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Abgtract

A model for choice behavior under payoff is presented.
Predictions of choice probabilities are evaluated for
geveral experiments involving different event probabil-
ities and payoff levels, two and three choices, and con-
tingent and noncontingent reinforcement. An extension
of the model to the prediction of response time 1s also
congidered.







CHOICE BEHAVIOR AND REWARD STRUCTURE:

Jercme L. Myers | Richard C. Atkinson

University of Massachusetts ‘ Stanford University

A growing body of data, frowm both animal and human experimentation,
reflects the importance of maghitude of reinforcement in choice behavior.
In this paper, we attempt é guantitative description of the role of this
variable. The model under consgideration was originally proposed by
Atkinson (i962), who showed that‘it Was applicable to.both.contingenﬁ
and noncontingent reinforcement, and.to ény numbér of response alterna-
tives. We have extended this work by deriving predictions of response
times, and of conditicnal statistics that were not previoﬁsly fresented.
We have aiéo considered ways of formulating the model ﬁo yield.predic;'
tions for more general reward-punishment combinations thén those pfe-
viousl& considered. In addition,.thé observed and predictéd ?alues of
é nunber of meésures obtained from several different experiméﬁts are
dispilayed in this-paper. We hopé that the data.presented will provide
an impetus to the devélopment of alternative models, and that the
description of the data by our model will provide a criterion against
which to Judge other models.

The model that we will consider assumes a populatioh of stimulus
elements, each of which is conditicned to one and only one respense.

It is further assumed that a single element is randomly sampled from the
stimulus population on each trial, and that the subject’s response de~

pends upon the state of conditioning of the sampled element. These



agsumptions are common to.other stimulus sampling models (Atkinson and
Estes, 1963); however the present model @iffers from its predecessors
for it is assumed that an element may be at_one Qf two stages of condi-
tioning, either weakly or strongly conditioned to a responge. This
modification of stimulus sampiing theory provides the basis for a

fairly. general analysis of reinforcement variables.

Axioms

Consider an experiment in which on each trial the subject must
select one of r mutually exclusive and exhaustive responses

(A ,.,H,Ai,.,,,Ar). The it® response corresponds to the prediction

1
of the ith gember of a set of r mutually excluéi#e and exhaustive
gvents (El,,op,Ei,...;Er). Associated with éach.response—event
combination is some outcome sﬁch ag the gain or loss of an amount of
money. In the éxperiments tht Wé examipe the r X.r set of outéomes
ig congtant over trials. We Wiil first cﬁnsider axioms.for the specisal
case in which each Ai - Ei ¢ombinafion is follqwed by the ;ame gain,

and all other response-event combinations are foliowed by the same loss.

This situation may be represented by the following payoff matrix

1 i r
Al W ase =X eao =X
A =X ees W e =X
i
. . . .
A X ase =X ... W
r .




where w 1is the gain associated with a'cofrect prediction, and x is
the loss associated with 'an incorrect prediction. We shall henceforth
refer to this case as the symmetric paypff condition., We will later
consider mbdifications of the axioms appropriate to the more general
nonsymmetric .case in which the amount of gain or loss varies as a func-

tion of the particular response-event combinations.

Stimulus Axiom. The stimulus situation associated with the onset of

each trial is represented by a set of N stimulus elements. On each

trial exactly one element is randomly sampled from this setb.

Conditioning—StateAxi‘om° " On every trial each stimulus element is
conditioned to exactly one-response; furthermoré, the elemeﬁf is-either
strongly or weakly conditioned to that response. (The strong condition-

ing state for the Ai response is denoted by Si’ the weak state by Wi°)

Response Axiom. If the sampied element is conditioned to the Ai

response (either weakly or strongly) then that response will ocecur with

probability 1.

Conditioning Axioms.

Cl. Stimulus elements that are nof sampled on a trial do not change
their conditioning state.

G2, If evemt E, occurs, then (&) if the sampled element is strongly
conditioned to the A, response it reaming so -and (b) if the sampled
element is weakly conditioned to the Ai regponse there is a probability
i that it becomes strongly conditioned.

C3. If event Ej oceurs (i # j), +then (a) if the sampled element is

strongly conditioned to the Ai regponse there is a probability B



that it becomes weakly conditioned to Ai and (b) if the sampled
element is weakly conditioned to the Ai response there is a probability
& that it becomes weakly conditioned to the AJ. response.

Figure 1 illustrates the transitions that are possible under the
conditions of Axioms C2 and C3 for the two-regponse case. Note that

an element can transit only to a directly adjoining conditioning state.

El:l—u _ B, :1-3 E :1-8



Mathematical Development:

Asymptotic choice proportions in the two-regponse case.

We begin by considering the tﬁo—response case in which the matrix
of outgomes is symmetric. The event probabilities are specified by ﬂi,
the prcbability of event El on trial n, given that response Ai

was made on that trial. Thus

T P(El,nlAl,n) Mo = P(El,n[AE}n)
(1) ' ‘
- = A : - = A
* Ty P(EQ,n{‘l,n) L KE P(EE,HI 2,n)
Now assume that the k2 element is sampled on some trial .

The tree diagrams of Fig. 2 illustrate how the conditioning states of
that element may change. For example; suppose that the sampled elemeht
1°

is in state S By the Response Axiom, the subject will make an Al

responge, which will be reinforced with probability ﬂl and not rein-

forced with probability l-x By Axiom C2, if the response is rein-

1°
forced, the conditioning state will not change. If the response is
not reinforced then (by Axiom C3) with probability & the condition-

ing state becomes W Similar applications of tlie axioms permit us

1
to completely specify the possible ways in which each conditioning
state may change.

