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Abstract

A model for choice behavior under payoff is presented.
Predictions of choice probabilities are evaluated for
several experiments involving different event probabil­
ities and payoff levels, two and three choices, and con­
tingent and noncontingent reinforcement. An extension
of the model to the prediction of response time is also
considered.
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A growing body of data, from both animal and~uman experimentation,

reflects the importance of magnitude of reinforcement in choice behavior.

In this paper, we attempt a quantitative description of the role of this

variable. The model under consideration was originally proposed by

Atkinson (1962), who showed that it was applicable to both contingent

and noncontingent reinforcement, and to any number of response alterna­

tives. We have extended this work by deriving predictions of response

times, and of conditional statistics that were not previously presented.

We have also considered ways of formulating the model to yield predic­

tions for more general reward-punishment combinations than those pre­

viously considered. In addition, the observed and predicted values of

a number of measures obtained from several different experiments are

displayed in this paper. We hope that the data presented will provide

an impetus to the development of alternative models, and that the

description of the data by our model will provide a criterion against

which to judge other models.

The model that we will consider assumes a population of stimulus

elements, each of which is conditioned to one and only one response.

It is further assumed that a single element is randomly sampled from the

stimulus population on each trial, and that the subject's response de­

pends upon the state of conditioning of the sampled element. These



assumptions are common to other stimulus sampling models (Atkinson and

Estes, 1963); however the present model differs from its predecessors

for it is assumed that an element may be at one of two stages of condi-

tioning, either weakly or strongly conditioned to a response. This

modification of stimulus sampling theory provides the basis for a

fairly general analysis of reinforcement variables.

Consider an experiment in which on each trial the subject must

select one of r mutually exclusive and exhaustive responses

(Al, ••• ,A., .•• ,A). The i th response corresponds to the prediction
1 r

of the i th member of a set of r mutually exclusive and exhaustive

events (El, ••• ,Ei, •.• ,Er ). Associated with each response-event

combination is some outcome such as the gain or loss of an amount of

money. In the experiments that we examine the r X r set of outcomes

is constant over trials. We will first consider axioms for the special

case in which each A. - E. combination is followed by the same gain,
1 1

and all other response-event combinations are followed by the same loss.

This situation may be represented by the following payoff matrix

E
l E. E

1 r

Al w -x -x

A. -x w -x
1

A -x -x w
r
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where w is the gain associated with a correct prediction, and x is

the loss associated with an incorrect prediction. We shall henceforth

refer to this case as the symmetric payoff condition. We will later

consider modifications of the axioms appropriate to the more general

nonsymmetric .case in which the amount of gain or loss varies as a func-

tion of the particular response-event combinations.

Stimulus Axiom. The stimulus situation associated with the onset of

each trial is represented by a set of N stimulus elements. On each

trial exactly one element is randomly sampled from this set.

Conditioning-State Axiom. On every trial each stimulus element is

conditioned to exactly One response; furthermore, the element is either

strongly or weakly conditioned to that response. (The strong condition-

ing state for the Ai response is denoted by S., the weak state by Wo .)

l l

Response~. If the sampled element is conditioned to the Ai

response (either weakly or strongly) then that response will occur with

probability 1.

Conditioning Axioms.

Cl. Stimulus elements that are not sampled on a trial do not change

their conditioning state.

C2. If event E
i

occurs, then (a) if the sampled element is strongly

conditioned to the .A
i

response it reamins so and (b) if the sampled

element is weakly conditioned to the Ai response there is a probability

~ that it becomes strongly conditioned.

C3. If event E
j

occurs (i f j), then (a) if the sampled element is

strongly conditioned to the Ai response there is a probability Q

3



that it becomes weakly conditioned to Ai and (b) if the sampled

element is weakly conditioned to the A. response there is a probability
~

(; that it becomes weakly conditioned to the A. response.
J

Figure 1 illustrates the transitions that are possible under the

conditions of Axioms C2 and C3 for the two-response case. Note that

an element can transit only to a directly adjoining conditioning state.

El:l-fl El:l-(;

El:fl El:O

E2 :o E2 :O E2 : fl

E2 :l-o E2 :l-o E2 :l-fl
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Mathematical Development

AsymptotiC choice proportions in the two-response case.

We begin by considering the two-response case in which the matrix

of outcomes is symmetric. The event probabilities are specified by ni ,

the probability of event El on trial n, given that response Ai

was made on that trial. Thus

(1)
l-n

l
~ P(E2 [Al )

,n ,n

n2 ~ P(E
l

IA2 )
,n ,n

l-n2 ~ P(E2 IA2 )
_ ,n ,n

Now assume that the kth element is sampled on some trial n.

The tree diagrams of .Fig. 2 illustrate how the conditioning states of

that element may change. For example, suppose that the sampled element

is in state Sl. By the Response Axiom, the subject will make an Al

response, which will be reinforced with probability nl and not rein­

forced with probability l-n
l

• By Axiom C2, if the response is rein­

forced, the conditioning state will not change. If the response is

not reinforced then (by Axiom C3) with probability 5 the condition-

ing state becomes W
l

• Similar applications oftlie axioms permit us

to completely specify the possible ways in which each conditioning

state may change.

We will denote the subsequence of trials on which the kth

stimulus element is sampled by,\:o We next define a random variable

associated with the kth element that takes the conditioning states

Sl' Wl , W2, and S2 as its values. It can be shown that over the

subsequence of trials, '\:' the random variable forms a Markov chain.

5



From Fig. 2, we may derive the following transition matrix for the Markov

chain.

Figure 2. Transitions among conditioning states for the subset of trials
on which an element is sampled.
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81
W

l
W2 82

81 1-5(1-"1) 5(1-"1) 0 0

Wl 11"1 1->L"1-5(1-"1) 5(1-"1) 0

(2)
W2 0 5"2 1-5"2-11 (1-lr2 ) 11(1-"2)

82
0 0 5lr

2 1-5"2

For simplicity the states will be numbered as follows: 1 = 8
1

,

2 = wl ' 3 = W and 4 = 52 0 Next, consider the quantity (k,m)
the2 Pij ,

probability of the kth element being in state j on the mth trial

of subsequence ~, given that on trial 1 the element was in state i.

