)(N-1)]
b =0y, *r :ﬂ(Nﬂ)[gN(-s-%s]“L“:ﬁ[ - 'N?;N_-ﬁé-ls)))( 2,

) in terms

we can express the trigram probabilities, Pr(Ak ooEj o oo
. ) > p)

of the basic parameters of the model. The resulting expressions are
somewhat cumbersome, however, and we shall not pursue this line of

ranalysis further in the present article.
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5.2 Component Models with Stimulus Fluctuation

In the preceding-section, as in most of the literature on stimulus
~ sampling models for learning, we restricted attention to the‘spécial cage
in which fhe stimulation effective on successive trials of an experiment
may be considered to represent independent random samples from the
~ population of elements available under the given expe;imental-conditions.
More generally, we would expect that the independénce of successive
samples would depend on the interval between trials. The concept of
stimulus sampling in the model corresponds. to the process of stimulation
in the empirical situation. Thus sampling and re-sampling from a stimulus
population must take time; and if the Interval between trials is suffi-
ciently-short,_there will not be time to draw & completely new sample.
We Shéuld expect the correlation, or degree of overlap, between succes-
sive stimulus samples to vary inversely with the intertrial interval,
running from perfect overlap in the. limiting case (not ﬁeceasarily-
_empirically_realizable) of.a_zerolinterval to indepéndence at éuffi~ o
ciently long intervals. These notions hafe been embodied in the

_stimulus fluctuation model (Estes, 1955a, 1955b, 1959a). In this section,

we -shall develop the assumption of stimulus fluctuation in connection
with fixed sample size models; cbnsequently, thé-expressions derived
will differ in minor respects from those of the.earlier presentations
(cited above) which were not restricted‘to thé casé of fixed sample size.

Assumptions and Derivation of Retention Curves. Following the -

convention of previous articles on stimulus fluctuation models, we shall

denote by 5% the set of stimulus elements potentially availlable for
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sampling under a given set of experimental conditions, by S the subset
of elements available for sampling at any given time ‘and by S' the sub-
set of elements that are temporarily unavailable (so that S% = §{Js') .
The “trial sample, s, is in turn-a subset of Sij”lhoﬁéver; in this
presentation we shall assume for'simplicity'that_all of the temporarily
- available elements are sampled on each trial (i.e., S =18 ) . We denote
by N, N', and N*-,'“resﬁectively, the numbers of elements in s,
St , and S% .- |

The interchange bétﬁeeﬁ-the stimulus éample and the remainder of
the popglétion;'ife.,'between ‘s and S', is assumed to occur at a
constant rate over time. -Specifically, we ‘assume that during an inter-
val - At - which is just long enough to permit the interchange of a single
element between = ‘and- S* , 'there is probability g that such an
interchange will ccecur, the parameter g: being constant over time.
We shall limit consideration to the special case in which all stimulus
elements are equally likely to participate in an'interchénge.-'With this
restriction, the fluctuation process can be characterized by the

difference equation, -

I

£(t+1) = (1-g) £(8) + gle(8)(1-3) + (1 - £(e))F,]

n-sde i g . @)

.where - £(t) denotes the probability that any given element of §% is

in s at time t .  This recursion can be solved by standard methods
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o yield the explicit formula

N N

£(e) = X - - 200 - g + 300°

J-1[J-£(0)] a" (68)

where J =.%* , the prpportion of all elements which are in the sample,

1,1
an§a=l—g(ﬁ+ﬁ!).
Equation 68 can now serve as the basis for deriving numerous
expressions of experimental interest. Buppose for example, that at the

end of a conditioning (or extinction) period there were conditioned

jO
elements in S and kO conditioned elements in S' ,. the momentary
probability of a conditioned response thus being Py = jo)/N . To ob-
tain an expression for probability.of a conditioned response after a
rest interval of duratioﬁ' t ,  we proceed as follows. TFor each condi-
tioned element in S5  at the beginhing of the interval, we need only set
f(0) = 1 in Equation 68 to obtain the probability that the element is
in 5 at time t . Similarly, for a conditioned element initially in

8t ., we set f£(0) = 0 in Equation 68. Combining the two types, we

obtain for the expected number of conditioned elements in S at time t ,
' o ; t W t
5o - (7-1) "1 + k31 -a")

s Tty R S R
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 'Dividing_by N (and noting that J = %%ﬂ we have, then, for the

probability of a conditioned response at time 1,

Py =7 wE w* Po

p¥ - (p% - p) AN o (69)

where pé and Py denote the proportion: of conditioned elements in

- the total population s* ‘and the initial proportion in ‘8 , respec-

-tively, _If the rest interval bégins_foliowing a.conditioning pericd,
. wWe would ordinarily haVe;.pO_> p%~, in . whieh casé Equation.69 describes
.a decreasing function (forgetting, or spontaneous.regressioﬁ). If the
,resf inter&al begins following aﬁ;extinctiOnHPerioa, we wéuld have
Py g ﬁ% P ip wﬁich_case_Equation 69 describes an increasing fungfion'
;(spontanégus fgcovenyi.._Thezmanner_in.whicﬁ'cases of spontanedus:fe~'
'lgressioﬁJor recovery depénd on the amount and spacing of previous -
: ,acciﬁi‘sition or ,.extiﬁct_i_oﬁ‘ha_.s_be.en ;discu’ssed..in :deté_.il elsewhere (Estes,

19558}

Application ﬁg'thg RTT Experiment. We ﬁoted in thé preceding = - ;

. sectlon that the fixed sam@le_éizé model could not provide a generally
Satisfactory account of RIT experimeﬁts because it did not allow for

| the retention loss usﬁally ObServedlbetweeg.the first and'second tests.

It seéms reasonabie that thié defect might be remééied by removing the'

restriction on independent sampling. — To illustrate application of the
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more geheral model with pfovision for stimulus fluctuation, we shall
again consider the case of an RIT experiment.iﬁ which thé probability
of a correct response is negligible prior to the reinforced trial (and
also on later trialg if learning has not occurred). Letting tl- and
t2 denote the intervals between R and Tl and between Tl and T2 R

respectively, we may obtain the following basic expressions by setting

£(0) equal to 1 or 0, as appropriate, in Equation 68:

For the probability that an element sampled on R 1is sampled

again on _Tl ’
t

fl=J+(l-J)a__l ;

1

for the probgbility that an element sampled cn T is gampled
again on Ts s

2
f2=J+(l—J)a F

and feor the probability that an element anot sampled on Tl is

sampied on T2 B

' t
2
f5_J(l_a ).'

Assuming now that 'N=1, so that we are dealing with a generalized
form of the péttern model, we can write the probabilitieé of the four

combinations of correct and incorrect responses on T1 and T

) Vln
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terms_of.the éonditioning parameter < .and the parameters fi :

ip = e £of

00 1 2

Por = c.fl(l -fa)

P1g = (1 -£) s

Pyy = 1-¢ + c(l-fi)(l —f5) s (70)

where, as before, the subscripts 0 and 1 dencte correct responses
and errors, respectively. As they stand, Eg. 70 are not suitable for
application to data, for there are foo maﬁy parameters to be estimated.
This difficulty could be surmounted by adding a third test trial, for

the resulting eight observation eguations,

. >
Pooo = ¢ Tifs s
Poor = ¢ Hfp(1-5)

etc., would permit overdeterminatioh'ofithe four parasmeters. In the
cage of some published studies (e.g., Estes, 1961b) the data can be

handled quite well on the assumption that £

is appfoximately unity,

in which case Eg. 7O reduce to
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In the general case of Eg. 70, some éredictions can be
made without information as to exact parameter values. It has been
noted in published studies (Estes,'Hopkins_and Crothérs,'196o; Bstes,
| 1961b)} that the observed proportion Por is generally larger than
plo . Taking the difference between the theoretical expressions for
these quantities, we have
Py " Pro = © £(1-5) - ell-1) £

t t,
eld + (1-d) a *}{(1-d)(1-a 2)

B!

t t
=D (1-a Y a(1-a ?)

t

T
c(L-J)(1L-a 2)

. _ t
{4+ _(1-J) a Lo J(1-a 1)1
t2) _atl

)

c(l-J)(1-a

I

which obviously must be equal to or greﬁter than zero. The ekperiments

cited above have in all cases had ., < t, , and thereforé f

1 1 ? f2 .
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Since £

5 3 which is directly estimated by the proportions of instances

in which correct responses ocn T, are repeated on T2 sy has ranged

1

from about .6 to .9 in these experiments (and f, must be larger)

1l
it is clear that PlO , the probability of an incorrect followed by a

correct response, should be relatively small. This theoretical predicr
tion sccords well with observation.
Numerous predictions can be generated concerning the effects of

varying the durations of tl and t2 . The probability of repeating

& correct response from Tl to T2 , for example, should depend solely

increases {(and f, therefore

on the parameter f o

o ¥ decreasing as -t

o
decreases), The probability of a correct response on Te following an

~incorrect response cn T, should depend most strongly on f3 s In-

1

creasing as t. (and therefore f

» )

correct per test should, of course, decrease from Tl to _T2 (although

increases. The overall proportion

the difference between proportions on Tl gnd T2 tends to zero as

tl becomes large). Data relevant to these and other predictions are
available in studies by Estes, Hopkins, and Crothers (196Q), Peterson,
‘Saltzman, Hillner, and Land (1962), and Witte (R. Witte, personal com-
munication). The predictions concerning effects of variation of t2
are well confirmed by these studies. ' Results bearing on predictions
concerning variation in tl are not consistent over the set of experi-

ments, possibly because of artifacts arising from‘item selection

(discussed by Peterson, et al, 1962).
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Application to the Simple Noncontingent case. We shall restrict

consideration to the special caée of Nﬁ;l H fhus, ﬁe shall. be dealing
with a variant of the pattern mcdel in which the pattern sampled on any
trial is the one most likely to be éampled on the next trial. XNo new
concepts are required beyond these introduced in connection with the

RTT experiment, but it will be convenient to denote by a single symbol,
say. & ; the probability that the stimulus pattern sampled on any trial
n. is éxchénged for another pattern on trial n+1 . In terms of the

- notation used above,
ot 14, t
g=1-1f = (1-0)(1-a") = (1-3)1-a") ,

.Wherer t is now taken to denocte the'intertrialzinterval. Also, we

denote by u the probability of the state of the organism in which

lm,n
m stimulus patterns are conditioned to the Al response and_oné of
these is sampled, and by uom n the prcbability that m patterns are
i
conditioned to Al but a pattern conditioned to A2 is sampled .
Obviocusliy,
% :E: Ym,n
m=0

where, as usual, P, deﬁotes'probability of the A, response on trialn .

L

Now we can write expressions. for trigram probabilities, following
egsentially the same reasoning used before in the case of the pattern

model with independent sampling. For the - joint event A , we obtain

1818
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: o~ R m -
Pr(Al,n+lEl,nAl,-n) =x Zm ulm,n [L-g+e ¥

1]

;

wl(L-g-8)p +8> Yo 15

for if an element conditioned-to A, is sampled on trisl n , then

1
m-1
N

and in either

‘with probability l-g it is resampled and with probability g

- it is replaced by another element conditioned to Al »

event -an Al resp.onsé must ocecur on trial n+l . Using the abbrevia-

" _ T m _ m ; 1444
tions U = g,;ulm’n i and. V= %um’n o the trigram probabilities
can be written in relatively compact form:

Prify pn®,nf1,a)

x[(1-g-8)p +aul ,

. Pr(Al,n'FlEg,nAl’n) = (l - 1[)[ {(l - C)(l = g) = gs}Pn + gUI’l] 3

Pr(Al,n+l$l,ﬁA2,n) _—_‘]T[C(l = g)(l-pn) + gvn] ]

Pr(A By A ) = (Lowdel

1

. _
Pr.(Ae’n+lEl,nAl’n) ﬁg[(‘1+ﬁi )__'pn - Un] s

- -)M (e - +E - :
Prify nnBo phy ) = (L-m)l(e -cgrg+qdp, - gU]

Prify niiBa,pfe,n) = wl(l-cregl(l-p) - eVl ,

Pr(AE,n-}-lEE;nA?,n) ) (l—ﬁ)[l - Pn - gv-].’l] ,.l‘ - (Tl)
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The chief difference between these expressions and the corresponding
oneg for the independent sampling models is that sequential effects

now depend on the intertrial inte_ryral° Considerj for example,  the
first two of Eauations Tl; iﬁﬁolving.repetitidns of resgponse Al . Ik
will be.noted that both of these expressions represent linear.combina~
_tions of i< ana Uﬁ:?i with the relative cqnt?ibution of P, increas-
ing as the intertrial interval (and therefore g ) decreases. Also,
.;t is apparent from the:defining equgtions for‘ pn and _Un 5 thaﬁ.‘
Pn-z Un 5 With eguality obtaining only in the_special.cases ﬁhere both
are equal to unity or_both equal to zero. Therefore, the probability
of a repetition is inversely related to the intertrial interval. In
particular, the probability that a correct Al br A2 .response will
be repeated tends to unity in the limit as the intertrial interval goes
to zero. When the intertriél interval becomes large, the parameter g

approaches l—-i and Egquations 71 reduce to those of a pattern -

N*
model with XN eléments and indepéndent sampling.
Summing the first four of Equations Tl, we cbtain a recursion for

probability of the Al ‘responses:

<)

Ppe1 = (L-c-g-Fi +eg)p + c(l-gln + (U +V.) .