We will denote the subseguence of trials on which the kth
stimulus element.is sampled by ak. We next define a random variable
associated with the k%M element that takes the cohditioning states

S, W

10 W Wg, and 82 as ites values. It can be shown that over the

subsequence of trials, a5 the random variasble forms a Markov chain.



From Fig. 2, we may derivg_the Tollowing transition matrix for the Markov

chain.
8
2
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-Figure 2. Transitions among conditioning states for the subset of trials
on which an element is sampled.



8, W, W, S,
_ —_
5, l—'é(l-—rrl) 5{1-:11) 0 ¢
- ,_ Wl (L . l-p.rtl-.B(l-n:‘l) .S(l-zrl) 0
Vi, 0 LN 1~5n2-u(1—ﬁ2) u(l—ne)
5, 0 0 GRS 1-8m,

For simplicity the states will be numbered as.foliows: 1 =258

2 = Wi, 3 = Wé

and L = 62°

Next, consider the quéntity pij

l}

probability of the kﬁh element being in state J on the mtt trial
of subsequence @ given that on trial 1 the element was in state 1.

Since the four-state Markov chain defined by Eg. 2 is irreducible and

aperiodic, the quantity u, exists, where

(m)

(%) u, = lim p,
J m—co lJ
The uj's_ may be computed by
D,
J

U, = e
J D1+D2+D3+Du

where
2 2
2 Y-
D2 = (l-ﬂl)ﬂg (P 2 Dh_ = (l-ﬂg)(l_ﬁl) *

and © = 8/u.

Atkinson (1962} has shown that at asymptote, the probability of

A

aln 1

tion of ‘the uJ.'s°

Specifically,

regponse for the complete N-element process is a simple func-



(6) 1im P(A

i— o

P 2

oy + (1-1y )y 9

- 2 2 2 2 *
L (l-ﬁg)(l-ﬁl) + [(l-ﬁl)ﬂg + (l-ﬂl) n2]®

Note that the expression is independent of N, +the number of stimulus
elemente. Henceforth, to simplify notation the trial subscripts will
bé omitted when asymptotic expressions are referred to; i.e.,

“lim P(A

n—w

LﬁﬁPMﬁ'

Experiments in which noncontingent reinforcement is employed are
frequently encountered; reinforcement is said to be noncontingent if
the occurrence of an Ei event on trial n 1is independent of thé
response made on that triasl. In such instarices ﬂl =n, =7, and Egq. 6
simplifies to

4 ﬁg(l—ﬂ)@_

(7 : ' P(A.) = .

VP s () + x(1on)e
If
(8) O0<u<l, 0<8<1 ,
then P(Al) is a monotonically decreasing function .of ¢ and has the
bounds

ﬂ5

(9) n < P(A)) <- .

: 4 (1—1)5'



If u equals O, then the transition matrix for each element is

-reduced to two states, W

1 and WE‘ In this case we have a one-stage,

Neelement model with a single conditioning parameter &, and the limit

P of P(A is w. This special case of our model is precisely that

L ' l,n)
described by Estes (1959) as the "pattern" model. The more general
Tformuliation presented in this paper has the advantage over the pattern
model of being able to account for observed values of _?(Al) greater

than =x. Such values are generally obtained in choice experiments

involving animals, choice experiments involving human subjects playing

for monetar& pajoffs,.and freqﬁéntiy in human choice experiments nét
iﬁvolving payoff when run forrseveral hundred %rials.

Wnen & equals W then
L2

I
i+ (:L—:rt)2

(10) Pla,) -

This.last result ig of special interest,. since it dis predicted by the
"scanning” model developed by Estes (1962), and has been shown to give a
Tairly good account of several sets of data obtained in meonetary pay-

off experiments.

Sequential statistics for the noncontingent two-response. case.

Statistics that‘reflect the sequences of responses and events are
of special interest. Such statistics may discriminate among models
when the statistic‘ P(Al) does not; furthermore, for our model they
provide a bagis for the egtimation of the full array of parameters.:
In this paper, we willl apply the model to firsf—order conditional

probabilities of the form



P(Ai, n+l |EJ ’ nAk,n) ’

and, when the number of observations permits, to second-order conditional

probabilities of the form

Ai,n+1IE,j,nAk,nEﬁ,n-lAm,n-l)

for i, Jj, k, 2, my, =1,2. The presentation will be restricted to

asymptotic predictions for the noncontingent-two-fesponse cage, though
extensions to more complex situétions and to preasymptotic data can be
obtained.. in réferring to the asymptotié statisties, we will drop the
tfial subscripts with the order in time from ;ight to left beihg under-

stood; thus

|E

(11) lim P(A. j’nAk, "

f=> 00 i,n+l

) = Py lEm)

%EE; P(Ai,n+llEj,nAk,nEﬁ,nulAm,n-l) B P(AiijAkEﬁAm) :

The derivation of these statistics is lengthy and will not be preéented
here. However, the general approach is developed in several sources,
notably Suppes and Atkinson (1960) and Atkinson and Estes (1963).