Since the four-state Markov chain defined by Eqo 2 is irreducible and

aperiodic, the quantity uj exists, where

u = lim. p~~)
j m--;oo lJ

The u. I s may be computed by
J

where

,

,

2
D3 = (l-lrl ) "2 ~ ,

2
= (1-"2) (1-"1) ,

Atkinson (1962) has shown that at asymptote, the probability of

an A
l

response for the complete N-element process is a simple func-

tion of the Specifically,

7



(6 ) lim
n--700

P(A
I

)
,n

Note that the expression is independent of N, the number of stimulus

elements. Henceforth, to simplify notation the trial subscripts will

be omitted when asymptotic expressions are referred to; i.e.,

lim P(AI ) = P(A
l

) .
n---7CO ,n

Experiments in which noncontingent reinforcement is employed are

frequently encountered; reinforcement is said to be noncontingent if

the occurrence of an Ei event on trial n is independent of the

response made on that trial. In such instances rrl = rr2 = rr, and Eq, 6

simplifies to

(7)

(8) 0<1) < 1 ,

then P(Al ) is a monotonically decreasing function of ~ and has the

bounds

(9)

8



If ~ equals 0, then the transition matrix for each element is

reduced to two states, WI and W2 • In this case we have a one-stag~,

N-element model with a single conditioning Parameter 0, and the limit

of P(Al,n) is rt. This special case of our model is precisely that

described by Estes (1959) as the "pattern" model. The more general

formulation presented in this paper has the advantage over the pattern

model of being able to account for observed values of P(Al ) greater

than rt. Such values are generally obtained in choice experiments

involving animals, choice experiments involving human subjects playing

for monetary payoffs, and frequently in human choice experiments not

involving payoff when run for several hundred trials.

When 0 equals ~ then

(10)
2

rt

This last result is of special interest, since it 'is predicted by the

"scanning" model developed by Estes (1962), and has been shown to give a

fairly good account of several sets of data obtained in monetary pay-

off experiments.

Sequential statistics for the noncontingent two-response ~.

Statistics that reflect the sequences of responses and events are

of special interest. Such statistics may discriminate among models

when the statistic P(Al ) does not; furthermore, for our model they

provide a basis for the estimation of the full array of parameters.

In this paper, we will apply the model to first-order conditional

probabilities of the form

9



and, when the number of observations permits, to second-order conditional

probabilities of the form

ptA. IE. A E A )
l,n+l J,n k,n £,n-l m,n-l

,

for i, j, k, £, m, = 1,2. The presentation will be restricted to

asymptotic predictions for the noncontingent two-response case, though

extensions to more complex situations and to preasymptotic data can be

obtained. In referring to the asymptotic statistics, we will drop the

trial subscripts with the order in time from right to left being under-

stood; thus

(11) lim
n~co

ptA. +lIE. Ak ) = P(Al· IEJ.A )l.,n J,n ,n -It

lim
n~oo

PtA. IE. A E . A )l,n+l J,n k,n £,n-l ffi,n-l

The derivation of these statistics is lengthy and will not be presented

here. However, the general approach is developed in several sources,

notably Suppes and Atkinson (1960) and Atkinson and Estes (1963).

The first-order conditional probabilities are as follows:

P(AlIE1Al) = N;l (ul + u2 ) +1:
N

P(A1 IE2Al ) N-l (ul + u2 ) 1 u
l

+ u2 (1-c)
=-- +- [ u + U ] ,

N N
(12)

1 2

P(A1 IE1A2 ) N-l (u
l

+ u2 ) +1:
u

3
c

=-- ( )
N N u

l
+ u2

P(Al !E2A2 ) N-l (u
l

+ u2 )=T ,
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where u, is defined by Eq. 4. The next set of equations are representative
1

of the second-order conditional probabilities. (The complete set .of

equations appear in Appendix A.)

l+(N-l) (u
l

+u2 ) [3+(N-2) (ul +u2 )]

N(N-l) (ul +U2 )+1]

(u
3

+u4) [1+(N-3) (ul +u2 )]+u
3

N(u
3
+u4)

,

(13)

(Ul +U2 ) - u25(1-~)+(N-l)(ul+u2)((ul+u2)[3+(N-2)(ul+u2)]-u25)

N[ (N-l)(U
l

+u2 )+l]

1+(N-2) (u
3
+u4).

= N

Note that predictions of peAl) depend only on estimates ofcp; .

the predictions of the conditional statistics require 'estimates of N,

5, ~.

Estimation of parameters _an_d ,:::e.:..va;:;;l;:;;u::;:a::.:t;.::l.:::o;::n.

The estimates of N, 5, and 11 that we shall use to make predictions

for the first-order conditional probabilities are those that yield a

minimum value for the function

(14)

A 2
njk[p(AiIEj~) - P(AiIEj~)]

P(Ai IElk)

11



In this equation P(A. IE.A) is the observed asymptotic conditional
J. Jk

probability, P(A. IE.A) is a predicted conditional probability based
J. J"K

observed number of

is the1.1 and 5, and njk

EjA
k

occurrences, i.e., the denominator of the

and is a function of N,on Eq. 12,

observed conditional probabilities. The minimum X2 estimates cannot

be obtained analytically; however, a high-speed computer can be used to

scan a grid of possible values, until estimates of N, ~ and 5 are

obtained that minimize X
2

to the desired degree of accuracy.

If the theory postulated that the probability distribution on trial

n .depends only upon the responses and reinforcing events of trial n-l,

then the statistic described by Eq. 14 would indeed be distributed as

2
X (Anderson and Goodman, 1957). Under these conditions the statistic

would serve as a rigorous test of the ability of the model to describe

the conditional sequential data. Furthermore, the estimates of the

parameters would have several desirable properties common to minimum

X
2

estimates. Such estimates are consistent (as the sample size in-

creases the estimates converge stochastically to the parameter) and

asymptotically efficient (as the sample size increases, the variance of

the estimates approaches the miniFal variance attainable for any consistent

estimate of the parameter , and the distribution of the estimate approaches

the normal distribution). In the model that we have proposed, the dis-

tribution on trial n in fact depends upon the responses and reinforce-

ment events of all preceding trials. Therefore, the statistic defined

by Eq. 14 is only approximately X
2
-distributed. Its validity as a test

of goodness-of-fit is not absolute, and we cannot be certain of the

properties of our estimates. However, this "pseudo_X
2

" is useful as a

12



rough index of the fit of the model, and as a means of discriminating

among alternative models. Furthermore, the proximity.to the X2 dis-

tribution improves rapidly as the number of trial outcomes upon which

we are conditioning increases. With the above qualifications in mind,

we,will continue to refer to the statistic of Eq. 14, and to similar

statistics, as In assessing the significance level of the of

Eq. 14, we shall assume that it is distributed. on one degree of freedom

(df) when based on the data of a single experimental group. There are

initially 8 df, one for each observed conditional probability. However,

only four of these observations are independently distributed since

P(A1IEj~)+P(A2IEj~) = 1. An additional degree of freedom is then

subtracted for each parameter estimate, leaving 1 df.