Now, although a full proof would be quite involved, 1t -is not hard
to show heuristically that the asymptote is independent of the inter-

trial interval. We note first that asymptotically we will have
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‘ V ]'Il m
Uy = 2wy, ‘Zu T T

1

. 2
* m i *
ﬁ%%’) W %y

where u “is the prbbability that m eleménté are condifiohed-to Al .
The substitution of u T, for wuy ~ is possible in view of the intui-
tively evident fact that, asymptotically, the probability -that an ele-
ment conditioned to Al conStitutes-the_tfial sample is .simply equal
.to the proportion of suéh eleménts in-the:totalipopulation. “Bubsti-

fuﬁing.into the recursion for _pﬁ in terms of this relation, and the

~analogous one for 'Vh p

S L o
A by = % )

we obtain

I*
(Lrc-g:f teg)p, +c(l-ghn + g o P

Be;
1

n+1

(1-c+eg)p, + c(l-g)n ,

the simplification In the last line having:been effected by means of

the 1dentity

N+—l) - ¥
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Betting Poy1 = pn =P, and solving for D, We arrive at the tidy
- outeome

p = (1 -C+cgjpm + é(.l -glw ,
whernce

P, =T .

The recursion in 2, can.be_solved, but the resulting formula
expressing p, @%@ function of n and the parameters is too cumber-
_some to-yield much‘useful information by visual inspection. 'It_seems
“intuiﬁively obvious that for .g-<_1-%*_ (i,e,, for any but.very-;ong
intertrial intervals)} the learning curve will rise more sharply on early
trials than the corresponding curve for the independent sampling case.
This ‘is so because only sampled elements cén undergo éonditioning, and
once sampled, an element is more. likely to beiresampled thg.phorter. the
intertrial interval. However, the curvés Tor longer and shorter inter-
vals must cross ultimately, with the curve for the longer interval
approaching asymptote more rapidly on later trials {Estes, 1955b). If
=1, the total number of errors expected during learning must be
_independent of the intertrial interval; for each initially unconditioned
.element will continue to produce an error each time it is sampled until
it is finally conditioned, and the probability of any specified number

of errors prior to conditioning depends only on the value of the
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conditioning parameter ¢ . Similarly, if = 1s set equal to O
after a conditioning session, the total number of conditioned responses

during extinction is independent of the intertrial interval.

5.5 The Linear Model as a Limiting Case

For those experiments in which the available stimuli are the same
on all trials, the possibility arises of ﬁsing a model that suppresses
the concept of stimuli. In such a "pure" reinforcement model the
“learning assumptioﬁs specify directly how response probability changes
'bn'a reinforced trial. By all odds the most~popular models of this
sort are those which assume probability 5f a response on.a'given trial
to be a linear fUnction of the probability of that respoﬁse on the

: . 11
previous trial.

11 . . . s
77 For a discussion of thils general class of "incremental" models see

the chapter by Sternberg in this volume.

fhe-so—called "linear models” received their first systematic treatment
By Bush and Mosteller'tl9515,1955) and have been investigated and
developeﬂ further by many others. We shall beé concerned only with . a
- certain class of such models based on a single learning parameter & .
A more extensive analysis of this class of linear m@dels has been given
by Estes and Suppes (195%9a).

The linear theory is formulated for the probability of a response

on trial n+1 , given the entire preceding sequence of responses and
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. 12 '
reinforcements.” Let * be The sequence of respcnses and

 12 in.the language of stochastic processes we have a chain of infinite

order.

. reinforcements of a givenrsubjegt thfqugh_trial n ; that is,‘ X, is
a sequence of length 2n with J's (where j =1 to r ) .in the odd
positions indicating fesponses and. itg (ﬁhere i=0 to r) in the
even positions indicating reinforcements. Thenaxioms of the linear
model are as follows: for every 4,1 and k such that 1 < i,i' <r

and 0<k<r,

Ll. If Pr(E

If i,nAi',an—l) > O  then

Pr(Ai,n+l|Ei,nAi',nxn-l) =(1-6) Pr(Ai,n!Xn—l)’+ o -
2. If Pr(EkjnAi,’anfl) >0 , k#1i and k#£O0 , then
Prlfy alBe phye %o ) = (- 0) Prlay e )

L3. If Er(EOjnAi,}nxn__l-)>o then

Pr(Ai,n+1lEo,nAi',an'—l = i,n nfl)
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:By axiom L1 , if the reinforcing event, Ei s corresponding to
response Ai occurs on trial n , then (regardless of the response
occurting on trial n ) the prébabilitj 6f Ai increases by a linear
transform of the 0ld value. By 12 , if some reinforcing event 6ther
than Ei occurs on trial n , then the probability of Ai " deécreases
.By a linear transform of its old value. And by L3 , occurrence of the

("neutral") event E. leaves response probabilities unchanged. The

0

axioms may be written more compactly in terms of the probability,

D

i ? that a subject identified with sequence x makes an Ai :
2

response on trial n ; namely,

1. If the subject receives an Ei event on trial n ,

Pxi,n+l = (l = e)Pxi,n + 0 }

2. if the subject receives an E_ event (k#1 and k # 0)

on trial n ,

event on trial n ,

3. if the subject receives an EO

Pxintl T Pxin




AL a.nd E. —1.71-

- From a mathematical-standpoint it is important to apote that for
the linear model thé response probability associated with a barticuiar
subject is free to vaxy éoﬂfinuously.over the gntire interval from O
to 1 since this.probability undergoes iiﬁear transformations as a
result of réinfofcemento‘ Conseguently, if one.ﬁishes to interpret
changes in response probability as transitions among states of a Markov
process, one must deal with a continuous-state space. Thus the Markov
interpretation is of little practical wvalue for calculational purposes.
In Stimulus‘sampling models, response probability is defined.in terms
of the proportion Qf stimuli con@itioned;.since the set of stimuli is
finite, so aléo is the set of values taken on‘by the response probau
bility of any individual subject. It is this finite character of

‘stimulus sampling mbdels that makes possible.the extremely useful
iﬁterpretatidn df the models as finite Markov chains. | |
An inspectibﬁrof the three axioms. for the_iinear model indiﬁates
fhgt they.havé the same general form as Equation 60, Which,déséribe
changes in requnse.probability for the fixed sample size cémponent
cs ' : o

model; that is, if we let ¢ = T then the two sets of rules are

similar. As one might expect from this observation, many of the

' cs
predictions generated by the two models are identical when 6 = T

For example, in the simple noncontingent situation the mean learning
curve for the linear model 1s

Pr(ay o) = - [x - Pr(Al,l)-](jl-B)n"l - (72)
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which is the same as that of the coﬁponent model.(see Estes and Suppes,
.1959ﬁ? for a derivation ofrfesultsrfof the linear mociel)° ﬁowevef,
the two models are not identical in all respects, as is indicated by &
cdmparison_of the asyﬁptofic variances of the response distributions.

For the,iinear,model
2 0
o =n(l-nx) 5.5

aé.contraéted £o Equation 63 for the component model. However, as
noted above iﬁ coﬁnection with Equatioﬁ 63, in the limit (as “N ¥>¥.)
'Vthe' &i‘.for the éomponent model equals fhe pfedicted value for the
7iinear‘mbdel; | - | |

.The last resuit.suggeSts that the cdmponent nmodel may converge to
the_lineaf frocess as VN —aé . This cbnjegture is sﬁbsténtially.cor—
rect; it can be shown that, in the limif both.the-fiked sample size
ﬁodel.and fhe.indepéndeﬁt sampling model approach thé lineaf model for
an extfemely_brbad cléss ofrassuﬁptions governing the sampling'of.ele-
menfs, The derivation of,the-lineér modei from.component-models holds
for aﬁy reinforcement séhedule, for any finite numbér r of responsés,
and for evéry trial n , not simply ét asymptote. The proof of this
convergence theoreﬁ is lengthy and we éhallnnét preééﬁt‘it heye;
However, asg one migﬁt egpect, the probf,depéndérén the.fact that the
-fariance of the sampliﬁg]distribution for‘anj stétistic of the trial
gample approaches 0O as N becqmes'large, A proof of the convergence

theorem is given by Estes and Suppes (1959b). Kemepy and Snell (1957)
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also have considered the problem bnt'their proof is restricted to the

~ ‘two-choice noncontingent situation at asymptote.

‘wComparieon of the Linear and Pattern Models. The ‘same limiting

result, of course, does not hold for the pattern model discussed in

Seec. 3. TFor the_pattern model only one element is sampled on each trial

and it is obvious that as N — o the learning effect of this sampling

scheme would diminish to zero. For experimental situations Where both
the linear model and the pattern model appear to be applicable it is
important to derive differential predictions from the two models which,

on emplrical grounds, w1ll pennit the reSearcher to choose between them.'

To this end we display a few predictions for the linear model applied

to both the RTT sltuation and the- 51mple two—response noncontingent

situation, these results will be compared w1th the corresponding

equations for the pattern model.

For simplicity, let us assume that in the case of the RTT situation
the likelihood of & correct'response-by guessing isrnegligible’on all

trials. Then, according to the linear model, probability of a rein-

forced response changes in accordance with the equation_

ie) = (l-G)pn +9 Y

n+i

In the preSent application the probabillty of a correct response

on the first trial (the R~ trlal) is zero, and hence the probability

s of a correct response on the first test trial is simply . No

reinforcement is given on Tl and consequently the probability‘of a
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correct response does not change betwéen T and. 'I'2. . "I'herefore,

1

the probabllity of a correct response on both Tl and T2 .(as

POO kS
defined in connection with Equation 55) is"e2 . Similarly, we obtain

= 08(1-90) , and Py = (1 —8)2, Some relevant data are

Insert Table 6 about here

fresented in Table 6 (from Estés, 1961b). They represent joint response
ppoportions for‘ho_subjects, each tested_on 15 paired associate items of
the tyﬁe described in Sec. 2.1, the RIT design_épplied to each item. In .
érder to minimize ﬁhe p;obability of correct responses occurring.ﬁy
guessing, theée itéms'Were introduced (one per triai)linto a.larger list,
+the composition of which changéd.from trial to trial. Ancritiéal item
introduced on tfial n Ireceivéd one reinforcement (pﬁiréd presentation
,Of stimulus and response members) followed by a tesh (presentation of
stiﬁulus along) on trial ‘n and_triai n-fl ,. following.which it was
droppea from the list. o

.. From an inspection of the data column of Table 6 it is obvious
that the simple linear model cannot handle these proportions. It suf-

fices to note that the model requires whereas the differ-

_ Por T P1p’
ence between these two entries in the dats column is quite large.

One might try to preserve the linear model by arguing that the
pattern of observed results in Table 6 could have arisen as an artifact.

If, for example, there are differences in difficulty among items (or, .

equivalently, differences in learning rate among subjects), then the
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Table 6

Observed Joint Response Proportions for RTT Experiment and Predictions

from Linear Retention-Loss Model and Sampling Model.

T Obgerved - Linear Sampling
" Proportion Model - Model
238 238 .238
Pgp 3 | 3 3
| .1k .238 .152 -
Pal { 3 >
_ . .018 . 0
Plo oLl L
.598 506 .610
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instances of incorrect response on Tl

.wéu}d predomiﬁately fepresent
smelier © values than instances of_correct réspénses, lOn fhis account
.bne might expect that the predictéd proportion-of corfect following
incérrect responses would be sm;llef than_thaﬁ a;lowed for under tﬁe
Tequal eﬁ assumptidn, and thereforé that the linear model might not
actually be incompatible Witﬁ the data of Table 6. We canreasily check
the validity_of such aﬁ argument. Supp§se that parametér Qi is asso-
_rfciateﬁ With,a proportion fi..éf the iteﬁs (or subjecfs), Then ip each
case where‘ ei”.is applicable, fhe probability of g correct rgspénse on
Po1

T. followed by an error on T. is ei(lv-ei)_, Clearly then,

a3 2

estimated from & group of items described by differences in 6 would be

Por = Zi £,8,(1-8) -

But a similar srgument yields
= — 8 2
P .Zii_.fi(l 8.)8,

Since, qgaing tﬁe gxpressionsrfor P1o and pOl. are egual_for.all
distributions of .Si > 1t is clear‘that_individual differencgs_in
;earning rates alone could'not account for the ob_served&results°

A rglated.hypothesis that might seem to merit consideration is
that of individual differences in rates of forgetting. Since_the pPro-

portion of correct responses on T

> is less than that on T, , there

4

is evidently some retention loss, and differences among subjects, or

items in susceptibility to this retention loss might be a scurce of
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"bias in'the data; The hypothesis can'be formulated inrthe.linear'model
l‘;as fDllOWS‘: Probability of the correct response on T is equal to .
p-B:;zif however, there 18 a retention loss then the probability of a

: correct response on T will have declined to some value Py such
'dthat 'p < 9 ; .If there are ind1v1dual differences in amount of
..retention loss, then we should again categorize the population of

’ subjccts and 1tems 1nto.subgroups, With a proportlon f of the sub-
nJects characterized by retention parameter pi { Theoretical expres-
s10ns.for pij can be derived for such a population by the same. method

. used_in_the preccding case; the results are as follows:

0t

Poo ©
2o (2- 9)-'21. £304

This time‘the_expressions for Plb and poi. are different; witn a
sultable choice of psraneter values,ﬁthey could eccommodste.the.dife
'ference between the observed proportions pOl and PlO HOWever;
-_another dlfficulty remains.’ To obtain a near zero value for plO
.Would require either a 9 near unity, which WOuld be 1ncompat1ble With

the observed proportion of .585‘ correct on T or a value of

l 7
> f,p; near zero, which would be incompatible with the observed
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propertion of 255 correct on.-TE-u Thus; we have ngo support for the
hypothesis that Individual differences in amount of retention loss might
_account for the pattern of empirical values. |

One can go on in a similar fashion and examine the results of
supplenenting the coriginal linear model by hypotheses involving more
éomplex"éomﬁihafidﬁs'br interéctioné ofrpossible'éourées of bias (see
Estes, 1961b). For example, one might assume that there are large
Andividusl differences in botﬁ learning and retention parameters. But
even with this latitude it is not easy to adjust the linear model to
the RTT data. Suppose that we admit different learning parameters,
6. and @ '

1 5 and different retention parameters, and Ps s the

PL

combination 8 'obtaiﬁing for hal? the items and the combination

6,0, for the other half. Now the Pij Tormulas become

=)

_O9Py * Gopp
Poo = z
_ el(l _pl) + 92(1' "92)
pOl - 2 3
Plo - 2 T ;]
(1-6)(1- p) + (1-0,)(1 ;)
Pig = 5 .