. The first-order conditional probabilities are as follows:

_E-1 1
u, + u,{l-¢)
_ N-1 11 2
P(Al]EQAl) = (w vw)) + 5l w, * o, 1
(12) .
’ u.c
_N-1 13
P(a [BA)) =5 (u) +uy) + 5 (ul n ue) ’
N-1

Pa) [BAy) = 57 (“i tuy) s

10



where ui is defined by Eq. %._‘The next set Qf equations’ are representative
of the second-order conditional prQbabilities. (The pompleterset,qf

equations appear in Appendix A.)

"~ ) T+(-1) ( u, +u, ) [3+(N-2) (u +u2)
P(a [B,AEA ) = s
Tt e i Nl)u+u)+l -
(wptu) ) [1+{N-3) (u, +u, ) ]+
P(& |E.AEA ) = 37 el u5. )
171271 N +u )
(3 P(AllEeAlElAl) =

(ul+u2) -u 6(1 u)+(16-1) (u +u2){ u +u2) 5+(N 2) u, +u )]-ﬁea]

CN[(F-1 )cu +u,,)+1)

l+(N-2)(u5+u4)
il

P(a, | E2A2E1Al)

Note that- predictions of” P(Al)' depeﬁd only -on estimates of g5~
the predictions of the conditional statistics require estimates of N,

&, W.

Estimation of parameters and evaluation.

The estimates of N, 8, and ¢y tThat we shall use to make predictions
for the first-order conditional probabilities are those that yield a

rinimum value for the function

Ir

S A 2
- 2 g njk{P(Ai|EjAk) - P(Ai]EjAk)}

i,j,k - P(AilEjAk)

11



In this equation P(AilEjAk) is the observed asymptotic conditional
prdbability, P(AiIEjAk) is a predicted conditional probability based
on Eq. 12, ‘and’ is a function of W, @ and 8, and njk is the

observed number of 'EJ.Ak occurrences, i.e., the denominator of the
obgerved conditional probabilities. The minimam XE- estimates cannot
be obtained analytically; however, a high-speed computer can be used to
scan g grid of possible values, unitil estimates of N, p and & are
obtained that minimize: X2 to the desired degree of accuracy.
If the theory postulated that the probability distribution on trial

n _depends only upon the responses and reinforcing events of trial n-i,
then the statistic described by Bg. 1k would'_indeed be distributed as

e (Anderson and Goodman, 1957). Under these conditions the statistic
would serve as a rigorous test Qf the ability of the model to describe
the conditional seguential data. Furthermore, the éstimates of the
paraméters'would have gseveral desirable properties common to minimum

X? estimates. Such estimates are consistent (as the sample size in-
creases the estimates converge stochastically to the parameter) and
asymptotically efficient {as the sample size increases, the variance of
the estimates approaches the minimal variance attéinable for aﬁy consistent
.estimafe of the pafameter', and the distribution of the estiﬁate approaches
the normal distribution). In the ﬁodel that we have proposed, the dis-
tribution on trial =n in fact depends upon the responses and reinforce-
ment events of all preceding trials.' Therefore, the statistic defined
by Eq. 14 is only approximately Xg—distributed. Its validity as a test
of goodness-of-fit is not absolute, and we cannot be certain of the

2
properties of our estimates. However, this "pseudo-X " is useful as a

12



rough index of the fit of the model, and as a means of discriminating
among elternative models. Furthermore, the proximity t9 the Xel dis~
tribution improves rapidly as the number-of trial.outcomes upon which
we are conditioning increases. . With the sbove qualifications in mind,
we will continue to refer to the statistic of Eg. 1k, and to similar.
statistics, as XE.. In assessing the significance level of the X2. of
Eq. 14, we shall assume thatfit is distributed on one degree of freedom
(df) when based on the dats of a single experimental group. There are
initially 8 df, one for each observed conditional probability. However,
only four of these observations are independently distributed since.
P(AllEjAk)+P{A2|EJAk) = 1. An additional degree of freedom is then
subtracted for each parameter estimate, leaving 1 &f. .

The minimum X2 procedure may also be used to obtain parameter
estimates from the second-order conditional data. In this case, it is

necessary to obtain the set of estimates that minimize

I

(15) 2 5 njk,em[P(AilEjAkEﬁAm) - P(AilEjAkEﬁm)]

1,3,k 4,m | P(Ai IEJ.AKEEAm)

‘Here n is the observed number. of E.AkEﬁA occurrences. As a
: 3 m :

Jk&m
2

test of the data from a single experimental group this X would be

distributed on 13 df; i.e., there are initially 2 X2 X2 X2 = 16.

degrees of freedom but three parameters are estimated from the data_

and X2 is therefore interpreted with 1655_= 13 df.

i3



Data Analyses in the Two-Response Case

Suppes and Atkinson study.

Suppes and Atkinson (1960; ch. 10) ran 3 groups of 30 subjects each
for 240 trials in a noncontingent two-choice situation. The groups dif-
fered with respect to the amount of payoff. Group 7 had no monetary
gains or lossesj Croup F gained 5¢ for each correct response and lost 5
for each incorrect response; and Group T gained or losit lOd, The values
of =w was .6 for all groups. Table 1 contains predicted and observed
k values of -P(Al) and of the first-order conditional probebilities, the
minimm X2 estimates of N, 8 and u, and the values of the minimum
XE. All observations are based on the last block of 80 trials.- The'

" model describes the conditional probabilities exceedingly well, whether
we merely compare the observed and predicted values or look at the values
of the miﬁimum XE. The mean absolute differénce between observed and
predicted values igs approximately .005 and the sum of 'X2 over the three
experimental groups is 1.85, which is not significant at even the 50%
level with 3df. |

The parameter estimates indicate that, under zero payoff, an incorrect
response is far more likeiy to result in a change of conditioning state
than is a correct response. Since u exhibits a more rapid increase
than & does over groups, the discrepancy between the effects of gains
and losses decreases as payoff increases. PFurther, the decrease in N,
the number of stimulus elements, with increased payoff suggests that the
subjects attend to fewer cues as motivation is increased. These conclu-
gions, that follow from the values of the estimated parameters, suggest

how the model may provide an interpretation of the effects of gains and

losses.