The minimum X2
procedure may also be used to obtain parameter

estimates from the second-order conditional data. In this case, it is

necessary to obtain the set of estimates that minimize

(15) x2
= 1:

i,j,k,£,m

njk£m [P(Ai IElkEl'm) - P(Ai IEj~El'm) ]2

P(A.[E.AkEA )
l J .rm

Here njk£m is the observed number. of Ej~El'm occurrences. As a

test of the data from a single experimental group this X
2

would be

distributed on 13 df; i.8 0' there are initially 2 x 2 X2 x 2 = 16

degrees of freedom but three parameters are estimated from the data

and X
2

is therefore interpreted with 16-3 = 13 df.

13



Data Analyses in~ Two-Response Case

Su:gpes ~ Atkinson study.

Suppes and Atkinson (1960, ch. 10) ran 3 groups of 30 subjects each

for 240 trials in a noncontingent two-choice situation. The groups dif-

fered with respect to the amount of payoff. Group Z had no monetary

gains or losses; Group F gained 51 for each correct response and lost 51

for each incorrect response; and Group T gained or lost lOr/.. The values

of n was .6 for all groups. Table 1 contains predicted and observed

values of P(Al ) and of the first-order conditional probabilities, the

minimum X
2

estimates of N, 5 and ~,and the values of the minimum

X
2

• All observations are based on the last block of 80 trials. 2 The

model describes the conditional probabilities exceedingly well, whether

we merely compare the observed and predicted values or look at the values

of the minimum X2 • The mean absolute difference between observed and

predicted values is approximately .005 and the sum of X
2

over the three

experimental groups is 1.85, which is not significant at even the 50%

level with 3df.

The parameter estimates indicate that, under zero payoff, an incorrect

response is far more likely to result in a change of conditioning state

than is a correct response. Since ~ exhibits a more rapid increase

than 5 does over groups, the discrepancy between the effects of gains

and losses decreases as payoff increases. Further, the decrease in N,

the number of stimulus elements, with increased payoff suggests that the

subjects attend to fewer cues as motivation is increased. These conclu-

sions, that follow from the values of the estimated parameters, suggest

how the model may provide an interpretation of the effects of gains and

losses.

14



Table 1

Observed and Predicted Values, Parameter Estimates
2and Minimum X for the Suppes and Atkinson Experiment

(Observed values are given in parentheses)

Group

Z F T

.605 .648 .695
P(Al )

(.600) ( .649) ( .700)

.707 .792 .855
P(All E1Al )

(.709) ( .794) ( .855),

.534 .603 .660
P(A1 IE2Al )

( .534) ( .601) ( .670))

.626 .615 .624
P(A1 IE1A2)

( .606) ( .613) (.638)
..

P(h IE2A2)
.450 .382 .329

(.449) ( .388) (.323)i..

X2 1.08 .09 .68

1-1 .02 .23 1.00

5 .70 .69 .95

N 3.90 2.44 1.90

15



.Myers, Fort, ~, and Sydam' s study•

.Myers et at (1963) ran 9 groups of 20 subjects for 400 trials in a

noncontingent two-choice experiment. Levels of rr of .6, .7, and .8

were employed and subjects gained or lost ai, li or loi. The data

analysis reported here is based on trials 301-400. (Due to an error in

recording during one experimental session, the data of only 16 subjects

are available for the .6-oi group.)

The minimum procedure described in the previous section was

applied to the first-order conditional probabilities of the .Myers et al

study with. one modification. The estimates reported for each payoff

level in Table 2 are those that minimized a sum of x2
over the three

levels of rr. Thus there are 9 df associated with each x2
value in

Table 2; i.e., twelve predictions were made on the basis of three

parameters at each payoff level. As in the Suppes and Atkinson study, ~

increases more rapidly than does 0 and N decreases with increasing

payoff; unlike the results of that study, the statistics for the li

and loi groups are not widely disparate, and this is reflected in the

closeness of the estimates for those groups. The minimum x2
are

fairly large and it appears that the model does not adequately

describe the data. We will consider this point further when we look

at the actual observations and predictions.

Table 3 presents observed and predicted values of P(Al ), obtained

by inserting the minimum estimates of 0 and ~ into Eq. 7. With the

exception of the .6-li and .7-li groups, the fit appears quite good;

the overall mean deviation of observed and predicted values is 1.6%.

At least for the oi and loi groups, single values of ~ give a

16



Table 2

Values of the Parameter and Minimum Chi-Squares for

the Myers et at Study

Payoffs

Or/ 111' 10r/

N 5.05 2.21 2.19

1; .82 1.00 1.00

I-' .13 .83 1.00

X2 52.27 48.06 24.98
.

Table 3

Predicted and Observed Values of prAll for the

Myers et al Study

(Observed values are given in parentheses)

rr

Payoffs .6 .7 .8

Or! .627 .749 .863

( .624) (.753) ( .869)

lr/ .684 .835 .934

(.653) ( .871) ( .925)

lOr! .692 .845 .941

( .714) ( .866) ( .951)

17



reasonably good account of the data at three different levels of rr.