From the data column of Tabile 6, theréroportions of correct responses
on the first and second test tfials, are PO— = .305 and p_O = .255 ,
respectively.. Adding the first and second of .‘the equations above to
obtain fthe.theoretical expressicn for -pb_;- angé the Tirst and third

. equdations to get: P:O 3 .W6~haVe¥-"
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) o, + 6,
PO" - 2.'.". ’
and
e T-
Po~"3

Bquating theoretical and_observed values, we obtain the gonstraints

61 + 62 LTTO

Py * Py = 510

‘which should be satisfied by the parameter values. If the proportion

Poo in Table 6 is to be predicted correctly, we must have further

e pl + 6

1 oPp = 328
2 ' .

or, substituting from the two equations just above,
elpl + ('77- el)(‘5l_ pl) =.']+76 2
which may'be solved for —el :

L0835 + .TTpy
H, = i .

1 2pl - .51

~Now the admissible range of parameter values can be further reduced.
For the right hand side of this last equation to have a value between

0O and 1, Py must be greater than .48, so we have the relatively
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proportion of .255 correct on ‘Te‘a Thus, we have no support for the
hypothesis that individusl differences in amount of retention loss might
account for the pattern of empirical wvalues.

One can ge on in a similar fashion and examine the results of
supplementing the original linear model by hypotheses involving more
complex combinations or intersctions of possible'scufces.of'bias (see
Estes, 1961b). For example, one might assume that there are large
individual differences in both iearning and retention parameters. But
even with this latitude it is. not easy to adjust the linear model to
the RTT data. Suppose that we admit different learning parameters,

8. and 6 ‘and different retention parameters,

1 2 2 Py and Po s the

combination” 6 obtaining for half the items and the combination

lpl 3
O,p, for the other half. Now the Pij formulas become

e + 8

_ 1P T %P
Poo = 72 ’
Por = 2 g
P10 © 2 2
P11 = B °

From the data colum of Table 6, thefprdpqrﬁions of correct responses
on the first andrsecond test tiials, are pb_ = .38% and P_o = <255 ,
respectively. Adding .the first and second of the eqUations above to
-obtain the theoretical expression for po;,l and the first and third |

eguationsg o get;‘p:o »- we'have
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6+ 8,
Po- "7z
and o | ' F
AT
p-o I —— 2\

Equating theoretiqal and observed values, we obtain the copstraints

91 + 92 = .T70

pl + p2 = '510 2

which should be satisfied by the parameter values. If the proportion

Poo in Table 6 is to be predicted correctly, we must have further

8101 + 8P _ :33g
5

2

or, -substituting from the two equations just above,
elpl + ('TT' 91)(-51‘ pl) =-'ll'76 1]

which may be solved for 61 :

<083 + .TTpy
6 = 2p, - .51

~Now the admissible range of parameter values can be further reduced.
For the right hand side of this last equation to have a value between

0 and 1, Py must be greater than .48 , so we have the relatively
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" parrow bounds on the parameters pi

48 < py £ .51

O
N
i
v
A

< .03 .

Using these bounds on Py » we Tind from the equation expressing Ql
.gs.a funetion of. pl thét Ql must in turn satisfy .95 < 91 <1.0.
But now the model 1s in trouble, for in order to also satisfy the
constraint 6, + 0, = .77 , 6, would have fo be negative (and the cor-

rect response probabilities . for half. of the items on T would also be

1

negative). About the best we can do, without allowing "negative proba-
bilities".is to use the limits we have obtained for Py 5 Py oy and Ql
‘and arbitrarily assign a zero or small positive value to 62 . Choosing
the combination Gl = .95 §.92.= LOL p.1 = .5, and s = 0L , we
obtain the theoretical valﬁes.listed for the linear model in Table 6.

By ihtroduciﬁg additionai assunmptions or additicnal parameters, wé cowld
improve the fit of the linear model t¢ tﬁeée data, but there would seenm
to be little point in doing so. The refractoriness of the data to des-
cription by any reasonably simple form of the mcdel suggests that perhaps
ﬁhe,learning process is simply not well represented by the type of growth
" function embodied in the linear model. |

By coﬁtrast, these data can be quité readiiy handled by the stimulus

fluctuatioﬁ model developed in the prece@ing section. Letting fl = 1

in Equations 70, and usiﬁg’the estimates é = .39 and £, = b1, we

obtain the theoretical values listed under "Sampling Model" in Table 6.
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One would not, of course, claim that the. sampling model has been rigorously
teéted, since two parameters had torbe estimated and thefe are only three
degfees of freedom in this sét of data, However, the model does.seem

more promising than any of the variants of the linear model that have

bheen investigated. More stringent tesfs of the sampling model can readily
be obtained by running similar experiments with longer sequences of test
trials, since predictions concerning joint response proportions over
blocks of three Or.more.test trials can be generated without additional

assumptioné,

- Additional Comparisons Between the Linear and Pattern Model. We
now turn to a few comparisons between the linear model and the multi-
element pattern model for the simple noncontingent situation. First of
“all, we note that the mean learning curves for the two models {as given
in Egquation 37 and Equation 72} are identical if we let %_: e .
However, the expressions for'ﬁhe variance of the asymptetic response

2 L
distribution are different; for the linear model ¢ . = w(l- )5 ? 5

whereas for the pattern model Uio = n(1 fﬂ)% . This difference is
refleéted in anofher prediction that-providés a more direct experimental
:test of -the two models. This concerns the asymptotic variance of the
distribution of the number of Al responses.in 8 block of K trials
which we denote ,var@%a . For the linear model (cf.BEstes and Suppes,

- 1959a),

Kh-20) _2(1-0)y (4 _ K

vé,r.(i_ﬂ?K ) = w{l-x) 2C 6 " {2-8)o
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for the pattern model, by Eql k2,

rer() = x(1-n) { x4 HE=E) EI(iefC)N - -

 Note that, for c =6 , 'thé'vérianée for the pattefn model is larger

thah for.the linear model. Eowever, for the case of B = %’,

varisnce for the pattefn model can be_largér or smaller than for the

. the

linéar model depending_bn the,parficular values of ¢ and N .
Finally, we present cértain‘ésymptotic seguential pfedictions'for

the linear model in the noncontingent situation; haﬁely

1im Pr(Al}mllEl’nAl—,n) = (1-8)a+86
Hm P?(Al,n;r_llEe,nAl,n) = l(l-‘ 6)a

lim Pr(Al’nﬂ'[ElynAB,n) =1-{(L-8)b
iim Pr(Al,n+l[E2,nA2}n) = (l -9)(2 -ﬁ).

vhere s = [2ﬁ(1;6) +6}/(2-6) and b= [2(1-x)(1-8) + 6] /(2 -8) .
"~ These pfedictions are to be compared .with‘Ec;.L° 54 for the pattern model.
.In.thelcase of the pﬁttern model we note thaﬁ 'Pr(AllElAl),jand
‘Pr(a)[Eph,) depend c;r.llyf on x and W whereas Pr(4, |E,A,) and
-Pr(AllEiAE)f.depend'bn n, N and. c . In éoﬁtrast, all four.sequential
probabilifies aepend on = and -9 Iin the liﬁear model . ‘For detaiied

comparisons between the linear model and the pattern model in application
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to two-choice date, the reader is referred to Suppes and Atkinson (1960),” o

-and Estes and Suppes (1962)

5 b Applications to Multi -person Interactions
In this section we apply~the linear model Lo experimentel situations
involving multl-person interections in which the‘reinforcement for any
given subject depénde both on his responee_end on the responses of other
subjects., BSeveral recent'investigatione have provided evidence.icdi-

cating the frultfulness of this line of development. For example, Bueh

'_and Mosteller (1955) heve_ahelyzed a study of imitative behavior in
terms of their linesr model, and Estes (1957a), Burke (1959)1960) snd Atkinson
and Suppes-(1958) have derived and tested predictions from linear models
for behavior in two and three person gemee.' Suppes and Atkinson (1960) = 1
have also provided e comperieon between_pettern moeels and linear models
for multi-person‘erperiments end'have_extendedjthe enelysis_to situations
invoiving communicetion between subjects, ﬁocetery peyoff, social pres- |
‘sure, ecocomic oligopolies; and related varieblee;

The simple two-person game has particular advantages for expository
l' purposes, and we use this asituation to illustrete the technique of
extending the linear model to multi-person interactions. We consider
a situation,which, from the stendpoint of game.theory (see,ie.g., Lﬁce
and.Raiffe} 1957), eay te characterized as a geme in normal.form with
& finite number of strategies availsble to each player. Eech.i:.ley of
the geme constitetes_a triei, and a player:'s choice.of a strategy for

a glven trial corresponds to the selection of a response. To avold
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problems having'to do ﬁith‘the measurement of ntility (or from the
vieﬁpoint of learning theory, problems of reward magnitude), we assume
a unit reward that is assigned on an all-or-ncne basis.  Rules of the
game require the two players to exhibit their choices simultanecusly

on all trials (as in & geme of matching pennies). and each player is. .
informed that, given the chHoice of the other plsyer on the trial, there
is exéctly one cholice leading to the unit reward.

.. We designate the two players as ‘A and B and let Ai(izzl,}aJ,r)
and fBj(j= 1,...,r') denote the responses .available to the two players.
The set of reinforcement probabilities prescribed by the experimenter
may be represented in a maﬁrix'-(aij, bij) -analogdué to the ﬁpayoff
matrix! familiar in game thecry. The number aij' represents the'pro-
lbability of -Player A being correct on any trial ‘'of the experiment
given the response pair AiBj ;3 similarly, bij is -the prcebability of
Player B being correct given the response palr AiBj'° gFor.example, |

congider the metrix

" When both ‘subjects make resﬁonsé l'J ‘each‘has probabiliﬁy % of
receiving'reward; Whéh both make response 2";' then ohly\'Player B

receives reward; when either of the cther possible response pairs occurs

(i.é., .AéBi 'br-;AlBe) 5 then dniy' Piayer A receives reward. It




A. and E. =184~

should be emphasized that although one-usualiy thinks of one player
winning and thekéther losing on sny given play of a game, this is not
a necessary restriction on the model. In theory, and in experimental
tests of the theory, it is quite possible to permit both or neither of
fhe'players to be rewarded on any trial. However, %o provide a rela-
tively simple theoretical interpretation of reinforecing events it 1s
essential that on a nonrewarded trial the player be informed (or led to
infer) that some other choice, had he mede it under the same circum=-" 5
stances, would ‘have been successful. We return to this point later..

Let .EiA) denote the event of reinforecing the Ai responsé for

Player A and EgB) the event of reinforecing the B, response for -

J

Player B . To simplify our analysis we consider the case in which
each subject has only two regponse alternatives, and we define the
probability of occurrence of a particular reinforcing eventiinibemmsof

the payoff parameters as follows (for i#i' and J#£j*%)

_ (A) _ (B)
1] 145, :B5,0) P35 % 184,08y,

(73)

(&) . : B
13 = Pr(E I.Ai,nBj,n) l-bij Pr(E( )[ i, B 5, n-) .

o
1

o]
|

[l

For example, if Player A makes an A response and is rewarded then

1
A
an E£ ) occurs; however, if an Al i1s made and no reward occurs then
we assume that the other response is reinforced; i.e., an EéA) OCCUTsS.

Finglly, one. last definition to simplify notation{ We denote
Player A's - response probability‘by' Q@ and Player B's by B , and we

denote by 7 the joint probability of an Al and B, response. Specifically,

1




A. and B, ~185

= Pr(Ap By 1) (7h)

- . We now derive & theorem that provides recursive expressions for ..
O% and Bn and points up a property of the model that greatly complicates

the mathematics; namely; that both Q%+

1 and. 5n+l depend Qg the joint

probability 7y = Pr(Al,n?l,n)

Theorem

Yg = [1 -6, a,7850)10 +6,(a,,- 85, )B)
_ {758}
+8y(ayy Yagy magp- any)y, * 6, {17 ayy)
Bpep = [1 - 6g(2-byy- b )18+ Op(bpy B1p)0%
(75%)

+ - - -
+ QB(bll 1o~ oy boody, + B(1- Byy)

where GA and 'BB are the learning parameters for players A and B .