14



Table 1

Observed and Predicted Values, Paramefér Estimates
S 5
and Minimum X for the Suppes and Atkinson Experiment

(Observed values are given in parentheses)

Group
Z . F T

- .605 .648 695
Fiay) (.600) (.649) (.T00)

0T 792 . .855

7| E?A.l‘) (.709) (.79%) (.855)

- .53k , .603 .660
P(Al;EEA?L); (538) - (.601) | (.670)

) | 626 615 - .b2k
P(A1l$1%2> (.606) . (.613) | (.638)
| LU50 382 329
?(A?EQA L. D (.323)

RS 1.08 .09 .68
" .02 B3 . 1.00

5 .70 69 .95

N | %.90 2.4 1.90

- 15



(=4 or 'a Z al yaam' s s 'Ll y.'
‘Myers, Fort, Katz, and Sydam's stud

Myers et at (1953) ran 9 groups of 20 subjects for 400 trials in é
noncontingent two-choice experimeﬁt. Levels of =« of .6, .7, and .8
were employed and subjects gained or lost Oﬁ, l¢ or lO¢° The data
analysis reported here is based on trials 301-400. (Due to an error in
recording during one experimental session, the data of only 16 subjects
are available for the .6-O¢ group.)

The minimum X2 procedure described in the previous sgection was
applied to the first-order conditional proEabilities of the Myers et al
study with;one modificatidnq The estimates reported for each payoff
level in Téble_E are those that minimized‘a.sumrof X2 over the three
levels of %. Thus there aré 9 4f associated with each Xz value in
Table 23 i.e., twelve predictions were made on the basiSiof three
rarameters aﬁ each payoff level. As in the‘Suppgs and.Atkinson study, ¢
inecreases ﬁore rapidly than does -6 and  N decréases with increasing
payoff; unlike the results of that study; the statistics for the 1¢
and 10¢ groups are not Widely disparate, and this is reflected in the
closeness of the estimates'for_those groups. The minimum: X2 are
fairly large and - it appears that the model does not adequately
describe the data. We will congider this peint further when we lock
at the actual observationssand predictions.

Table 3 presents observed and predicted values of P(Al), obtained
by inserting the minimum estimates of & and u into Eg. 7. With the
exception of the .6-1¢ and .7-1¢ groups, the fit appears guite good;
the overall mean deviation of observed and predicted values is 1.6%.

At least for the O¢ and 10¢ groups, single values of @ give a

16



Table 2

Values of the Parameter and Minimum_Chiésquares for

the Myers et at Study

Payoffs
o¢ 1d 10¢
N 5.05 2.21 2.19
8 .82. | 1.00 1.00
o .13 83 | 1.00
X2 52,27 {U48.06 |2h.98
Table'5

Predicted and Observed Values of P(Al) for the
‘Myers et al Study ’

(Observed values are given in parentheses)

Payoffs .6
o¢ 627 . 749 .863
(.62k4) (.753) (.869)
1¢ 684 .835 .93k
(.653) (..8’(1) ,(.925)
10¢ 692 - 845 L9k
(.714) (.866) {.951)

17



reasonably good account of the data at three different levels of .
Despite the large X? values reported above,'this is an important
result. That adequate predictions of. P(Al) under payoff is not
trivial is suggested by the fact that several theories (Edwards, 1956;
Siegel, 1959; Estes, 1962) have béen developed for this purpose alone.5
Table 4 presents the observed agd predicted Tirst-order conditional
probabilities. The most notable asgpect of fhe table is the fact that,
excluding the .6-0¢ group, statiStics of the form P(A1|EJA1) are
accurately predicted; the major source of the large values of X
appears to be the failure to predict sﬁatistics Qf the form P(Al]EjA2)o
This conclusion is supported by the fact that a XE computed for the

16 EJA statistics is 13.23 which is not significant at the .05 level

1
on 7 df. There are at least two cbvious'explangtions for the poor fit
of the EJAE statistics: (a) it is possible that theée statistics
are unreliable since they are generally based on fewer observations

than the EJAl statistics (this argument might also be applied to the
data of the .6-O¢ group which are based on 20% fewer observations than
those of the other groups); (b) the model may require some modification
to adequately describe the stafistics that-are poorly fit in Table k4.
One argument against the second conclusgion is the fact that the rela-
tionship between observations and predictions is not consigtent; if

the defect was in the theory.rather than in the data, the pfedictions
might be éxpected to be.consisientiy too high, or congsistently too low.

However, additional experimentation involving:more trizls and subjects

is required to decide between these two altérnatives.