Despite the large X
2

values reported above, this is an important

result. That adequate predictions of prAll under payoff is not

trivial is suggested by the fact that several theories (Edwards, 1956;

Siegel, 1959; Estes, 1962) have been developed for this purpose alone. 3

Table 4 presents the observed and predicted first-order conditional

probabilities. The most notable aspect of the table is the fact that,

excluding the .6-oi group, statistics of the form P(A1IEjAl) are

accurately predicted; the major source of the large values of

appears to be the failure to predict statistics of the form

This conclusion is supported by the fact that a X2 computed for the

16 EjAl statistics is 13.23 which is not significant at the .05 level

on 7 df. There are at least two obvious explanations for the poor fit

of the statistics: (a) it is possible that these statistics

are unreliable since they are generally based on fewer observations

than the EjAl statistics (this argument might also be applied to the

data of the .6-oi group which are based on 20% fewer observations than

those of the other groups); (b) the model may require some modification

to adequately describe the statistics that are poorly fit in Table 4.

One argument against the second conclusion is the fact that the rela-

tionship between observations and predictions is not consistent; if

the defect was in the theory rather than in the data, the predictions

might be expected to be consistently too high, or consistently too low.

However, additional experimentation involving more trials and subjects

is required to decide between these two.alternatives.

18



Table 4

Predicted and Observed Values of P(A1IE.A.) for
l J

the Myers et al Study

(Observed values are given in parentheses)

Payoffs T(

.

.6 .701 .569 .649 .503

( .668) (.484) (.726) (.593)

oi .7 ·799 .680 .753 .601

( .816) ( .666) ( .747) (.571)

.8 .890 .790 .848 .692

(.901) ( .824) ( .746) ( .803)

.6 .810 .614 .643 .356

( .818) ( .609) ( .613) ( .336)

li .7 .930 .780 .806 .475

(.939) (.789) (.825) ( .415)

.8 .959 .858 .878 .505

( .947) ( .856) ( .974) . (.588)

.6 .837 .655 .674 .406

( .849) (.674) (.653) ( .407)

loi .7 .924 .786 .803 .492

( .923) (.786) ( .865) ( .471)

.8 .972 .879 .892 .540

( .974) ( .873) (.906) ( .923)
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Friedman et al study.

Friedman et al (1963) ran 80 subjects for three sessions of 38~

trials each in a noncontingent two-choice experiment. No monetary pay­

off was involved. During the first two sessions, IT was varied among

blocks of 48 trials. In the third session (following 48 trials at a

IT value of .5) subjects were tested for 288 trials at a IT value of

.8. The analyses of tables 5 and 6 are based on trials 193-288 of the

.8 series. Parameter estimates were obtained from the first-order

statistics by minimizing the x2 of Eq. 14. These estimates are the

basis for both the predictions of the first-order conditional probabili­

ties of Table 5 and the second-order conditional probabilities of

Table 6. We have also investigated the possibility of obtaining

parameter estimates from the second-order data by minimizing the X
2

of Eq. 15; the results of the two procedures differ very little, and

consequently we present only the results based on parameter estimates

for the first-order data.

The first-order conditional statistics are fairly well fit; the

second-order statistics appear to present a problem. The x2
defined

by Eq. 15 is 60.48 on 13 df and several predictions clearly deviate

from the observations. The fit is particularly poor for those statistics

that are based on the fewest observations whereas the description of

the more reliably based P(All E1Al E1Am) is quite reasonable. More

experiments providing large numbers of observations are required before

we can conclude that the model fails to predict higher-order conditional

statistics. However, these results, together with other data (Anderson,

1963), suggest that prediction of response probabilities conditioned on

the outcomes of several trials is a major problem for models of this type.



Table 5

Predicted and Observed Values of P(A1IEj~)' Parameter

Estimates, and minimum X2 Value for the Friedman et al Study

Observed Predicted

P(A1IE1A1) .894 .899

P(A1 !E2A1) .744 .730

P(A1 IE1A2) .692 .693

P(A1 IE2A2) .407 .489

1'> .50

1.1 .03

N 2.44

X1'> 9.68
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Table 6

Observed and Predicted Values ofP(A IE.AkE A )
1 J 1 m

for the Friedman et al Study

Observed Predicted

P(AlIE1A1E1Al) .9.25 .937

P(AlIE1A1E1A2) .817 .803

P(AlIE1A1E2Al) .848 .833

P(AlIE1A1E2A2) .610 .559

P(All E1A2E1Al ) .747 .763

P(A1IE1A2E1A2) .606 .6.48

I'(A1IE1A2E2Al) .769 .657

I'(A1IE1A2E2A2) .523 .621

I'(A1IE2A1E1Al) .801 .770

I'(A1IE2A1E1A2) .603 .623

P(A1IE2A1E2Al) .595 .662

P(A1IE2A1E2A2) ·519 .390

P(A1IE2A2E1Al) .600 ·559

P(A1IE2A2E1A2) .483 .444

P(A1IE2A2E2Al) .257 .452

P(A1IE2A1E2A2) .220 .421

22



A contingent reinforcement study.

Thus far, all the studies considered in this section have involved

a noncontingent reinforcement procedure. Experiments using the contin­

gent reinforcement procedure are relatively rare, and we know only one

such study in which monetary payoff was involved. Since only three

values of P(A
l

) are involved, our analysis hardly constitutes a test

of the model for contingent experiments. However, the results are en­

couraging. Atkinson (1962) ran 3 groups of 20 subjects each for 340

trials, with each correct response resulting in a gain of 5i and each

incorrect response resulting in a loss of 51. The groups differed with

respect to TIl which took the values .6, .7, and .8; for all groups

TI2 equalled .5. Table 7 presents the observed proportions' of Al

responses for the last 80 trials. The predicted values were obtained

by inserting a least-squares estimate of ~ into Eq. 6. The estimate

~ = 2.1, results in a good acount of the values of P(Al ); the mean

absolute deviation of observed from predicted is about 1%.

Analyses 2! the Three-Response~

We will now consider an extension of the model to experiments

involving three responses. Since the only available data have been

obtained for noncontingent procedures, equations will be presented only

for that case. However, a more general statement is easily obtained

following the approach of the previous section. For the noncontingent

case, the axioms presented earlier result in the following transition

matrix for element k over a subsequence w
k

of trials.