-Pr00f¢ It will suffice to derive the difference equation for O%+l B

sincé the derivation for B is identicalo' To begin with, from

n+li

Axioms L1 and L2 we can easily show that the general form of a recursion

for @ .is
n

(A
e

Qg = (1 "QA)’an-+ e-APr(E .

The term Pr(EgAi)_can then be expanded as follows
b
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Pr(E( ) —ZP (E(A) B, )

l,n 1,n Jsmn

ZPr(E 1,n 5 1rl)Pr(-Ai,HBJ_’H)
1,3 ‘
and by (73)
'Pr(E(A)).; a. Pr(A B. )+a Pr{A )
1,n 117 Y 1,n 1,n 2 n
(76)
+ (1 - azl)Pr(Azln]; ) + (1~ a22)Pr(A2 nt n) .
Next we observe that -
Pr(Al o 2 N Pr(gg,n]Al, n)Pr(Al,n)
= [1 - Pr(.l_sl’n.lAl’n)]Pr(Al,n) | (77a)
= .Pr(Al,_n) - Pr(g.l, n]_gl,ln)
Similarly
Pr{(4., B _
r( 2,n i,n) ,=-Pr(Bl,'n) - Pr(Al,n:E_"},,_n) S . (TTD)
and_ _
Pr(A, B, ) = Fr(a, B, )Pe(B, )
- [l B Pr(Al,nlBE,n) ]Pr(BE,_n)
{77¢)

Pr(BE,,n') - Pr(Al,_n?E, n')

i

1 - Pr(Bl’n) T PI'(Al,n) + Pr'(Al,nBl,n'
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Substituting into Equation 76 from Equatione T7a, 77b and T7c and

simplifying by means of the defipdition for @, B and 7 , we cbtain

pr(af®)) = ayy, v app(e -7 + (1m ey (B -7,)

(1 -ay)(1- @ -B, +7,)

=~ (1 ’a12"322)qh + (322-a21)5n

+ e vay mas man)y + (1 -ay)

Substituting thiﬁ expression into the general recursion for QE yields
the desired result, which completes the proof.

It has been shown by Lemperti and Suppes (1959) that the limits
@, B and 7 exist, whence (letting =% =09, B =P =8B

and 7ﬁ =9 in 75a and 7T5b. ) we have two linear relations that are

independent of €, and BB_; nemely,

A
a =Dbp + cy +d , ep = fa+ gy +h , (78)

where

a=2 - 81p = 8pp e =2 - b21 - b22

b= 8op - 8y £=Dpp = by |
(79)

© =81y Ayt Rp T % 85 Pyy ¥ Pyp = By = Py

d=1~8 h=l'b ¢
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By éliminating 7y from Equations 78 we obtein the following linear

relation in & and B :

(-ag-ce)a + (bg+cf)p = ch - dg - R (80)

Unfortunately, this re;atiohship is one of the few guantitative 1 ;
results that can be directly computed for the linear model. It has,

however; the advantagéous feature that it is independent of the learn-

ing parameters GA' and. QB and therefore may be compared directly with

experimental data. Application of this result can be illustrafed in

terms of the game cited earlier in which the payoff matrix tékes the form

B, ;
1, 0
?
0, 1 .
From Eguations 79 we obtain ;
L . - -1
a = 1 c =3 e = 1 ) g8=-5
O .

b =-1 d =1 f=1 h =

or ﬁ:

v
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From this result we predicttimmediately that the long-run proportion

of Bl responses will tend to % + To derive a prediction for Player A ,;

we substitute the known values of the paraﬁeters into the first part

of Eg. 78 to obtain

1

o = 54"2

v+ 1

1, 1
='§+§‘7 0

Unfortunately we cannof compute 7 , the asymptotic-probablility of the

'AlBl: response pair. However, we know 7 1s positive and since only
L . _ . _

5 of Player B's responses are B

l‘s s 775 cannot be greater than % °

Therefore, we have 0< ¥ 5-%_ and as a result can set definite bounds

response; hamely

on the long-run probabllity of an Al

o

3
L

Mo fi—
FA
Q
A
o+
+
ol
Mo

Thus, we have the bhasis for a rather exacting experimental test since
the asymptotic predictions for beth subjects are parameter-free; l1.e.,
they do not depend on the & -values of either subject or on initial
response probabillities.

Of course, by imposing restrictions on the experimentally determined
parameters aij - and bij “a variety of resulis can be cbtained. We
1imit ocurselves to the considerstion of one‘such cage: cholice of the
- parameters so that the ccefficients of 7n vanish in_the_recursiéé
equations T75a . and T5b, Specifically, if we let ¢ =g =.0 and-

af - be # 0, then
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Q5+l = aah + bﬁn + 4
. (81)
gn+l = eﬁn +.f05 +n .

Solutions for this system are well-known and can he obtained by a numbgr
of different technigues; for a detailed discussion of the problem of
obtaining explicit expressiong of Qh and Bn for arbitrary n the
regder is referred to an article by Burke (1960). We do know, however,
that the limiﬁs for O% and Bn exist and are independent of foth

the initial conditions and 6, and 6, . By substifuting @=Q , =0

A B +1
and B = §n+l = Bn }nto the two recursionsg we obitain
‘bh + 4f -
@ = af ~ be
and
ah + de

P = af - be °

The fact that ¢ and £ are independent of GA and QB under the
restrictions imposed on the parameters in no way implies that ¥ is
also independent of these quantities.

Eq: 81 provide a very precise test of the model and the necessary
conditions for this test involve only experimentally manipulable param-
éters@ A great deal of experimental work has been conducted on this
restricted prqblem and, in general, the correspondence befween predicted
and observed values has been very good;.for an account of this work see

Atkinson and Suppes (1958), Burke (1959, 1960), and Suppes and Atkinson

(1960).

g e T
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In coneclusion we should -mentien that:all of the predictions
presented in this section are identical to those that can be derived
from the pattern model. Of ‘.Séc.‘ti‘b.zll 2 . de;féver, in general, only the
grosger predictions, such as those for. an and -5n: s . are the same

for the two models..
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6. DISCRIMINATION LEARNING

The distinetion between simple learning and discrimination

learning is somewhat arbitrary. By discrimination we refer, roughly

speaking, to the process by which the subject learns to make one re-
sponse to one of a pair of stimuli and. a different response to the

other. But there is an element of discrimination in any learning

: situatién, Even in the simplest conditioning exﬁeriment, the subject-
learns to make & conditioned response only when thé conditioned stimu-
ius is presented, and therefore to do something else when that stimlus
is absent. In the paired-aséoéiate situation (referred to several times
in previous. sections) the subject learns to associate the appropriate A
member of a résponsa;se% with each member of a set of stimuli, and
thérefore to'"discriﬁinate" the stimuli. The principal basis for
.differentiatiqn between the two categories of 1earning séems to be .that
in'the.caée of discrimination learning the similarity, or communality,
bétween stimuli is a major independent variaﬁle; in the case of simple
“learning, stimulus similarity ls an extraneous factor, to be minimized
-expefimentally and neglected in theory so far as possible.
One of the general.-strategic assumptioné of the type of stimulus-

response theqny which has been associated with the development of
.stimulus sampling models is that discrimination 1earniﬁg involves sim-
ply a combina#ion of proéeéses each of which can be studied independently

in simpler situations -- the learning aspect in experiments on simple
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acquisition or extinction, ‘and the stimulus relationships: in experiments
on stimulus generalization or transfer of training. Thus, there will be
~nothing new at the: conceptual level in our treatment of discrimination.
There is adeguate scope for analysis of gifferent types of discrimina-
“tive situations; but since our main concern in this article is with
~methods rather than content, we shall not go far in this direction.

We prdpose only to.show how the processes of assoclation and generali-
| zation treated in preceding sectlons enter into discrimination learning,
and this -can be accomplished by formulating assumptions and deriving

. results of general interest for. a few important cases. -

.Spi The Pﬁt£ern Model for Discrimiﬁation Leafning

| As in the caééé of.éimple acquiéition:and probabllity lesrning,
' it is sométimes.uéefuL.ih the éréétment of discriminafivg.situations
to ignore.geﬁeralization'effeéts among tﬁe stimﬁli.iﬁféiﬁed in an exper-
Vlment and regard each st;mulus dlsplay as & ﬁnique patternp .Thus,
| behavior ellclted by the stlmulus dlsplay will depend only on the sub-
Ject‘s reinforcement history Wlth respect to that partlcular pattern.
-fwo:importanf vafiants of thé ﬁbdel érise accofding és expérimental
arrangéﬁents do ér do notxénsure thaf ﬁhe sﬁbjecﬁ wili Sam@lerthe entire
stimulus display presénéed;on each _triaiu ) -

| Cése lur All éues.présented ére sampled‘oq‘each:£fialo Fof a
.classiéal two—stimulﬁs. two—response-discrimination problem (e,go,-é
' Lashley 51tuat10n Wlth the rat belng dlfferentlally rewarded for Jumplng

to a black card and av01dlng a grey card), our conceptuallzation requires
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L a distinction among three types of cues: 'We shall denote by S1 “the

set of component cues present only in the stimulus situation assoclated

-with reinforcement of response A by B

5 s the set of cues present

l 2
only in the situation associated with reinforcement of response A2 »

and by Sc., the set of cues present in both situations. In the exam-

ple of the Lashley situation, Al -might be the response of jumping to

thé left hand window, AE‘, the response of jumping to the right hand

window, Sl the stimulation present only on trials with black cards,

_SE the stimulation présent only on trials with grey cards, and SC
the stimulation common to both types of trials. And we dehote by Nl 5
N,y s and NC ,» the number of cues in each of thes¢ subsets. In stan-
dard experiments, the "cues" refer to expériméntally manipulable aspecté
of the situation, such as {ones, objects, colors, symbois,'or the like,
and it is reasonably well-known just how many different éombinations of
ﬂhese cues wWill be responded to by_subjeéts as distincf patterns< In
some instanéés;-héwever, the experimenfer may have no a priori knowledge
as‘to the patterns distiﬁguishable by the subject; in such instances,
the Ni may be treatea as ﬁnknoﬁn pérameters to bé_estimated from data,
and the model may thué serve a8 8 tocel to .aid in securing evidgnce és to
the subject’s perceptions éf ﬁhe physical situation.

Suppose, now, that the experimenter's procedure is to present on
some trials (.'I'.l trigls) a set of-cues inglgding_ ml: from Sl and m,

from Sc ; and on the remaining trials ( Té trials) m, cues from 82"

and mc from Sc » Further, let the two types of trials occur with equal
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1
. Ny | W, - : .
- be 3 )(m. 'different patterns of cUes'available. Assuming that

e B

these patterns are all equalLy probable, and letting b = [
we can obtaln an express10n for probabillty of a correct response on a

 frequencies in random seguence. on trials of type T ', there will

Tl trial simply by approPrlate substltution lnto Eq. 28, viz

' - ' ' ' n. -1
B Cm N1
- Pr(ay lITl nl) =1 - [1-Pray ofTy ()] (1-cby) , (82)
. Where ny is the ordinal number of the Tl trisl._:The cprresponding
function for T2 trials is obtained similarly with parameter
N w o\ -1
21 c s
'b2c = ‘m | ot
SRS R - cf |
In the discrimination literature, cues in the sets S, end 5,

sre commohly referred to as relevsht; those in'.Sc..es irrelevsht,.sihee
the former are correlated with reinforcing events whereas the latter

are not.V:It is'apparent by inspection of Eq. 82 that (for the above speci-
_fied‘experimental cbnditibns) the pattern model predicts that probability
of correct respondlng Will go asymptotlcally to unlty regardless of the
numbers of" relevant and irrelevant cues, prev1ded only that nelther |

oy ‘nor m2-#lS egusl to zero. Rate of approach to asymptote:on each
typé of trial is inversely related to the total number -of ﬁatterns_l.
available for Samhling. Therefere, ether things eqﬁal rate of learning

is décreased (and total errors to criterion 1ncressed) by the sddltlon

of either relevant or 1rrelevant CUES s
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ggggigp Partiai'sampling of the cues presented on each trial.

: Wé.consider.now the situation whichlarises if the number of cués pre-
_sentéd per trial is too large, or the exposure time too shortg,for the
entire stimulus display to he sampled by the subject. Let us suppose
for simplicity that there afe only two stimulus displays: the displéy

‘on Tl trials comprises the Nl cues of Sl together with the NC

cues of Sc s and that on T2 trials the Né cues of SE together

with the Nc cues of Sc » For a given fixed exposure time, we . assume

a fixed sample size s , with all samples of exdcetly s cues being
N N
equiprobable. On T, trials there will, then; be ( * ( C ways

1 sy fls -8y

of filling the sample, with = cues from Sl and the remginder from

1
Se - The asymptote of discriminative performance will depend on the

size of s relative to Nc « If 8 <K Nc s 80 that the entire sample
can come from the set of irrelevant cues,-then the asymptotic probability
of a correct résponse will be less than unity.