18



Table 4

Predicted and Observed Values of P(AllEiAj) for
the Myers et al Study

(Observed values are given in parentheses)

Payoffs = P, |EA) P(a B ) P(AIIAIAE) 2(a, |EA,)
.6 701 569 - .6hg .503 .
(.668) (.L8L) (.726) (.593)
of T -799 .680 .T53 ' .601
(.816) (.666) - {.ThT) (.571)
8 | .80 790 848 692
(.002) (.82k4) (.746) (.803)
b | 810 - | .61k - 6b3 356
(.818) (.609) (.613) (.336)
¥ .7 .9%0 .780 806 . | 475
| (.939) (.789) (.825) (.115)
.8 959 858 | .818 -505
(.94T7) (.856) (.974) - (.588)
6 | 837 655 67k 06
| (.849) - (.67l (.653) (.LoT)
104 T .52k 786 .803 Jhoe
' (.923) (.786) (.865) (.472)
.8 972 879 | .8%2 540
(.974) {.873) (.906) (.923)

15



Friedman et al study.

rFriedman et a1 (1963) ran 80 subjects for three sessions of 38l
trials each in a noncontingént two-choice éxperiment. No monetary pay-
off was involved. During the first two sessions, m was varied among
blacks of 48 trials. In the third session (following 48 trials at a
7% value of .5) subjects were fested for 288 triﬁls at a n value of

.8. "The analyses of tables 5 and 6 are based on trials 193-288 of the
.8 series. Parameter estimates were obtained from the first-order
éfatistics by minimiziﬁg the 22 of Egq. 14; Thesé estimates are the
basis for both the predictiéns of the first-order conditional probebili-
tieé of Table 5 and the second-order cohditiondl probabilitiés of
Table.6.r We have alsc investigated the possibility of obtaining
ﬁarameter estimates from the second—ofdér daﬁa‘by minimiﬁing thé X2
of Fg. 15; the results of the two procedufes differ very little, and
conséquently ﬁe present oﬁly the resulte based on péraﬁeter egtimates
for the first-order data.

....The first-ordef'coniitional statistics are fairly well fit; the
second-order statistics appéar to present a problem. The X? defined
by Eqg. 15 is 60.48 on 13 df an& several ﬁredictionslclearly deviafe
from the observations. The it is particularly poor for those statistics
that are based on the feweét observations whereas the deécription of

EAEA ) is quite reasonable. More

the more reliably basged P(AlE A B A

éxperiments prbviding large numbers.of obéervations are required before
we can conclude that the model fails to predict higher-order conditional
étatistics, However, these.reéults, together‘ﬁith‘other‘data (Anderson,
1963), suggest that prediction of response probabilities conditioned on

the outcomes of several trials is a major problem for models of this type.

20



Table 5
Predicted and Observed Values of P(AIIEBAR)’ Parameter

Estimates, and minimule? Value for the Friedman et al Study

Observed Predicted
P(a B 4) .89k 8%
P{AllEgAl) | LT 730
P4, |E4) 692 | '_.695
P(Al|E2A2) 407 __.h89 .
5 .50
n .0%
N 2.4k
x° o 9.68

21



Table 6
" Observed and Predjcted Values of P(A |E.A E A )
bl _ 1"k 1lm

for the Friedman et al Study

Observed Predicted
P(A1|E1A1EIA1) ( ;925 937
P(A, |E A EAL) e 803
P(AlIElAlEEAl) | 818 j .833
?(AllElAlEgAg) .610 : .559
P(A1|E1A2E1Al) LTy -, 763
15(4l ETEYS ) | 606 68
P(Al|ElA2EéAl). | -“,769 ‘.657
E(AllElAeEgAg) 523 : 621
ﬁ(AllEzAlElAl) | .80 | 770
E(Al]EEAlElAE) 603 : 623
E(AllEeAlEEAl) 595 | 662
f(Al|E2AlE2A2)” | .519 | '.590
P(AliEQAEElAl) | 600 .559
P(A1IE2A2E1A2) 483 Lahh
P(A1|E2A2E2Al) 5257' 452
P(AlrEEAlEgAE) .220 Ly

22



A contingent reinforcement study.

Thus far, all the studies considered in this section have involved
a noncontingent reinforcement procedure. ZIExperiments using the contin-
gent reinforcement procedure are relatively rare, and we know only one
such study in which monetary payoff was involved. 8Since only three
values of P(Al) are involved, our analysis hardly constitutes a test
of the model for contingent experiments. However, the results are en-
couraging. Atkinson (1962) ran 3 groups of 20 subjects each for 340
trials, with each correct response resulting in a gain of 5¢ and each
incorrect response resulting in a loss of 5¢, The groups differed with
respect to T which took the values .6, .7, and .8; for all groups
Lo equalled .5. Table 7 presents the observed proportions of Al
responses for the iast 80 trials. The predicted values were obtained
by inserting a least-squares éstimate of © into Egq. 6. The estimate
P = 2.1, results in a good acount of the wvalues of P(Al); the mean

abgolute deviation of observed from predicted is about 1%.