23



Table 7

Observed and Predicted Values of prAll for

a Contingent Reinforcement Experiment

rr Observed Predicted1

.6 .601 ·592

.7 .685 .704

.8 .832 .831
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(16 ) 91 9
2 9

3
W

1
W2 W

3

91 1-8(1-)'1) 0 0 8(1-)'1) 0 0

92 0 1-8(1-)'2) 0 0 8(1-)'2) 0

9
3

0 0 1-8(1-)'3) 0 0 8(1-)'3)

Wi \.1)'1 0 0 1-\.1)'1-8 (1-)'1) 8)'2 8)'3

W2 0 \.1)'2 0 8)'1 1-\.1)'2-8 (1-1'2) 01'3

W
3

0 0 \.11'3 01'1 01'2 1-\.11'3-8 (1-1'3)

For this case we let 1'. denote the probability of event E., where
1 ... . 1

1'1+ 1'2+ 1'3 = 1. The states will be designated by numbers corresponding

to the ordering in the matrix, i.e., 8
1

= 1, etc. From E~. 16 we

obtain the u
j

defined previously by E~. 3:

where

.,

2
D1 = 1'1 (1-1'2) (1-1' 3)

(18) 2D2 1'2(1-1'1)(1-)'3) ,

2
D3 = )'3(1-1'1)(1-1'2)

and again ~ = 0/\.1. Following the procedure for the two-response case

we may derive expressions for lim P(A. ) = P(A.), specifically
n-HO lJn 1
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P(A
l

) '" ul
+ u4

P(A2 ) '" u2 + u
5

P(A
3

) u
3 + u6 .

Cotton~ Rechtshaffen's study.

Cotton and Rechtshaffen (1958) report values of P(A
l

) for six

groups, two having two responses available, and four having three

responses available. Values of P(A
l

) and standard deviations of

proportions for trials 286-450 are presented in Table 8, together with

predictions derived from the model. A least-squares estimation proce-

dure yielded a value of ~ of 3.7; this was then substituted into

Eq. 19 with the appropriate 7i values to generate the six predictions.

The average absolute deviation of observed from predicted values is

less than 1.4%, which is quite small in view of the variability in the

proportions. It is particularly interesting to note that the finding

that P(~) increases as the number of choices increases (see also

Gardner, 1957) is accounted for by the present model.

Cole's study.

Cole (1962) ran three groups of human subjects under a noncontingent

reinforcement procedure. Two of the groups had three responses available,

with 7. 's
l

of 2/3, 2/9, and 1/9 for one group, and y. I S
l

of 4/9, 1/3,

and 2/9 for the second group; the third group had two responses avail-

able with 7 equal to 2/3. Table 9 presents the observed and predicted

values of P(Al ) and values of ~ for each group and response. The

values of ~ were computed by solving Eq. 19, and the observations were

based on trials 501-1000.
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Table 8

Observed and predicted P(l\) for the Cotton Rechtschaffen experiment

Condition Predicted Observed s
P(A1) P(A1) p

60-40 .641 .614 .118

60- 30-10 .658 .658 .112

60-20-20 .671 .660 .096

70-30 .773 .741 .099

70-20-10 .783 .801 .137

70-15-15 .784 .805 .091

Table 9

Observed and predicted p(A.) for the Cole experiment
l

cpObserved
ptA. )

Predicted
ptA. )

ResponseCondition

l l

A1 .844 .881 .45

221 A2 .109 .087 .433" - "9 - "9

A
3

.047 .029 .41

A1 .512 .531 .52

412 A2 .313 .304 .40
"9 - "3 - "9

A." .174 .165 .55

A1 .812 .779 1.50
2 1
"3 - "3 A2 .188 .221 1.50
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Averaging over responses and then over groups, a value of ~ of

.81 was obtained; substitution in Eq. 19 resulted in the predicted

P(A.) of Table 9. The model again correctly predicts an increase in
l

the value of prAll as the number of response alternatives increases

from two to three, but the discrepancies between observations and pre-

dictions are somewhat greater than they were for the Cotton and

Rechtshaffen data. This is due to the difference in the average

values of ~ for two and three choice data. If predictions are made

just for the data from the three-choice groups (using a value of ~

based only on the observations for those groups) the average difference

between the observed and predicted values of P(A. )
l

is only .5%. It

is possible that different values of ~ are required for each number

of response alternatives. However, the fit for the Cotton and

Rechtshaffen data could argue against this assumption. Additional

experimentation involving varying numbers of response alternatives is

required for clarification of this problem.

Extension of the Model to Response~

Despite recurrent attempts to develop an adequate theory of response

times (Estes, 1951; Bush and Mosteller, 1955, LaBerge, 1959; Luce, 1960)

this dependent variable has proven more elusive than response probability.

One attractive feature of the weak-strong model is that it can be ex-

tended to treat response times with the addition of only one assumption.

Furthermore, derivations of a variety of statistics are extremely simple,

and estimates of response time parameters can be easily obtained. To

facilitate the presentation, we will limit the discussion to the
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asymptotic case for the two-response noncontingent situation. Exten-

sions to more complex situations and to preasymptotic data follow

readily from the developments of this section.

The set of axioms previously presented for choice behavior are

still assumed to hold. Thus, we postulate that exactly one element is

sampled on each trial, that the element is either weakly or strongly

conditioned to one of the response alternatives, and that the condition-

ing state may change in accord with the previously presented conditioning

axioms. In addition, we require the following axiom:

Response Time Axiom. The random variable T denotes the response
n

time on trial n of the experiment and depends on the conditioning

state of the sampled stimulus element. If the sampled element is in

a strong state of conditioning, then the distribution of response times

has probability density S(t) with finite mean s. If the sampled

element is in a weak state of conditioning, then the distribution of

response times has probability density W(t) with finite mean w.

On the basis of the response time axiom and our choice model, a

number of predictions may be derived. We will next consider some of

these. Since all equations will be for the asymptotic case, the sub-

script n with be omitted.

Mean Response Times.

E(T), the mean asymptotic response time obtained by averaging

over both Ai and A2 responses is simply the weighted sum of sand

w, where the weights are the probabilities of sampling from the two

hypothesized distributions. Accordingly, we have
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(20)

S[rt3+(1_rt)3 j + w[rt(l-rt)~]
~

rt3+(1_rt)3 + rt(l-rt)~

If we assume that s < w, which appears reasonable, then it is easily

proven that the mean response" time is greatest when rt ~ .5, and

monotonically decreases as rt approaches one.

We next consider E(TIAi ), the mean response time for an Ai

response. This quantity is derived as the weighted sum of sand w,

where the weights are the probabilities of sampling from the two

hypothesized distributions; given that an Ai response has occurred.