In Case 2, two types of patterns need tc be distingnished for each

type of trial. We can limit consideration to T trials, since analo-

1
gous arguments hold for T2 ° Thére may be some patterns including
only cues from Sc , e&nd learning With_respect to these will be on a
simple random reinforcement schedule. The proportién of such patterns,

LA is given by
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which is equal to zero if s > Nc.‘ If Tl and TE trials have equal

probabilities, then the probablility, to be denoted Vn’ that a pattern

containing only cues from .Sé will be conditicned to the Al response
on trial n can be obtained from Eq. 28 by setting Myp = Tpq = %,
c Vo | Nl - Nc =
Pr(Al,n) = V,» and i N = ¢b, , vhere b, = 5 , l.es,
s
Ll n-1 |
V,o=5-{3-V)(1 -eb ) . (83)

The remaining patterns available on _Tl trials all contain at least one
cue from Sl’ and thus occur only on trials when response Al is re-

inforced. The probability, to be denoted Un’ that any one of these is

conditioned to A, on trial n may.Be similarly cobtained by rewriting

1
Eq. 28, this timo with ., = 0, 7y = 1, Pr(Al,n) = U, and
.z cb i.e
N~ 2 "le? T

- 1 n-1

U, =1~ (1 - Ul)(l -5 cblc) , (84)
where the factor % enters because these patterhs'are‘available for
sampling on only % of the trials.

Now to obtain the probability of an A fesponse ifa T display

1 1

is presented on trial n, we need only combine Eg. 83 and 84, weighting

each by the probability of the appropriate type of pattern,'viz
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Pr(Al,nlﬁl,n)'z (ln'wc)Un WL
T 1 1 n-1
_ 1 B Wc-+-§ wc B (l'-wé)(lf-Ul)(l'-E Cb;c)
- Wc(‘é -Vl)(l_-.cblc). | _ . (85)
which may be simplified, if U =V, = 5, to
Cpra P A (1oL 3ot 854
.Pr(Al,nITl,n) =Ll-g V- 2(1 wé)(l_ 2 Cblc) . (852)

..The.rgsulting'exéression for prébability ofza correct resgponse
haé é number of interesting general properties; The asymptqte, aé
.aﬁticipated, depends in. a siméle.way oﬁ_ W, , the p:oportion_df
' "irrelefant patterns"l QWhen:.ﬁc = 0, the asymptotic probability of
a.éorrect:respohse is unity; when w_ =1, thé whole prbcess reduces
to.simpie random fe;nféréement} Between these extremes, aSymthtic
performgnqe_yariés inyefse?y with y& ) 50 that the terminal proporticn
- of correét reSponses on'eithe: type of trial provides a simple estimate

lcl’ could then

‘of this parameter from data. The slope parameter, cb
be estimated from total errors over a series of trials. As in Case 1,
. the rate of approéch_to asymptote proves to depend only on the tondi-

tioning parameters and total number of patterns available for sampling;

thus 1t is a joint finction of the total number of eﬁes,_ Nl +ch , and
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the sample size, 8 but does not ﬂepénd on the relative proportions

of relevant and irrelevant cues. The last result may seem.implausablé,

but it should be noted that the result depends on the simplifying assump-
tion of the pattern model that there are no transfer effects from learn-

ing on one pattern to performance on another pattern which ﬁas component;

cues in common with the first. The situation in this regard will be

different for the "mixed model" to be discussed below.

6,2 A Mixed Model
The pattern model may_provide_a relatively complete aceount of

disérimination.data in situations involving only distinct, readily dis-
criminable pattefns of,sfimulation,_as, for example the "paired comparison"
experiment discussed in Sec. 3.5 or the verbal discrimination experiment
treated by Bower (1962)o Also, this model may account for some aspects of
the data (e-8sy asymptotic performsnce level; trials -to criterion) even in
discrimination_experiménts Wﬁere Similarity, olrrcomm.unalityj among stimalii
is a major variadble. But to account for other aspects of the data in_cases
of the latter type; it is necessary to deal with transfer effects through-
out the course of learhingp The appreoach to this problem which we now
wish {0 consider employs no new conceptual apparatus, but simply a com-
bination of iQeés developed in preceding _s_ectionse

- In the mixed model, the conceptualization of the discriminative
situation and the learning assumptions are exactly the same as those of

the pattern model discussed in Secoz6nl . The_only change is in the
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response rule, and that is alteréd in only one respect. As before, we

. -agsume that, once a stimulus pattern has become conditioned to a résponse,

it will evoke that response on each subsequent occurrence {unless on

f some later:trial”the pattern beoomesireconditioned to a different re- :

_ sponse —.as may.occur during reversal of'a discrimination). The new
. feature concerns patterns whioh have not yet become conditioned to any i
of the response alternatives,of.the given experimental situation, but

which have component cues in common with other patterns which have been

‘so conditioned. Our assumption is simply that transfer occﬁrs:from a
coﬁditiohod'tofén'uﬁconditioned'pattefn.in'accordonce with.the éssump-
tionsmofiiized iﬁ'dur'earlief'tfeatmént of compounaing'aﬁd goneralizaﬁion
' (spéoifioally; by akiom-ceg'ﬁogether with:aimodified version of Cl,:of o ' %
C " Sec. ﬁ{l);:' o | | |
Before the assumptions about transfer can be.employed unaﬁbiguously.
'in connection oith the mixedfmodel,.thé notion of oonditioned status of

g ‘component cue needs to be clarified. We shall say that a cue is con-

'ditioned'oO'resp6nse' Ai if it is a'component_of a.sﬁimulus pattern -
.:thaf has become oOnéitioned to'réSponse"Ai . If‘a cue belongS’to'two
'.patterns;.one of which is conditioned to response Ai and one to re- .
i.ﬂsponge .%ﬁ;(is¥j) ,  then the.coniitioning status of the cue follows
._that of the mOre‘recentiy conditioned pattern. If_a coe'bélongs'to no
. conditioned pottern, £hen it is said to be in the unconditioned, or
Mguessing” otate.'_ﬁote foat a fattern ﬁay be onconditioned évenfthough

all of its cues are conditioned. Suppose, for example, that a pattern
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congisting of cues X, ¥ and 2z 1in a particular arrangement has never
been presented during the first =n trials of an experiment, but that
each of the cues has appeared in other patterns, say wxy and wvz ,
whicﬁ have been presented and conditioned. Then all of the cues of pat-
tern xyz would be conditioned; but the pattern would still be in the
unconditioned state. Consequently, if wxy had been conditioned to

response A, and wvz to A, , the probability of A, in the presence

1 2 1

of pattern xyz would be % .« But if now.response Al were effectively
reinforced in the presence bf XYZ its probability of evocation by
+that pattern would henceforth be unity.

The only new complication arises if an unconditioned pattern
dnecludes scme éues which are still in the unconditioned state. Several
alternative wayé of formulating thé'resydnse rule for this case have
some plausibility, and it is by no means sure that any one chopice will
prove to hold for éllrtypes of Situations. We shall here limit consid-
‘eration to the formulation suggested by a recent study of discrimination
and transfer.which hes been analyzed in terms of the mixed model (Estes,
and -Hopkins, 1961). The amended response rule for patterns including
ﬁncenditioned cues is as follows in this formulation: Axiom C2 of
Sec. 4.1 is reinterpreted so that in a situation involving r response

alternatives,

‘1. if all cues in a pattern are unconditioned, the probability

- of any response Ai is equal to % 3
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2. if & pattern (sample) comprises 'm cues conditioned to.
reéponse 'Ai ; m' cues conditioned to other responges, and
m" unconditioned cues, then the probability that Ai will

be evoked by this pattern is given by

In other words, axiom C2 hplds, but with each_unéqnditioned cue
contributing "weight" % toward_thg evocation of each of the alternative
responses.

To illustrate these assumptions in operation,-lét ue consider a
gimple classical discriminatibn experiment involving three cues, a ,
- b, and c¢, and two responses, uAl_ and A, . We shall assume that
the pattern ac - is presented on half of the trials, with .Al reinforced,
.and bé on the other half of the trials, with A2 reinforced, the two
;types of trials occurring in random sequence. . We assume further that
conditions are suqh as to ensure. the subject's sampling both cues pre-
sented on each trial. . The possible conditioning states of each pattern
. and the prdbability.of response Al -associated with each may now be._.

- tabulated as follows:
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-él Probability
. Btates - to each Pattern
ac be ac be.
1 2 i 0
1 1 1 1
2 2 0 o
2 1 0 1
0 1 3/4 1
0 2 1/k 0
1 -0 1 - 3/h
2 -0 0 SV
0 o

| ]_./27 | 1/2

vherea 1,2, or O, 'respectively,;in a State column indicates

that the pattern is conditioned to A conditioned to A, , or

l‘,

unconditioned. For each pair of values under States, the associated

Al probabilities, computed according to the modified response rule, are -

1 Prebability° To reduce

algebraic complications, we shall carry out derivatiehe for the specisl

given in the corresponding positions under A

case in which the snbject starts‘the experiment with.both patterns
unconditioned; then, under the conditiens of reinforcement specified
above, only the sfates represented in.the first, eeVenth,.sixth; and.
ninth rows of the teblesfare'available touthelsubject,.and fer bfevity
we shallrnumber these states 3, 2 3 l:, and O.; in the_order Just

ilsted. That ie,
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State 3 = pattérn ac conditioned to Al , and pattern be
conditoned to A,

Staté 2

pattern ac conditioned to Al , and pattern bc

unconditioned,

State 1 = pattern ac unconditioned, and pattern be conditioned
to Ay s

State O = both patterns ac and be are unconditioned.

Now these Btates can be interpreted as the states of a Markov

chain, since the probability of transition from any one of them to any
other on a given trial is independent of the preceding history. The

matrix of probabilities for one-step transiticns among the four states

takes the following form;

1 0 0 0
-'C C .
gt P
Q = ‘ b 1 s (86)
£ 0 l_E (ol
2 2. '
c C .

where the stateé afg ordered 3 , 2,1, 0 from top tp bottom and
;eft té right. Thus,.Stape 3 (ip.vhich ac 1s conditioned to Al s
and be to A, ) is an absorbing state, and the process must termi—
ﬁate iﬁ this state, with asymptotic probability of a correct response

to each pattern egual to unity. In State 2, ac is conditioned to

Al but be is still unconditioned. This state can be. reached only
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from State O, in which both ﬁatterns_are unqonditioned; the probability
of the transitien is % (the probability ﬁhat pattern ac is presented)
times c¢ {the probability that thg‘reinforcing event produces condi-
tioning); thus the entry in the second cell of the bottom row is 3 .
From State 2, the subject can go only to State 3, and this transition
agair has probabiiity % . ‘The other cells are filled In similarly.

Now the probbility, w; ., of being in state 1 -on trial n
can be derivéd quite easily for each state. The subject is assumed to
start the experiment in Staté 0 and has pfdbability‘ ¢ of leaving this
state on each trial, hence

u. = (1

- C)Il-l
0,n =L

For State 1, we can write-a recurdion,

n-=2 c

u . o

o= (LTS (-2 0f ¢ e (20)
- which holds if =n > 2 , For, to be in State 1 on trial n , the
subject must have entered at the end of trial 1 , which has proba-
bility. 57  and then remeined for n-2 trials, which has probability
(1-——2(5)11—2 ; or have entered at the end. of tria?.l. 2 , which has. proba.-
bility (1-c)5 , and then remained for n-3 trials, which has

probability (l-—%)n_5 3 *°* ; or have entered at the end of trial

n-2 <

n-1, which has probability (1- c) 5

« The right hand side of

this recursion can be summed to yield




A. and E. -206-

2(L-c¢

o ¢ n-2 22 (1 - % '
U n = 5(1-c) ) > T e
S coov=0
S n-1 . -
= (- y] -1

B

(1-9" - -t

By an.identical argument, we abtain

CyIl-

- (e ) )t

1

i .
2,n _ - {1-%

2

and then by subtraction

L- Y2.n T %1,n T Yo,n

_ uﬁ;n _

1-2(1-5" 4 (-t L

Froﬁ the tébulation Of ;téte91and fespdnse ﬁrobabilities, we Xnow
that the probability Qf response A, to pattern aé is equal to 1,
1, % , and %., respectively, when the subject is in State 3, 2, 1,
‘or. 0 . Consequently the probability of a correct (Al) .response - t0

.'ac"is obtained simply by summing these response probabilities,IEach

weighted by the state probability, viz
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Pr(.gl,nlac) =g F o PLW ot
=1 -2(1-)" Ty (l.:g)g'; + (l-—E)ﬂrl
o nel 1,0 cwm-l 1,0 n-l
B e - L Gl

S Cn-l
+ 5(1 - C)

=1 - 209w -t (87)

Equation 87 is written for the probability of an A 'response to

1
ac on trial n ; however, the expression for probability of an AE
response t¢ be 1s identical, and céﬁseqﬁently Eg. 87 expresses also
the érobability,‘ P s of a correct responsé€ con any trial, without
regard to the stimulis pattern presented. ‘A simple estimator of'.

thesconditiching: | parameter ¢ i1s now obtainable by summing the error

probability over trials. Letting ‘e dencte the expected total errors

“ - during learning, we have

CAn example—of‘the~sort=of‘prediction.invclving a relatively direect

assessment of transfer effects is'the following: = Suppose the first
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stimulus pattern to appear is ac ; the probability of a correct
response to it is, by hypothesis, % » and if there were no transfer
between patterns, thé probability of a correct response to be when it
first appeargd on a later trial should Ee % alsc. Under the assump-

tions of the mixed model, however, the probability of a correct response

to be , 1if it first appeared on trial 2, should be

1 L1
[1-§(l-c_)-c]+§_i
= —= -5 -

o
A T

if it first appeared on trial 3, should be

i 2 1
.5(1-0) .-!-g _ i E(l E) .
2 _2-2— T2 +

and so on, tending to | after a sufficiently long prior sequence of

=y

.. .ac trials.