Analyses of the Three-Response Case

We will now consider an extension of the model to experiments
involving three responsges. BSince the only available data have been
obtained for noncontingent procedureé, equations will be presented only |
for that case. However, a more genefal statement ig easily obtained
following the approach of the previous section. For the noncontingent
cage, the axioms presented earlier result in the following transition

matrix for element k over a subseguence W of trials.
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Table T

- Observed and Predicted Values

a Contingent Reinforcement

of P(Al) for

Experiment

nl Observed Predicted
N 601 .592
T . .685 . TOh
8 832 .831

2l




1 2 3 1 2 3
Sj,_ 1-—8(1-7l) o 0 6(3.-71) 0 0
8, 0 1-8(1-7,) 0 0 8(1-7,) 0
8y C 0 1—5(1-73) 0 .o 5(1-7/5
LA BT 0 0 Loy -8(1-7)) 87, . 675'
Wy | o b7, 0 &7, 1—»'72-6(1{-72) 575
WB 0 | d. ug ;' 671 | a 672. | 1~ﬂ75—6(l-751=,

For this case we let 7i denote the probability of event _Ei, where
7l+ y2+ 75 = l° The states will Be_designated by numbers corresponding

to the ordering in the matrix, i.e., =1, ete. From Eq. 16 we

obtain the uj defined previously by Eg. 5:

o oy
where | .. |
D, = 75(17,) (175 D, = 2 (1)) (A-7,) (A7)0,
(18) by =25-r) 1y D, = 7,(1-7,)(17,) (17500
D, = 7%(1-71)(1—72) , D =_75(l«~71)(..l~-7é)-(1—75)<|> s

and again o = B/u,. Following the procedure for the two-response case

we may derive expressions for 1iim P{A
Y1— oo

5 n) = P(Ai), specifically
3
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P(Al) =u +uy
(19} P(AE) =u, + g
P(A5) = ug +oug .

Cotton and Rechtghaffen's study.

Cotton and Rechtshaffen (1958) report values of P(Al) for six.
groups, two having two responses available, and four having three
responges available., Values of P(Al) and standard deviations of
proportions for trials 286-450 are presénted in Table 8, together with
predictions derived from the model. A least-squares estimation proce-
dure yielded a value of © of 3.7; thie was then substitubed into
r Eq. 19 with the abpropriéte. 75 valueé to generaté the six predictions.
The average absoiute deviéfion of observed from predicted values is
less than l.h%, which ig quite small in view of the variability in the
proportions. It 1s particularly interesting to note tha£ the finding
that P(Al) increases as tﬁe numﬁer of choices increasees (see also

Gardner, 1957) is accounted for by the present model.

Cole's study.

.Cole (1962) ran three groups of human subjects under a noncontingent
reinforcement procedure. Two of the groups had three responses available,
with 7,'s of 2/3, 2/9, and 1/9 for one group, and 7;'s of 4Wg, 1/3,
and 2/9 for the second group; the third group had two responses avail-
able with ¥ _equal tq 2/5. Table 9 presents the observed and predicted
values of P(Al) and values of @ for each group and response. The
values of ¢ were compuied by sclving Eg. 19, and the observations were
based on trials EOl-lQOO,
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Table 8

Observed and predicted P(Al)_for the Cotton Rechtschaffen experiment

Condition Predicted Obgerved 8
P(Al) P(Al) P
60-L0 ' 6l Y~ P 1,118
60-30-10 . .658 658 112
60-20-20 671 - 660 0%
70-30 4 s 74 '  .099
70-20-10 83 .801 157
70-15-15 .78k . .805 .091
Table 9

Observed and predicted P(4 ) for the Cole experiment

Condition Response - Predicted Cbserved . P
P(4.) ‘ P(A.)
Ay -8hh .881 b5
2 2 1 e
T3 -3 : e : Tt e ell'
T -35-3 Ay, |- 109 087 3
A5 LOu7 .029 Rk}
A 512 53 .52
o1 2 A, 313 L2308 .ho
9 3 9
A L7h ©.165 .55
A .812 779 1,50
2.1 T | |
503 A, .188 221 1.50
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Averaging over responses and then over grdups, a value of ¢ of
.81 was obtained; substitution in Eg. 19 resulted in the predicted
P(Ai) of Table §. The model again correctly predicts an increase in
the value of P(Al) as_the-number of response alternatives increases
from two to three; but the discrepancies between observations and pre-
dictions are somevhat greater than they were for the Cotton and
Rechtshaffen data. This_is due to the difference in the average
values of @ for two and three choice data. If predictions are made
Just for the data from the three-choice groups (using a value of @
baged only on the obserﬁations for those groups) the average difference
between the observed and predicted values of P(Ai) is only .5%. It
is possible that different values Of, © are required for each number
of response alternatives. However, the fit for the Cotton and
Rechtshaffen data could aréué against this assﬁmption. Additional

experimentation involving varying numbers of response alternatives is

required for clarification of this problem.

Extension of the Model to Response Times

Despite recurrent attewmpts to develop an édeqpate theory of response
tiraes (Bstes, 1951; Buéh é.nd Mosteller, 1955, LaBélfgé-, 1959; .Luce, 1960)_
this dependent variable has proven more elusivé than response probability.
One attractive Teature of the weak-strong model is that it can be ex-

. tended to treat response times with the addition Qf only one assumption.
Furthermore, derivations of a vériety of stafisticé are extremely simple,
and estimates of response time parameters can be eagily obtained. To

facilitate the presentation, we will 1imit the discussion to the
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asymptotic case for the two-response noncontingent situation. Exten-
giong to more complex situations and to preasymptotic data follow
readily from the developments of this secfion.