The appropriate equations are

(21)

srt+w(l-rt)~
~ rt+(l-rt)~

(22) s(l-rt)+wrt~

l-rt+rt~

Once ~ has been estimated from the choice data, the parameters s

and w may be simultaneously solved for in Eqs. 21 and 22. Predictions

of E(T), E(T[Al ), and E(TIA2 ) can then be made for any value of rt.

If s < w, it can be shown that the mean time required for a

response to occur is a monotone decreasing function of the probability

of the predicted event. Response time data from the Friedman et al

study are ambiguous with regard to this prediction. Response times

for the Al response were slightly (but significantly) less than A2
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response times, as predicted; however, response time did not vary as a

4
function of n. Data that are more clearly consistent with the pre-

dictions of this model are reported by Calfee (1963) who found that

response times for rats decreased as IT increased, and that the pre-

ferred response was made more quickly than the less preferred response.

These data support the weak-strong model, and suggest that LaBerge's

(1959) neutral elements model requires revision. That model predicts

no differences in average A
l

and A2 response times, or in response

times as a function of IT.

We conclude this section by presenting equations for statistics

of the form E(TIAiEjAk ), the expected response time of an Ai

andgiven that it was preceded by event Ej

response Ak on trial n. The general form of the expression for

response on trial n+l,

this statistic is

(23)
sP(S.!E.A ) + WP(W.IE.Ak )

E (T IAiEj~) = _--=1.--"Jl....-1<:~ 1.=--..!oLJ....::...

p(A.IE.Ak )
1. J

denotes the asymptotic probabilityIn the above expression p(SiIEj~)

that an element is strongly conditioned to Ai on trial n+l given

that occurred on trial n; has a similar i~terpre-

tation. Substituting inEq. 23) we obtain the following expressions:
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1
(N-l)(SU1+WU2)+(u;+U;)[S(Ul+U2~)+WU2(1-~)]

(N-1J(ul +u2J+l

(24)

The expressions for the E(TIA2Ej~) are obtained by substituting

u4. for ul' u
3

for u2' and vice verse, in Eq. 24; e.g.,

Extension of the Model to the Differential Payoff Case

Thus far we have considered a model that is applicable only to the

symmetric payoff case, in which the amount gained is the same for all

correct responses, and the amount lost is the same for all incorrect

responses. We next consider an extension of the model to the nonsymmetric

payoff case. For the two-response situation this payoff scheme may be

represented by the matrix
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[

w -x]
-y z,

where the amount gained or lost is a function of the response-event

combination. Although an adequate description of data obtained under

such conditions would seem to be a prerequisite for a general theory

of motivational variables, to date little progress has been made on

the problem. Bush and Mosteller's "experimenter-subj ect-controlled

events" model (1955, p. 286) is applicable, but this approach leads

to severe mathematical difficulties. Estes' "scanning" model (1962)

involves simple computations, but only yields predictions of P(Al ).

The same objection may be raised to Edwards' "RELM" model (1956). The

generalization of the weak-strong model that we will present is mathe-

matically tractable; the only complication beyond the original model is

the need to estimate one additional parameter. The variety of predic-

tions that follow from the original model can also be derived for the

extended model. For these reasons, the generalized weak-strong model

merits consideration. However, it should be noted that the developments

of this section are extremely tentative. An empirical evaluation of

the model is excluded at this time since there have been few experiments

involving differential payoffs, and these, while theoretically suggestive,

have involved too few trials and subjects to permit a test of the model.

We might extend the weak-strong model by postulating two values of

~ (~w and ~z)' corresponding to the two gains, and the two values

of 0 (0 and 0); corresponding to the two losses. That this
x y
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identification of parameters has limited applicability is suggested by

data obtained from a matrix such as

For the parameter identification proposed above, El and E2 should

have identical effects upon the conditioning-state whenever the subject

makes an A2 response. Furthermore, if a li gain is assumed to be

reinforcing, the subject should absorb on A
2

. Both inferences are

contradicted by experimental data (Myers and Sadler, 1960; Myers and

Fort, 1961). A mechanism is required which permits the A2 response

to be strengthened or weakened following a li gain, depending on which

event occurred.

The concept of regret (Savage, 1954) provides one approach to the

problem just posed. Regret is the difference between the obtained

payoff and the maximum possible payoff, given that event Ei occurs.

Thus, for the last payoff matrix presented, we have the regret matrix

In general, corresponding to the payoff matrix

[; :],



where y < wand x < z (note that x and yare not necessarily

negative), we have

where the regret associated with an incorrect A
l

response is

w - y

and the regret associated with an incorrect A2 response is

(26 ) z - x

Here, we define an incorrect response as one that yields a payoff less

than the maximum possible payoff, given the occurrence of E
i

,

The notion of regret provides a basis for modifying the weak-strong

model in the following manner. We identify ~ with the probability

that zero regret results in the strengthening of a correct response,

51 with the probability that r l results in the weakening of an

incorrect Al
response, and 52 with the probability that results

in the weakening of an incorrect A2 response, A minor change in our

system of axioms now suffices in order to derive equations for choice

behavior under differential payoffs, Axiom C3 is rewritten as follows:

If event occurs (i F j), then (a) if the sampled element is

strongly conditioned to Ai there is a probability 5
i

that it becomes

weakly conditioned to Ai and (b) if the sampled element is weakly

conditioned to Ai there is a probability 5
i

that it becomes weakly

conditioned to
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For the revised axioms we may now obtain the following results in

the noncontingent two-choice situation:

D
l

2 2
n CP2

(27)
2 2

D2
~ n (1-n)CP2 CPl

where

(28)

Substituting in Eq. 4 we have

(29) ,

where E ~ CP!CP2' Note that P(Al ) is independent of N. Furthermore,

for the symmetric case and therefore

this condition Eq. 29 reduces to Eq. 7. Also, the following results

can be easily proved:

(i) P(A
l

) is bounded by zero and one. Specifically,

(30) lim P(A
l

) ~ 1
E~o

lim P(A
l

)
c.~ 00'

o

(ii) For constant nand CP2' P(Al ) is a decreasing monotonic function

of CPl' As the regret associated with an incorrect Al response in­

creases, the probability of making an A
l

decreases.
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(iii) For constant and CPl' is an increasing monotonic

function of CP2' As the regret associated with an incorrect A2

response increases, the probability of making an A
l

increases.