Simply by inspection of the transition matrix, we can develop an
interesting prediction concerning behavidr during. the presolution period
of the experiment. By presolution period, we mean the sequence of trials
prior to the last error for any given subject. We know‘that;the subject
cannot be in State 3 on any trial priég £o the last error. On all trials
of the presolution period, probability of a correct response should be
equal either to I% (if no conditioning has occurred) or to % (if

exactly one of the two stimulus patterns has been conditioned to its

correct response). ~Thus the proportion,. which we may denote by - PPSS,
. i
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of correct responses over the presoclution trial sequence should fall

in the interval

ol
1A
PU‘
I A
@+ [

and, in factﬁ'thé éame ﬁouﬁds oﬁtainéd for‘aﬁy'subset of ftrials within
the prgsolution sequence. Clearly predictions from this model c¢concern-
ing presolution responding differ sharply from those derivable from any
‘mddéi %hat éésumes a continuous increasé in Probability of correct |
fespbh&inngﬁring'the'preédlution period; this model also differs,
though.ﬁdt S0 shafply,rfrbm a pure ”insigh." ﬁodel assuming no learniné
on pfesolﬁtién trials. So far as we kﬁdw;'no data relevant to these
differential predictions are available in the literature (though simi;
lar predictions have heen tested in somewhat different situations:
Suppes and Ginsberg, 1968&5 Theics, 1961). Now that the predictions are
in hand, it seems likely thet pertinent analyses will be foffhcoming.
The development in this section was for the case where there were
only three cues a; b and c¢. For the ﬁore general case we could as-
sume that there are Na' cues.assdciaﬁed with stimulus a, Nﬁ with
stimulus Db, and Nc with stimulus c. If we assume, as we have in .
this. section, that experimental conditions are such to ensure the sub-
Ject's sampling all cues presented on each trial, then Eq. 87 may be -

rewritten as
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1 cyn-1 1 n-1
Pr(Al, lac) = 1 - 5(1 + wl)(l - 5) *+ 3 wl(l-c) |
1 cyn=-1 1 n-1
Pr(Ag,n|bc) =1 - §(l + WE)(l - 5) * 3 Wg(l-c)
Nc 1\]c
where LA and LN s Further,
a d b
= L 1
e ="n'§l {5[1-P1~_(A1’.n[g§)] + ~2-[1-Pr(A2,n|bc)]}
1. 1=
iy (1 + 5 W)
where_ W = 5 (Wl + WE)' The parsmeter v is an index of gimilarity be-
tween the stimuli ac and be; as W approaches its maximum value of

1, the number of total errors increases. Further the proportion of
correct responses over- the presolution trial sequence should fall in

either the interval

ol
A
ae

IA

ol
+

=

e
I,......I
1
=
l_l
p—g

cr the interval
1 1 1 .
2 = Pps < R (l-WQ) ?

depending on whether ac or be 1is conditioned first.

6.3 Component Models
So long as the number of stimulus patterns involved in a discrim-
ination experiment is relatively small, an analysis in terms of an

appropriate case of the mixed model can be effected along the lines
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indicated in Sec. 6.2. But the number of cues need become only moder-
ately large in order to generate a number of patterns so grest as to be
unmanageable by these methods. However, if the number of patterns is

large enough so that any particular pattern is unlikely to be sampled
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more than once during an experiment, the emendations of the response
rule presented in Sec. 6.2 can be neglected and the process treated as
a simple extension of the component model of Sec. 5.1 .

Suppose, f'or example, that a classical discrimination involved a
set 5. of cues available oniy on trials when A

1

set 82 of cues available only on trials when A2 1s reinforced, and

1 is relnforced, a

a set .Sc of cues common to Sl and 82 3 further, assume that a constant
fraction of each set presented is sampled by the subject on any trial.

If the two types of trials occur with egual probabilities, and if the
numbers of cues in the various sets are large enough so .that the number

of possible trial samples is larger than the number 5f trials in the
experiment, then we may apply Eq. 53 of Sec. 4.3 to cbtain approximate

expressions for response probabilities. For example, asymptotically

all of the N

1 elements of Sl and half of the Nc elements of Sc

on the average) would be conditioned to response A and therefore
- 1 ?

probability of Al on a trisl when 8, was presented would be predicted

1
by the component model to be

1 2 7e

Pr(Allsl) =

which will, in general, have a value intermediate between and unity.

1
2
Functions for learning curves and other aspects of the data can be de-
rived for various types of discrimination experiments from the assump-

tions of the component model. Numerocus results of this sort have been
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published (Burke and Estes, 1957; Bush and Mosteller, 1951b; Estes,
1958, 196la} Estes, Burke, Atkinson, and Frankmann,1957; Popper, 1959;

Popper and Atkinson, 1958).

6.4 Analysis of a Signal.Déteétion.Experiment

Although thué far we have developea stimulus.sampling ﬁodels only
in connection with simple aésoeiative leérning and discrimination iearn—
ing, it shduld be noted tﬁat such models may have much brba&er areas of
'appliéationp .On cceasilon oné may even see péséibiiities of using the
cbncepts of Stiﬁulus sampling and association to intefpret experimeﬂts
that; by coﬁventional classificafions;.do not.fall within the area of
7 leérning. :Inrthis section Wé examine.such.a case.

” The experiment to be considered fité.one 6f the standéfd pafadigms
aséociatedlwith gtudies of signal detection (See; e;go, Tanner and
Swebs, l95h5 ;Swets, Tanner and:Birdsali, 1661). The subject's task
in ﬁhié experiment, like.that of an obsérver menitoring a.rédar scfeen,

'ié‘to detect the presencé 6f a visual sigﬁal which.may oécufrfrom time
fo.time'in one.of”sevefal poésible loéationé. Problems of interegt in
conﬁection with theories.of signal detection arise when the éigﬁals are
faint enough so that the observer is unable to repoft them with compiete
accuracy on ail océasionsa One empirical.relation fhéf we Woﬁld want
to éccounﬁ fbf, in quantitative defail, is thét betweén,&étection proba-
bilities and the relative frequencies with wﬁich signals oécur in differ-

ent locationgﬁ Another is the iﬁprovement in'detection rate that may
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occur over & series of trials even when the cbserver receives no
knowledge of weswkts: .

A possible way ef accounting for the "practice effect! is suggested
by some rather obvious anelogies between the detection experiment and
the probability learning exﬁeriment considered earlier: We Would ex-

pect that; when the subject ectually deteote a signal (in terme.of
etimhlus sampling theory, samples the corresponding stimulue'element),
he will make the appropriete verbal reportn Further, in the absense of
-anr other information, this detection of the signal may act as a rein-
f0r01ng event, leading to condltlonlng of the verbal report to other
cues in the situation which may have been available for sampllng prior
to the occurrence of the 51gnalq If soj gnd if 51gnals ceeur in -scme
locations more.often_than ln others, then on the basis of the theory
developed ln earlier Sections we should tredict that the subject will
-eome to report the signal in the preferred locatlon more frequently
:than in others on trials when he fails to detect & Slgnal and is forced
to respond to beekground cues. These notions will be made more explicit
ih connecticn with the following analysis of a visual recocgnition exper-
1ment reported by Kinchla (1962). | |

K:anhla employed a forced- ch01ce vieual detection situation
1nvolving a series of over 900 dlscrete trlals for each subJect Two
areas were outllned on a unlformly 1llum1nated mzlk glass screenn Each
.trial began with an auditory signal, -During.the euditory signal one cof

the following events oocurred:
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(1) A fixed increment in radiant intensity occurred in ares 1 -

a _Tl type trial.
(2) A_fixed increment in radiant intensity occurred in area 2 -

a T2 type trial.

- (3} No change in the. radiant character of either signal area

occurred - a TO type trial.

' Subjects were told that a change in illumination would occur in
ocne of the two areés on each triél, Following ﬁhe'auditory signal, the

{subject was required to make either¢an A, or A2 respohse (ice.,

1
select.one of two keys placed ﬁelow the signal areas)”tolindicéte which
areﬁihe believed.haé changed'in brighfnessn Thé subjecf'was given no
.infﬁrmafioﬁ at the eﬁd‘of the triél as to whether or nﬁt his.response
was ;orrebtn Thus, on & given trial oné of three events occurred (Tl 5
'Tg ’ TO ), fhe subject méde either an Al or A2 response, and a
“short time later the néxt trial begén, | |

.For‘a fixed signai-inﬁenSity'the experiﬁentér hgs thé option of
specifying a schedule for presénting the Ti events, Kinchla selected

[

a simple probabilistic procedure in which Pr(Ti n) = &, -and
. 2

El + §2 + §O =1 , . Two groups of subjects were run. For Group I,

£, = &y = ok agd Ep = +2 Fgr Group II, 8, = &g

The purpose of Kindhla‘s study was to determine hov‘these event schedules

= 02 and gg = o6 e

irfluenced the likelihood of correct détebtions¢
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The model that we will use to analyze the experlment combines
'.'two quite distinct processes- a8 simple perceptual process defined
with regard to the signal events -and a learning process associated

'r with background cues.' The stimulus situation is conceptually repre—

:sented in terms of two Sensory elements l. and L ; corresponding
'to the two alternative signals, and a set 8 of elements associated
'.with stimulus features common to all trials.- On every. trial the sub—
Ject is assumed to sample 8 single element from the background set S
1l

_and he mey or may not sample one of the sensory elements. If the s

element is sampled an - A occurs, if is sampled an A2

- %2
‘occurs.: If neither sensory element is sampled the subject makes the
_;Tresponse to which the background element is cOnditioned._ Conditioning
.Ll:of elements in S 'changes from trial to trial via a learnlng process.
| The sampling of sensory elements depends on the trial type ( T

sdé s T ) and is described by a simple probabilistic model. fTh] _
learning process associated with S is assumed to be the multi element

__pattern model presented in Sec. §. Specifically, the assumptions of

the model are embodied in the following statements-

1. If T, (1 =1, 2) occurs, then sensory element s, will be
sampled with probability h (with probability 1~h, neither

=3 nor s

1 , Will be sampled). If T  occurs, then neither

, -0
sl nor 52 will be sampled.
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2.,  Exactly. one element is sampled from S on gvery trial.
Given the set B8 of N elements, the probability of .
sampling a particular element is % N

3. If s (1=1, 2) 1is sampled on trial n , then with
probgbility -c! ~the element sampled from S on the
triai becomes conditionéd to A, at the end of trial n .

i

" If neither &. nor s

1 o is sampled, then with probabil-

ity - ¢ the element sampled from S hecomes conditioned

with equal likelihood to Al or A2 at the end of trial n .

L, If sensory element s, is sampled, then A, will occur.
If neither sensory element is sampled, then the response

to which the sampled element from S8 is conditioned will

OCCUY.

If we let. P, denote the expected proportion of elements in S
conditioned to A, &t the start of trial =n , then (in terms of state-
£l

ments 1 and 4 above)} we can immediately write an expression for the

likelihood of an -Ai response given .a Tj event; namely,

Pr(Al,n'Ir'F-ll;n) =h + (l' h)Pn . (883')
Pr(a, [T, ) =h+ (1-0)(1-p)) | (88b)
, P.'r'(ﬂ;ll.,,_.nlT_O,_n) =Py . (88c)
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The expression for p, can be obtained from statements 2 and 3 by the
same methods ueed throughout Sec. 3 of this chapter and 1s as follows

(for a derivation of this result see Atkinson, 1962a):.

Py 7 Be ~ [_Poo - Pl}[l - %(a&b)]n_l .

<
2

where & = £he' + (1-R)S +ELR S, b =ghe’ +(1-h)5+ goh;.% ,

and p =

o = aibh ° Dividing the numerator and denominator of 2, by ¢

A

V'yielgs the expression

E by + Z(1-n) + £ Z
pm_ } (l'go)(l -h+hy) + E‘O -

(89)

where ==, Thus, the asymptotic expression for 1 does not depend

¢

on the absolute values of ¢! and ¢ but only on their.ratio°

An inspection of Kinchla's data indicates that the curves for
IT(Ai]Tj) are extremely stable over the last 40O or so trials of the
experiment; consequently we shall view this portion of the data as
asymptotic. Table T presents the observed mean values of Pr(Ai[Tj)
for tﬁe‘last 400 trials. The corresponding asymptotic expressions are

. gpecified in terms of Egq. 88 and Eq. 89 and are simply

Insert Table 7 about here

i
i
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Table 7

Predicted and Observed Asymptotic Response Probabilities

for Visuwal Detection Experiment

Grbup I. . Group IT
Observed | Predicted | Observed |Predicted
- Pf(AllTl) 645 645 .558 .565
Pr(AEITe) 643 645 .T30 2k
pr(a]T,) L9k .500 388 .388
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Lim Pr(4; ani 2= h_é (1-n)p, (90e)
n - ? L '

lim Pr(A2 l =h+ (1-h)(1-p) © o (90)
1’1-—)90

lim Pr(Al-nlmo =R, e s {90e)

n—omw

"In order to generate asymptetlc predlctlons we need values for h and
¥ . We first note by 1nspect10n of Eq. 89 that P, % for Group I;

in faet, whenever §l = 52 we have P, ; % » Hence; taking the observed
asymptotic valug’for .Pr(Allil) in_Group T (i.e., .645) and setting
it equal to hl+l(1-h)% yields an estimate of h = ,289 » The back-
ground illumination and the;i;erementiin'redient intensity:are_the same
for both experimental groups and therefore we would require an estimate
of h obtainedrfrom_Group I to he app;icable to Group IT. In order to
estimate 1 , e take the observed aeymptotic value of Pr(AlLTO) in
Group II and set it equal to the right eide of qu 89_with h = ,289 5
51 = go = .2 and &, =.¢6 5 solving for we obtain.'$ ='éh8 .
Using these estimates of h and ¥ and Egs. 89 .and 90 yield the
as&mptotic predictions given in Table 7.