The get of axioms previbusly presented for choice behavior are
still assumed to hold. Thus, we postulate that exactly one element is
sampied on each trial, that the element is either weakly or strongly
conditioned to one of the response alternatives, and that the condition-
ing state may change in accord with the previously presented conditioning
axioms. in addition, we require the following sxiom:

Response Time Axiom. " The random veriable Tn ‘denotes the response

time on trial n of the experiment and depends on the conditloning
state of the sampled stimulus element. If the sampled element is in
a strong stete of conditioning, then the distribution of response times
has probability density S(%) {qith finife mean s. If the sampled
element ig in a weak state of conditioning, then the distribution of
response times has probability density W(t) with finite mean w.

On the basis of the response time axiom and our choice model, a
number of predictions may be derived. Wé will next consider some of
these. Since all equations will be for the asymptotic case, the sub-

seript n with be omitted.

Mean Response Times.
B(T), the mean asymptotic response time obtained by averaging
over both Al and A2 responses is sgimply the weighted sum of s and

-W, where the weights are the probabilities of sampling from the two-

hypothesgized distributions. Accordingly, we have
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=
=

~
1

= (ul+uu)s+(u2+u5)w

(20)

s[xt_5+(l—1r)5] + wln(l-1)0]

ﬂ5+(l—ﬁ)5 + w{l-m)op

If we assume that e < w, which appears reasgonable, then it ig easily
rroven that the mean response time is greatest when = = .5, and
monotonically decreases as n  approaches one.

We next consider E(TIAi), the mean response time for an Ai
response. This quantity is derived as the weighted sum of s and w,
where the weights are the probabilities of sampling from the two
hypothesized distributions;  given that an Ai reésponse has occurred.
The appropriate equations are’

su. +
suq W,

1l

E{T/A)
1 ul+u2

srtw(l-7)P
i+ (L1=m )

s (1-)+wrp
i)

(22) I E(TIA2) .
Onece © has been estimated from the choicé'data, the pérameters g

and w may be simultanecusly solved for in Egs. 21 and 22@ Predictions
of E(T), E(T[Al), and E(T|A2) can then be made for any value of =,

If s <w, it can be shown that the mean time reguired for a

response ‘to occur is & monotone decreasing function of the probability
of the predicted event. Response time data from the Friedman et al
study are ambiguous with regard to this prediction. Response times

for the A regponse were slightly (but significantly) less than A

1 2
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responge timeg, ag predicted; however, response time 4id not vary as a
funetion of ‘ﬂ,u Data that are more clearly consistent with the pre-
dictions of this model are reported by Calfee (1963) whérfdﬁhd that
response times for rats decressed as =« increased, and that the pre-
ferred response Wés made more'éuickly than the less preferred response.
These data support the Weak—étrdng modei, and sﬁggest ﬁhét LaBerge's
(1959) neutral elements model requires revision. That model predicts
no differences in average A .

and A. response times, or in response

1 2

times as a functicn of .

We conclude this section by presentiﬁg‘eQﬁations for statistics
of the form E(T{AiEjAk), thé expected reéponse time of an Ai
regponse con triai n+i, given that it was preceded by event Ej and
response Ak on trial n. The general form-éfthe expression for

this statistic is

g . . PlW. |E.A
(23) E(T]|4,EA ) = P8, [Eghy) © O R4 o
St P(Ai[EjAk) .

In the above expression P(Si]EjAk) denotes the asymptotic probability
that an element is strongly conditioned to Ai on trial nt+tl given

_ . . h o . R _
that EJAk ocecurred on trial nj; P(WilEjAk) as a similar interpre

tation. Substituting in Eq. 23, we obtain the following expressions:
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(N-1) (eu, +wu )+(u ) [8(uy tugu )+, (1-p) 1
1%

E(TIAI hy) = (=) (uy 7,) L
(N-l)(sul+wu )+( ){su 1-8)+W[u18+u2(l-6)]}-
Uy
E(T]Al hy) = .
(Nwl)(ul+u2)+(—zi—;)[ul+u2 1-8)]
(2k)
wu56
T
TIAl 1Ao) =" s
(n- 1) () —2
pri 'U.2 5 U-J+
S'Lll+Wu2 ,
T|A1 o 2) - g

The expressions for the E(T|A2EjAk) are obtained by substituting

w, for Ugs u5_ Tor Uns and vice verse, in‘qu 24; €.8.,
1,k
Uy wu5

271 l) uh+u5 '

E(T|AE

Fxtension of the Model to the Differential Payoff Case

Thus far we have considered a model that is applicable only tc the
symnetric payoff case, in which the amount gained is the same for all
correct responses, and the amount lost i1s the same for all incorrect
regponses. We next consider an extension of the model to the nonsymmetric
payoff cage. For the two-responge situation this payoff scheme may be

represented by the matrix
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-
Al T w -x
Aé -y 2 4,

where the amount gained or lost is a Tunction of the resgponse-event
combination. Although an adequate description of data obitained under
such conditions would seem to be a prerequisite for a.generai theory
.of mofivafional variables; to date iittie proéress has heen made oh
the problem. Bush and Mosteller's‘"éxperimenter-sﬁbjéét—cdntréiiéd
events' model (1955, p. 286) is ap@liéable, but this aﬁproach léﬁds
to severe mathematical difficulties. Estes' "séahning” modéi (i96é)
involVés.simple bomputations, bﬁt oﬁly yields predic£ioﬁs of P(Alja
The same dbjectién may be‘faised,to Edwards'.”RELM" mbdei (1956)n .The
generglization of the wegk-sirong model that we will present is mathé—
maticaliy tractable; thé only complication beyond thé original model is
the need tonestimate one addifiéhal paraﬁetef. The variety éf predic=-
tions that follow from the original modei caﬁ also be derived.for the
exteﬁaed model. For these reésohs, the géneralized weak-strong model
merits congideration. However, it should be noted that the developments
of thie section are extremely tentative. An empirical evaluation of
the model is excluded at this time since there have been few experiments
involving differential payoffs, and these, while theoretically suggestive,
have involved too few trials and subjects to permit a test of the model.
We might extend the weak-strong model by postulating two values of
i (uw and uz), corresponding to the two gains, and the two velues