Several experiments have recently been performed (Myers and Sadler,

1960; Myers and Katz, 1962; Katz, 1962) involving the choice between

a "sure thing" and a risky option. The payoff matrices are of the form

and

E
2

-w]
-1

Where E
l

and E2 are equiprobable, i.e., n = .5. The major findings

are that (a) P(Al ) is always greater when the payoff associated with

an A2 response is -1 than when the payoff is +1, and (b) as the

absolute value of w increases, P(A
l

) increases when the A2 payoff

is +1, and decreases when the A2 payoff is -1. These results are

schematically represented in Fig. 3. The convergence exhibited in

Fig. 3 is not consistent with the results for the symmetric payoff case,

in which subjects approach the optimal strategy (always predict the

more frequent event) as payoffs increase. In the studies under discus-

sion, the optimal strategy is to always make the Al response when the

A2 payoff is +1; subjects increasingly deviate from this strategy

as the amount risked increases.

Since the convergence effect displayed in Figure 3 does not seem

to be easily explained by existing theories of decision behavior, it is

of interest to consider it in terms of the weak-strong model. Upon

converting the above payoff matrices to regret matrices, it becomes
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1

-1

+1

o I-.., -L -l.. -l- _

+10 +15

Figure 3. The proportion of risky responses as a function of the
amount of risk, with the values of the "sure thing" alternative as
the parameter.
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apparent that r 2 is less than r l when the A2 payoff is +1; and

r 2 is greater than r
l

when the A2 payoff is -1. Assuming that

0. is a monotonically increasing function of r
i

, E will be greater
l

when the A2 payoff is +1 than when it is -1. Consequently, the

-1 curve should lie above the +1 curve, as it does.

We next attempt to account for the convergence depicted in Fig. 3.

As w increases, both r l and r 2 increase, but the ratio r~r2

monotonically approaches an asymptote of 1.. If 0i is a negatively

accelerated function of r i then (a) if the A2 payoff is +1, i:

will decrease to an asymptote of' 1, and (b) if the A2 payoff is -1,

will increase to an asymptote of 1. Consequently, the curves

should converge until they asymptote at .5. Although the above quali-

tative description of the risk-taking data is encouraging, an adequate

evaluation of the model will require precise quantitative analyses of

the data. When such analyses are available, the relationships between

parameter and regret values may be more complicated than we have suggested.

For example, a literal interpretation of our discussion would suggest

that ~ should be invariant over different payoff matrices. This is

a doubtful premise, considering that such parameter invariance is often

difficult to establish over levels of n. However, in view of the

dearth of theories dealing with the differential payoff case, if the

model even provides a reasonable account of data for a single group,

some progress will have been made.
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.~ Multi-Stage Model

As indicated earlier the "pattern" model of stimulus sampling

theory would be regarded as a one-stage model. Similarly the model

discussed in this paper is a two-stage model, In this section, we

investigate the consequences of generalizing the model so than an

element may be in one of k stages of conditioning to a response,

The generalized model follows logically from the weak-strong model,

The Stimulus Axiom and the Response Axiom remain unchanged; the other

axioms require only the obvious modifications,

Conditioning-State Axiom, On every trial each stimulus element is

conditioned to exactly one response; furthermore, the element is in

one of k stages of conditioning to that response, (An element in

conditioning state C. is in stage m of conditioning to response
~m

Ai where m=1,2"",k and k denotes the strongest stage,)

Conditioning Axioms,

C2', If event E,
l

occurs, then (a) if the sampled element is in state

C
ik

it remains so and (b) if the sampled element is in state C.
lm

(m f k) there is a probability ~ that it enters state Ci,m+l

occurs (i f j), then (a) if the sampled element is.Q2', If event

in state Cim

E.
J

(m f 1), there is a probability 6 that it enters state

C. l' and (b) if the sampled element is in state C
l
' l there is a

~,m-

probability 6 that it enters state Cjl

Figure 4 provides a schematic presentation of the transitions

among states for the two-response case, It may be helpful to compare

this representation with that of Fig, 1 for the weak-strong model,
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Figure 4. Possible transitions among conditioning states for the
~-stage model (r = 2).
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Expressions can now be derived for those statistics previously

treated in the k ~ 2 case, For the noncontingent two-response case,

it can be shown that

where

D.
lm

u. ~ ,
l l D.

i,m
1m'

and

These expressions can be evaluated to yield the following equation:

(34)

where

Note that

ex
~

ex + fl '

k k kex ~ "(,, + [(l-.")cp] }(l-,,-"cp)

lim P(Al ) ~ "<:p->oo

(36)

2k-l
lim P(A

l
) "~

,,2k-l+ (1_,,)2k-l<:p->oo
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Thus, one consequence of introducing k is to increase the upper

asymptotic bound on P(Al ) and place it as close to 1 as desired

for 11 > 1/2 .

The form Sf the conditional statistics is also simple; the first-

order statistics are as follows:

We have applied the minimum x2 estimation procedure to the first-

order conditional data presented previously for k = 2, 3, 4, 5, and 10.

Generally, the minimum X
2

was smallest at k = 2 though there were

a few instances for which it was slightly less at k = 3. In most

instances the goodness of fit showed rapid deterioration as k increased.

For example, when the models were applied to the Friedman et al data,

the minimum X
2

was at a low of 9.37 for k = 2, increased to 38.51

for k = 5, and then increased to 42,784 for k = 10. The increase

in x2
appears to be due to the fact that for large k, the model

predicts more response perserveration, following a correct response,

than actually occurs. In view of these analyses we are prone to conclude

that significant improvements in goodness of fit will not follow as a

result of increases in k, and that two-stages generally will best



describe the data. Assuming that this conclusion holds for future

analyses of data, it, of course, applies only to our particular state­

ment of the model. The question of k-stage models involving different

response or sampling axioms remains to be investigated.

Discussion

Several articles (Bower, 1959; Atkinson, 1961; Estes, 1960, 1962)

have recently demonstrated that a more molecular analysis of the

subject's pre-response behavior may prove fruitful in formulating a

choice model. It is therefore interesting to note that at least one

such analysis of choice behavior results in the same equations derived

for the weak-strong model. Specifically, consider a model which

postulates that associated with each response alternative is a tendency

to approach or aviod that alternative. Further assume that the set of

approach tendencies, and the order in which response alternatives are

considered (or observed) determine the subject's choice on any trial,

and are themselves determined by the outcomes of preceding trials.