_Qver all the equations give an excellent aecount'of theSe_pa:ticular
response measures. However, a more cruciel test of the ﬁedel ie provided
by an ana;ysie_of the sequential deta, _To inqicate the nature of”the
sequentiallpredictions that can ee obtaiﬁed, conside: the probabiiity
tfiel gi#eﬁ ﬁﬁe-verious triel types aﬁd.

of an A, respongse ona T

1 L

responses that can occur on the preceding trial, i.e.,
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Pr(A |T

1,n+l

l,n+lAi,nTj,n) ’

where i1=1, 2 and j=0, 1, 2 . Explicit expressions for these
gquantities can be derived from the axioms by the same methods used
throughout this chapter. To indicate their form, theoretical expres-

sions for 1lim Pr{(a |T

n -

1,041 l,n+lAi,nTj,n) will be given and,  to
simplify notation, they will be written as Pr(AllTlAiTj) . The

expressions for these quantities are as follows:

(b + (1-n)8lp + (1-p Joy!

P;(Ai['ﬁ:lAlTl) . — » {H- LK - (92)
N el
‘PI_'(AllTlAETz) ) hyp_ + (o 1;{(1-h)a'](l—yo‘,) L —NIL)X (91¢)

"'*'Pr(AllTlﬁng)' _ (;(—lh-)i};m e -Nl)X | (914)
Pe(ay Tya,70) = § ¢ R - (91e)
'Pr(AlITiggTO) - %' + (N—'ng - : - (91f)

where y = c¢'h + (1-c') , 7' =c¢' + (l-chh, d=2h+ (1-3),
c ' ' : } -
81 = 5 h + (1-h)p ) and. YI= h + (1-h)(1-pm) .

1

o
+ ._(‘1.— E)h . bd
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Tt is interesting to note that the asymptotic expressions for

lim Pr(Aijanj’n) depend cnly on h and v , whereas the guantities
in Eg. 91 are functions of all four pargmeters N, ¢, ¢' and h .
Comparable sets of equations can be written for Pr(A2|I2AiTj) and
Pr(AliTOAiTj) .

| The expressions in Eq. 91 are rather formidable, but numerical pre-
dictions can be easily caldulated onee vﬁlues for the éarameters have
been cobtained. Further, independently of the parameter values, certain
- relations among the seguential prcbabilities can be specified. As an
example of such a relation, it can be shown that Pr(AilTlAlTO) >
Pr(AliTlAETO) for any stimulus schedule and any sgt of parameter values.

To see this, simply subtract Eq. 91f "from Eq. 9le and note that & > &' .

Insert Table 8 ahout here

In Table 8 the observed values for .Pr(AiITjAkTﬂ) are presented as
reported by Kinchla. HRstimates of these conditional probabilities were
computed for individual subjects using the data over the last 400 trials;
theavarages of these individual estimates are the guantities given in
the table. Each entry.is based on Eﬁ subjects.
| Tn order to generate theoretical prediciions for the cbserved
entrieg in Table 8 values for N, ¢, ¢' and h are needed. Of course,
estimétes of h and V¥ = %ﬁ glready hgve been made for this set of
data, and therefore it is only necessary to estimate N and either c

or c¢' . We obtain our estimstes of N and c by a least squares
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Teble 8

Predicted and Observed Asymptotic Segquential Response

Probabilities in Visuai Detection Experiment

, 'Group.I Group II
Obser}ed Predicted | Observed Predicted
PT(A2|T2AiTi) 57 .58 .59 ;6h.
Pr(AElTéAéTl) .65 .69 .70 .76
Pr(a, | T,A,T,) .71 7L 79 17
Pr(A,|T,A T,) 61 .59 .69 .66
Cpr(a,lTA T ) .5 .59 68 .66
Pr(A2|T2A2To) 66 ;70 AT (.
: Pr(Al]TlAlTl)' VT3 el 70 .65
.Pr(Al|TlA2le 62 59 59 52
- Pr(AllTlAETQ) : .53 ;58_ -.55 .51
| Pr(AerlAlTe)_ 66 70 By | ek
Pr(AlITlAlTO)_' .72 .70 .61 .63
. Pr(AlITlAafo) 61 .59 18 .52
Pr(AELTOAlml) .38 40 A7 Ao
- Ba(Ay|T AT .56 .58 .59 .66
Pr(AleOAETE) yan .60 67 .68
Pr(A2|TOAlT2) A7 b2 51 .51
-Pr(AE[TOAlTO) .h? W2 .50 .51
'ff(AngOAETO) .60 .58 .65 .66
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A
method; i.e., we select a value of N and e (where c' = cy) 8o that
the sum of squared deviations between the 36 observed values in Table 8

and the corresponding theoretical quantities is minimized. The theoreti-

cal quantities for Pr(AlﬁiﬁﬁiTﬁ) are computed from Eq. 91; theoretical
~expressions for Pr(AleaAiTj) and Pr(AEITOAiTj) have not been pre-

sented here but are of the same general form as those given in Eq. 91.

Using this technique, estimates of the parameters are as follows:

.N = 4.23 ¢! = 1.00
(92)
h = 4289 . c = n557

The predictions corresponding to these parameter values are presented

in Takle 8. When one considers that only four of the possible 56 degrees
of freedom repregented in Table 8 have been utilized in estimating ra-
rameters, the close correspondence between theoretical and observed
quantities may be interpreted as giving considerable support to the
assumptions ofthe. model.

A great deal of research needs to be done to explore the conseguences
of this approach to signal detections. In terms of the experimental pro-
blem considered in this section much progress can be made vis differential
tests amcng alternative formulations of the model. Fbr example, we

postulated a multi-element pattern model to describe the learning pro-

cess assoclated with background stimuli; it would be important to deter- o

mine whether other formulations of the learning process guch as those
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developed in Sec. 5 or those proposed-by Bush ard Mosteller (1955)
would provide as good or even hetter theoretical fits than the ones
displayed in Tables T and 8. Also, it would be valuable to examine
#ariations in the scheme for sampiing senscry elements salong lines
developed by luce {1959} and Restle (1961).

More generally, further development of the theory is required
before one could abtitempt %O deal with the wide range of empirical
phencmena encompassed iﬁ the approach to perception via decision theory
proposed by Swets, Tanner; and Birdsall (1961} and others. Some theo-
retical work has begnrddne by Atkinson{1961b} along the lines cutlined

~in this section to account for the ROC (receiverwpperatingﬁcharacteristic)
curves that are’typically observed in detection studies and to specifly

| the relation between forced-chclce and yéswno experiments. However,
this work is still quite tentative-and an evaluation of the approach
will require extensive.analyses of the detalled sequentisl properties

of psychophysical data.

6g5 Multiﬁlé Process Models

..Analyses-of certain behavioral éituations have proved to require
formulations in terms of two or more distinguishable, though possibly
int-gérdependen’f.; 9 learning'brocesses th_at.proceed s,imultaneously; For
- some situatiéns these sépafate proéesses may be directly obSérvable;
for other situations we may find it advantageous to postulate processes
that are uncbservable buﬁ which detefmine in some well-defined fashion

the sequence of obsarvable_behaviorsb
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For exzmple, in Restle's (1955) treatment of discrimination
learning it is assumed that irrelevant stimuli mmy become "adapted"
over a period of time and thus . bhe - rendered nonfunctional. BSuch an

analysig entalls.. a.. two-process system. Onre process has to do with

the conditioning of stimuli to responses, whereas the other process

presceribes both the conditions under which cues become irrelevant and

the rate at which adaptation occurs.

Another application of multiple process models arises with regard
to discrimination problems in which éither a covert or a directly ob-
servable ofienting'response is required. One process might describe
how the stimuli presented to the subject become conditioned to discrim-
inative'respoﬁses° Another process might specify the acquisition and
extinction of various orienting responges; these orienting responSeé
would determine the specific subset of the environment that the subject
would percelive on a given trial. For models dealing with this type of

“problem see Atkinson (1958), Bower (1959), and Wyckoff (1952).

As another example, consider a t%o—procéss scheme developed by
Atkinson (1960) to account for certain types of discrimination behavior. B
This model makes use of the disfinction, developed in Secs. 3 and 4 of
the present chapter, befween component models and pattern models and
suggésts.that the subject may (at any‘instant in time) perceive the

stimulus situation either as a unit pattern or as a collection of

i
H
i
i
i
i
i
i
i
i

individual components. Thus, .two perceptual states are defined; one

in Which the subject responds to the pattern of stimulation and one in
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which he responds to the separate components of the situation. Two
learniﬁgrpfocééses are alsé'defined. One'procesé'Speéifies how the -
patterns ahd‘cbmpohents”becomé conditioned td.fespbnses;'énd the second
' process.describes the conditions under which the subject-shifts from
one percegtual state to-another. The control of the second process is
'governed by the reinforcing schedule,:the subject's sequence of responses,
and by similarity of the discriminanda. Iﬁ this model nelther the condi-
tioning states nor the perceptual states are ocbservable; nevértheless,
~the behavior of the subject is rigorously defined in terms of these
-hypothetiéal'stéﬁés..

Models of the sort described above are generally difficult to work
with mathematically and consequently have .had only limitéd'deVélopment
and analysis. It is for this reason that we select a-particularly
éimple ekample ﬁo illustrate the type of formulation that is possible.
The éXamplé desls with a discrimination learning task investigated by
Atkinson {1961a) in which cbserving responses are categorized and di-

rectly measured.
The experimental situation consists of a sequence of discrete

trials. Each trial 1s specified in terms of the following classifications:

e

Trial type. Bach trial is either a 'I'l or a T2 . The

lJ
trial-type 1s set by the'experimenter and determinesrig

ﬁart:the stimulus event occurring on the trial.
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Rl, RQ: Observing responses. On each trial, the subject makes
either an Rl or R2° The particular observing response
determines in part the stimulus event for that trial.

B1s Sy sg: otimulus events. Following the cobserving response, one

and only one of these stimulus events (discriminative cues)

occurs. On & - Tl trial either, 8, Or sy can occurj on
15

a T2 trigl either 52 or Sb ¢can occur.

15

The subscript b has been used to denote the stimulus event that

may cccur on both- T. and T, +trizls; the subscripts 1 and 2 denote

L e
stimulus events unigue to Tl and T2 trials, respectively.
Al’ AE: Discriminative responses. On each trial the subject makes

either an Al or A response to the presentation of a

2

stimulus event.

0,5 O, Trial outcome. Each trial is terminated with the occurrence

of one of these events. An Ol indicates that Al was

the correct response for that trial, and 02 indicates

that A2 was correct.

The sequence of events on a trial is as follows: (1) The ready

slignal occurs and the subject responds with Rl or RB, (2) Following

1> 8, or s 1is presented. (3) To the onset

of the stimulus event the subject responds with either A or A (&)

the observing response s

The trial terminates with either an Ol or O2 event.
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To keep the analysis simple we consider an experimenter controlled
1 trial, either an Ol— occurs with
with probability 1 -«

reinforcement schedule. OCn e .T

probabllity = or an 0 ona T, trial

13
with probability l-x

1’ 2 2

an ;Ol occurs W1th probabl}lty_ ;2, | 5 ot

The T type trial occurs with probability B and TE- with probability

or an O

1
1 - B._ Thus a Tl - Ol combination oc¢curs with probability 5ﬂl;_ a

T, - O, with probability g(1 - m;); and so on.

- The particular stimulus event 8, (1 = L, 2, b) that the experi-

and

menter presents on any trisl depends on the trial type ('1__"l or T2)

the subject's observing'response (Rl_ or R2)‘ Specifically:

”(i)"If.an-'Rl is made then

(a) with probsbility a the sl' event occurs on &
Tl trial and the 52 event on a -Té .triel.

(b) with probability 1 - the s,_ event occurs,

B
regardless of the trial type.

(ii) " If -an RE"isrmade then

“(a) with probability o the gb'

fegardlees of the trial tyﬁe;

event occurs,

(b) with probability 1 - & the s, event occurs on

1
a le‘ trial and sazuen e: T2 ﬁr;elf
To clerify this procedure, consider the case where O = 1, x, = 1,
and m, = 0: ‘If the subject is to be torrect on eﬁer§ trial, he must

2
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meke an Al on a Tl type trlgl and en A2 on a T2 type trial.
However, the subject can only asCertain the trial type by making the

1
idéntify the trial type, for the occurrence of R, always leads to the

appropriate observing response. That is, R, must be made in order to

presentatibn of s regardless of the frial type. Heﬁce, fbr'perfect

b
respbnding the subject-ﬁust make Rl .With probability 1 and then

nake Al to ;1 or A2 td Sy » The purpdSe of the Atkinson study

was to detefmine how‘variations.in ﬂi ’ ﬁe snd O would affect both
tﬁe observing responses and the discriminaﬁive responses.

Cur analysis of this e#périmentai procedufe will be based on the
axioms presented in Secs. 2 and 3, However, in order to apply the theory
we must first_identify the stimnlus_and reinforeing events.in terms of
the experimental operations. The iddentification we offer seems quite
natural to us and is in accord with the formulations given in Sees. 2
and 3. |

We assume that associated With.the ready signal is & set SR of

pattern elements. ZEach element in 8 is conditioned to either the

R

Rl or the RE obsgrving response; there are N' such elements. At

the start of each trial (i.e., with the onset of the ready signal) an
element is sampled from SR and the subject makes the response to which
the element is bonditioned.

Associated with each stimulus event s, (1=1, 2, b) is a set Sy

of pattern elements; elements in Si are conditioned to either the Al

or the A2 discrimination response. .There are N such elements in each
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set 8, and; for simplicity,.wé assume ‘the sets are pairwise disjoint.
When the stimulus event eh occurs one eleménﬁ is randomly sampled from
Si and the subject mades the discriminaﬁive fespdnse to which the.ele—
ment is conditioned.

Thus, we have two types of learning processes; one defined on the
set S and the other defined on the sets S, 8, and S,. Once the
_reinforcing'eVents have been specified fof theée processes.we can apply
our axioms. The interpretation of reinfofcement for the discrimination
fesponsé process is identical to that'given in Sec. 3. 'If a pattern
element is sample from set Si for 1 =1, 2, b '&ﬂd*fbllbwed by an
0, (i =1, 2) outcome, then With probsbility ¢ the element becomes
condtioned to Aj and with probébility 1 - ¢ the conditioning state
of the sampled element remains unchanged,

The conditicning process for the 8 set is somewhat more complex

R

in that the reinforcing events for the observing responses are assumed
to be subject-contrelled. Specificglly, if an element conditioned to

Ri is sampled from SR and followed by either an Alol or A202

event, then the element will remain conditioned to Ri; however, if

AlO2 or A201 oceurs, then with probability ¢' the element will

become conditioned to the other observing response. Othérwise stated,

if an element from SR elicits an observing response ihat gselects a

stimulus event and, in turn, the stimulus event elicits a correct dis-

crimination response (i.e., Alol or AEOE)’ then the sampled element




A. and E. -228-

'.Iwiil_femain_qondiﬁioned to that_quexving response. 'HOWEQGr; ifftﬁg _.'
dbéér?ing response selects a stimulus event #haf givés riséutb'an iqé ;”
'_'éérrect discriminatigq_response‘(i;e.;. Alcb. or A,0;) , then tbére
will be a decrement in the tendency to repeat_that Qbserving response
.on the_nexﬁ trial. ‘ o

| Given_the above identification of events we caﬁ‘now geﬁerate &
‘mathematical model for the experiment. _Io-éim§;ifﬁ ﬁhe”énalygis we Let
Nf_;.N = 1.; nam;ly, we assume that there is one élement_in eachHgf“our
stimulus sets_and cOnsequently the sipgle:e;eﬁent is sampled ﬁith proba-
bilityul whénever'the set is afailable. With_this réstriction we may
&escribe the conditioning stgté éf a subject, at the start of each tfial,

by.' an ordered four tuple < ijk£> where

(1) the first member i is 1 or 2 and indicetes whether the

single'elemeﬁt of 'SR iz conditicned to Ri or R2 5

(2) +the second member j is.ll or .2 and indicates whether the

single.element of Sl is conditioned to Al or AE H

(3) the third member k is 1 or 2 and indicates whether the

element of Sb is conditioned to Al or A2 H

(4) - the fourth member. £ is 1 or 2. and indicates whether the

element of 82 ~is conditioned to Al .or AE

Thus,.if the subject is in state < ijkf > he will meke the Ri

observing response; then, to s s or s he will make discrimi-

1’ v 2?

respectively.

native response Aj’ Ak .or Ag’
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From our assumptions it followe that the sequence of random variables

that take the subject states < 1 jk £> as values is a 16 state Markov

chain. Figure 10 displays the possible transitions that can occur when

Insert Figure 10 about here

the subject is in state < 1122 > on trial n . To clarify this tree,

let us trace ocut the top branch. An R, is elicited with probability 1

1
and with probability ﬁﬂl a Tl trial with an Ci outcome occurs; %
further;, given an Rl response on. & T1 trial there ig probability O
that the Sl stimulus event occurs; the onset of the Sl event elicits

a correct response and hence no change occurs in the conditioning state
of any of the stimulus patterns. Now consider the next set of branches:

an Rl occurs and we have a Tlol trial; with probability 1-0 the

Sb stimulus is presented and an A2 occursy the ..A2 response is in-

correct (in that it is followed by an Ol

. bility ¢ the element of set Sb becomes conditioned to A, and

event)}, hence with proba-

1

with independent probability c¢' the element of set SR becones
conditioned to the alternative.observing response, namely R2 o

From this tree we obtéin probabllities corresponding to the <« 11220 >
row in the transition matrix. For example, the probability of going
from < 1122 > to < 2112 > is simply Bnl(l-a)ccf + (l— B)ﬂe(l-a)cc’ 3
that 1s, the sum over branches 2 and 15. An inspection of the transition
matrix ylelds some important results. For example, if @ =1, T, = 1,
and. Ty = C then states < 1112 > and < 1122 > are absorbing and
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Fig. 10. Branching process, starting in Sta£e<<1122>¥, for a single
trial in the two-process discrimination learning model.
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hence in the ;1m1t -Pr(R ‘)t:l s Pr(AlJanl’n) =1., and Pr(A2 [ ) 1.

As before; let u(n) denote the probability of being in state

k4
(n)

< ij'k;,8> on trial n:; when the limit exdists let u..,, = lim U‘ijkﬁ"

1jk2
Experimentally, we shall be interested in evaluating thé‘following

theofetical_predictions:

) . (n) (ﬁ) (n) (n)

Pr(Ry ) = upyqp *Wigp * 1121 T Y1122
Jm) L (m) (n) (n) . |
oyt Upin t Wipo oo (9%2)
on) (n) oin) (n)
Friag 1T n) = a3y +uip *ainy Uit

ol it -l + ol

e fg) vulgl v off) o éiég )

| P?(Al,nITE,n) iiil * £§gl * uéiil * uégil

.,f-a[uiﬁgl + uiggl * “é?%e * uéeizl

09 il ol ol o olgh o

Pr(Ry (M 4y ) = iiil o u§§%l (1= a)u(n)

L oru(n) )

T3 Mo 1951 ]

o (l' a) [y * oo 0 S (o)
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._Pr.(Rz,nn A g) = uéﬂ B @ u2212 * (l O‘)uggl -

309 (43 + ]

* - 30 -2, - uigh) (93¢)

1 ~response. The

second and third equations give the probability df an Al response on

 The first equation gives the probability of an R

_Tl and T2 trig;s, respectively.__Finally, the'last two equatibns_  
present the probability of the joint;occurrence of each observing

-response with an _A-

| response.

In the experiment reported by Atkinson (196la) six groups were run
with 40 subjects in each group. For all groups 7, = -9 and B = .5
‘The groups differed with respect to the value of @ . and ﬂe. For

Groups I~IIL, the value of & = 1; and for Groups IV-VI, & = .75. For

Groups 1 and IV, Ty = -9; for II and V, T, = .5; and for Groups III
and VI, T = .1. The design can be described by the following array:
T2
'9 '5 pl
Lo I I IT - IIT
o
15 v v VI

Given these values of = 52 @ and B our 16 state Markov

1"

) (n) |
chain is irreducible and aperiodic, $hgs? lim uijkﬂ ijkﬂ exists




A. and E. -232-

and can be cbtained by solving the appropriate set of 16 linear equations
(see Eq. 16). The values predicted by the model are given in Table 9

for the case where c = c'. Values for the uijkﬂ's were computed

Insert Table 9 about here

ﬁnd then combined by Eq. 93 fo predict the response probabilities. By
:ﬁrésenting.é single valﬁe for_éach theoretical.qﬁantitﬁ.in thé tabie we
imply'ﬁhat these predictions are.indeﬁendent of ¢ ahd et . TAdtuai}y
this is nbt_always £hé case. However, f&r_the.Scheduies.empioyed:in'
this expériment'the debendency of théSé'asymptotic predictions on ¢ and
:_é'_ is virtually négligiblé. For c_=-cf  raﬁging'dvér fhé3inﬁerval
rfrcm '.0001' to 1.0 tﬁe pfédictedjvéiueé givéﬁ iﬁ Tabié:9.aré éffected
in only the third-br fourth decimal placé;.it'is'for this reason fhﬁt )
.we_present theoretical values to only two decimal placeé.

In view of these comments i£ should be clear that the predictions
iﬁ Table.9 are_baSed'solely.on the experimental parameter values .
Consequently, differences between subjects (that may be represenfed by
intersubject variability in ¢ and c¢') do not substantially affect

these predictions.




A. and B. -232a-

Tabie 9

- Predicted and Observed Asymptotic Response Probabilities

-in Qbserving Response Experiment

- Q@roup I - Group II_‘.. - Group  ITL ..
Pred. | obs.| b |pPrea. Obs. sp lpPrea. ovs.| sp
Pr(adT) | w90 | .94 | .onk} BLY .85} .16k .79 .79 1.158
Pr(a|Ty) | .90 jo.9h foak | 59| 61} .13k .21| .23 .82
~ Pr(R)) - | .50.) .b5 1279 .55 .59f .279 | 731 .70 .285
er(RyMA) | b5 kT | 29| | m 2% | 13| .16 | .161
Group IV Group V Group'VI:
Pred. Obs.. SD | Pred.| Obs. SD { Pred.] Cbs. SD
CoPe(alm) | .90} .93 | .063 ,8(5 g | | o3| a3 |8
) Pr.(AlIT'E) 90| .95 | .OLk 601 68t | 27 '.'2:5 '_.138 '
_lffr_(_Rl-) A9 | .s0 | a7 52 ] w53 L3055 ] 63 .72 | .265
CEr(R (VA | | b7 | 2| s | o8| 229 | | 36 |38
Pr(R, (&) | 46 | b7 | 247 | 3h] .36 2| 9| .13 |.168
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In-the.Atkinsoﬁ'study 400 trials were run and the response propor-

tions appear fo havé reached & fairly stable leVel'oVer the last half
‘of the experiment. Consequently, the proportions computed over the
final block of 16Q trials were used as estimgtes of asymptotic quantities,
Table 9 presents the mean and standard aeviation of the.hb obserﬁed pfo-
.ﬁbftionshdbtained ﬁnder each éxperimental condition. As can be seen,
-the agreement between theoretical and observed guantities is fairly good.

| Déspite the fact that these gross asymptotié prediétions hold up
zquite Wéll,.it is. obvious that'soﬁe 6f‘the predictions from the model
will not be cénfirmed. The difficulty with the one-element assumption
is that the fundamental theory laid down by the'éxioms of Bec. 3 is
=éomp}.etely deterministic in many respects. For example; when N'' =1
ﬁe have | |

Pr(R

_ 1,n+llol,nAl,an}n) =1

namely4 if an 'Rl_ occurs on trial.'n 'dnd iS'reinforced (i.e., followed

by an A, 0. event) then R

197 Will'reoccur_with pfobébility 1 on trial

1
“n+l . This prediction, of coursé, is a'conéequgnbe of:the assumptiqn
thét we have.but On¢ elem¢nt in set SR_ whi¢h necessarily is sam@led

on every trial. If ﬁe assume more than one element, the détérministié
féatures of fhe_mpdel.nO'longer.hold aﬁd such Sequenfial statistics
becomé functions of ¢, e¢' , N and N' . Unfortunateiy, for-eléboréte

experimental. procedures of the sort described in this section, the multi-

glement case leads to complicated mathematical processes for which it is
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extremely difficult to carry out computations. Thus, the generality
of the multi-element assumption may often be offset.by the difficulty
involved in making predictions.

Naturally it is usually preferable to choose from the availlable
models the one that best fits the data, but in the present state of
psychological knowledge no single‘mndel is clearly superior to all others
in every facet of analysis. The one-element assumption, despite some of
its erroneous features, may prove to be a valuable instrument for the
rapid explotation of a wide variety of complex phenomena. For most of
the cases we have examined, the predicted mean response probabilities
are usually independent/?ir,only slightly dependent on) the number of
- eiemenﬁs assumed. Thus the one-element assumption may be viewed as a
simple device for computing the grosser predictions of the general theory.

For exploratory weork in complex situations, then, we recommend using
the one-element model because of the greater difficulty of computations
for the multi-element models. In advocating this approach we are taking
8 methodological position with which some scientists do not agree. Ouf
position is in contrast to one which asserts that a model should be dis-
carded once it is clear that certain of its prediciions are in error.

We do not take it to be the principal goal (or efen, in many cases; an
important goal) of theory construction to provide models for particular
experimental situaticns. The assumptions of stimulus sampling theory
éfe intended to deseribe processes or reistionships that are common to a

wide variety of learning situations, but with no implication that behavior .
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in these situations is a function solely of the variables represented in
the theory. As we have attempted to illustrate by means of numerous
examples, formulation of a model within this framework for a particular
experiment is a matter of selecting the relevant assgmptidﬁs, or axioms,
of the éeneral theory and interpreting these in terms of the conditions
of the experiment. How much of the variance in a set of data can be
accounted for by a model debends jointl&:on the adequacy of the theoret-
ical assumptions and on the extent to which it has beén possible to
realize experimentally the boundary conditions envisaged in the theory
thereby minimizing ﬁhe effects of variablés not represented. In our
view, & model, in application to a given experiment, is not to be
classified as "correet” or "incorrect"; rather, the degree to which it
accounts for the data may pfovide evidence tending either to support or

to cast doubt on the theory from which the particular'model was derived.
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