To formalize these notions let the function vk be the approach

tendency associated with response ~. When the subject observes the

kth alternative, he will make that response if vk = 1, or move on

to observe some other alternative if v
k

= O. The values of vk for

the r-response alternatives will be represented by a vector

V = < vl ' v2' •• o, vr > For example, V = < 001 > indicates that the

subject will approach A
3

when he observes it; all other alternatives

will be avoided. We further assume that, in the time period immediately

preceding his choice, the subject orients towards each response
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alternative in some se~uence, until he observes an alternative for

which is one, or, if all V 's
k

are zero, until he has observed

each alternative. In either case, the alternative chosen is the one

last observed by the subject. Thus, the sUbject will choose the first

observed alternative for which v
k

is one, or, if all values are zero,

the last alternative observed. The se~uence in which the alternatives

are observed on any given trial will be represented by the vector
\

0= < 0 1 , O2, ... , 0;> • The value of o. indicates which response
l

will be observed at position i in the observing se~uence.

With these concepts in mind we can define the conditioning state

of the subject on any trial n of an experiment as the vector

c = < 0, V > .
n

For example, if c =« 12 >, < 10 » ,
n

then the

subject initiates the trial by observing response Al and then makes

that response. If C =« 12 > , < 00 » the subject first observes
n

AI' then A2 and terminates the trial by choosing A2 since both

and e~ual O.

To complete the analysis we need some rule for describing changes

in C over trials. The following assumption seems reasonable: If
n

response ~ occurs on a trial and is reinforced, then with probability

the function takes on the value one and that response moves to

the top of the observing se~uence. If the response is not reinforced,

then with probability 5 the function for that response becomes

zero and the observing se~uence is reordered.

Given these assumptions it can be shown that for large n this

model and the weak-strong model are e~uivalent. For example, in the

two-response noncontingent case, if we let



8
1

= « 12 > , < 10 »

W
l

= « 21 > , < 00 »

« 21 > , < 01 »

W
2

= « 21 > , < 01 » ,

then the transitions among states is that given by E~. 2 and at

asymptote the predictions for the weak-strong model are precisely

those of the model outlined in this section.

The implications of the approach that we have just considered are

broader than the fact that we achieve results identical to those

derivable from weak-strong axioms. A number of models may be generated,

starting with the notions of approach tendencies and observing vectors,

if one examines various natural modifications of the conditioning and

responding assumptions that were sketched above. In view of the

possibility that some of these models will provide further insights

into choice behavior, this frame of reference merits further investiga­

tion.
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Appendix A

Listed below are the expressions for the asymptotic joint probabili-

ties of the form P(Al E. lA
k

lE, _A 2) for the weak-strong,n J, n- ,n- k,n-Z-m, n-

model (j,k,£,m = 1,2). The conditional statistics may be obtained by

noting that in the noncontingent case.

"(1-")=
~
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P(A1E2A1E1A2) ~

n(l-n) [u
3
5(1-5)+(N-l) (BC+2Au

3
5)+(N-l) (N_2)A2B]

~

2
P(A1E2A1E2Al)

(l-n) [U1 (1-52)+U2(1-5)2+3(N-l)AC+(N-l) (N_2)A3]
~

2
P(A1E2A1E2A2) ~

(l-n) (N-l)B[C+(N_2)A2]
N2

P(A1E2A2E1Al)
n(l-n) (N-l)AB[1+(N-2)A]
~

P(A1E2A2E1A2)
n(l-n) (N-l) [Bu

3
5+AD+(N-2)AB]

~7

2
P(A1E2A2E~1 ) ~

(l-n) (N-l) [BC+AU25+(N-2)A2B]
N

2

2
P(A1E2A2E2A2)

(l-n) (N-l)AB[1+(N-2)B]
N2

where

A~Ul+U2

B ~ u
3

+ u 4

C ~ u1 + u2(1-5)

D ~ U3(1-5) + u4
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Appendix B

The values of njk presented in Table 10 are the total numbers

of asymptotic trials on which E. and A, both occurred, pooling
J k

over all subjects in each group. These values are the denominators

for the first-order conditional statistics presented in the paper.

Values of njk£m in Table 11 are the numbers of pairs of asymptotic

trials containing Ej and A
k

on trial nand E£ and A on
m

trial n-l. These values are the denominators of the second-order

conditional statistics analyzed for the Friedman et al study.

Table 10

Values of njk for several studies

Experiment Group u 11 n21 n12 n22

Suppes and Z 1238 595 602 365
Atkinson

F 900 656 537 307

T 1008 673 428 291

.6-oi 590 395 358 241

.7-oi 1042 449 356 133

.8-oi 1382 340 197 61

Myers .6-J.:i 771 516 413 280
et al

.7-Jli 1204 517 194 65

.8-JJi 1463 368 115 34

.6-10i 828 582 349 221

.7-10i 1202 515 193 70

.8-10i 1489 393 85 13

Friedman et al 4815 1166 1028 268
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Table 11

Values of njk£m for the Friedman et al Study

jk£m jk£m

1111 3435 2211 868

1112 585 2112 126

1121 699 2121 168

1122 82 2122 27

1211 427 2211 85

1212 259 2212 58

1221 225 2221 74

1222 109 2222 50
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Footnotes
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first author.

2. Values of njk are tabled in appendix B for all experimental
groups discussed in this section. Thus the data on which our
analyses have been based can be completely reproduced, and the
interested reader may use the data to analyze alternative models.

3. If the investigator is only interested in predicting prAll, esti­
mates of ~ can be obtained by direct solution of E~. 7. The
procedure, and the resulting fit (which is better than that
reported in Table 3) are reported by Myers et al (1963).

4. It is possible that in the typical experimental situation the
subject decides on his response prior to the signal to respond.
Under these conditions response tim~measured from the onset of
the signal, would reflect the speed of reaction to the trial
signal, and not choice time. A more sensitive test of response
time predictions might be made if subjects were permitted to
pace themselves; latency would be measured from the onset of
the event on trial n to the occurrence of the response on trial
n + 1.