of B (SX and ay); corresponding to the two losses. That this
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identification of parameters has limited applicability is suggested by

data obtained from a matrix such as

E B
g5 -
a, (2 1,

For the parameter identification proposed above, El and E2 ghould
have identical effects upon the conditioning-state whenever the subject
mekes an A2 response. Furthermore, if a ld gain is assumed to be

reinforcing, the subject should absorb on A Both inferences are

o
contradicted by experimental data (Myers and Sadler, 1960; Myers and
Fort, 1961). A mechanism is requifed which permits the A, response
to be strengthenea of Weakened following a,l¢ géin, depending on which
event occurred. | o |

" The coﬁcept df'regretr(Savage,'l§5h) pfoVides'one.apprﬁacﬁ to the
problem just posed. Regret is the difference between the obtained

payoff and the maximum possible payoff’, given that event Ei Qccurs.

Thus, for the last payoff matrix presented, we have the regret matrix

E B
a [0 I
A2 6 0 .
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where y <w and x <z (note that x and ¥y are net necessarily

negative), we have

E E,
Ay Ty
A2 o 0 B

where the regret associated with an incorrect A regponse ig

1

(25} - r,=EW -y

and the regret associated with an incorrect A2 response is

(26) ' ry =2z -x .

Here, we define aﬁ:incorrect response aé Qne £ﬁét yields.a ﬁayoff léss
than the maximum possible payoff, given the occurrence of Eio

The notion of regret provides a basis for modifying the weak-strong
model in the following manner. We identify p with the probability
that zero regret results in the strengthening of a correct response,;

&, with the probability that r

1 results in the weakening of an.

1

incorrect Al regponse, and 62 with the probability that Ty regults

in the weskening of an incorrect A response. A minor change in our

2
system of axioms now suffices in order to derive equations for choice

behavior under differential payoffs, Axiom C5 is rewritten as follows:

C3'. If event E, occurs (i £ 3j), then (&) if the sampled element is
gtrongly conditioned to Ai there is a probability 6i that it becomes
weakly conditioned to Ai and (b) if the sampled element is weakly
conditioned to Ai there.is a probability Bi that it becomes weakly
conditioned to -Aj°
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For the revised axioms we may now obtain the following results in

the noncontingent two-choice situation:

22 _ 2 2
(27)
2 2 _ 3 2
D, = " (1-m)gg @y Dy = {1-n)7"9] ,
where
(28) ¢y = Bou Py = B/u

Substituting in Eq. 4 we have

T[5 + TE2(}-"]()EP3_

(29) ®(A)) =
_ 1 :c3+112(1_-n)cpl+:t(l-:r)2 Ecpl+(l-ﬂ)5 6-2

where & = $l/$2. Note that P(Al) is independent of N. Furthermore,
for the symmetric case v, =1

1 2
this condition Eg. 29 reduces to Zg. 7. Also, the following results

and therefore ¢l = ¢2; hence under

can be easily proved:

(i) P(4,) is bounded by zero and one. Specifically,

(=0) (‘_Z__L'i_)mo P(Al) =1 li_)mw P(Al) =0

(ii) For constant = and Py P(Al) is a decreasing monotonic function

of @1, As the regret associated with an incorrect A, regponse in-

1

creases, the probability of making an A, decreases.

1
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{i1i) For constant = and Py 5 P(Al)_ is an increasing monotonic

Tunction of we.' As the regrgt associated with an incorrect A2

regponse increaseg, the probability of making an Al increases. |
Several experiments have recently been performed (Myers and Sadler,

1960; Myers and Katz, 1962; Katz, 1962) involving the choice between

a "sure thing" and a risky option. The payoff matrices are of the form

El E2 | : El E2
- S -
Al W . W Al W
» and .
A2 1 1 AE -1 -1

Where El and E2 are equiprobable, i.e., n = .5. The major findings

are that (a) P(Ai)

is.always_greater when the payoff associated with
an A, vesponse is -1 than when the payoff is +1, and (p) as the
absolute value of w increases, P(Al) increases when thé A, pajoff
is +1, and decreases when the A2 payoff is -1. These results are
schematically represented in Fig. 3. The convergence exhiﬁited in
Figa 3 ig not consistent with the resulits for the symmetric payoff case,
in Which subjects approach the optimal strategy {always predict the
more frequent event) as payoffs ipcrease, lIn the‘stqﬁieg‘under discus-
sion, the optimal strategy is to always make the Al response when the
A2 payoff is +1; subjects incregsingly deviate from this strategy
as the emount risked increases.

Since the convergence effect displayed in Figure 3 does not seem
to be easily explained by existing thecries of decision behavior, it is

of interest to consider it in terms of the weak-strong model. Upon

converting the above payoff matrices to regret matrices, it becomes
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P(Al_)

0 { _ { _ i
+5 +10 +15

Figure 3. The proportion of . risky responses as a function of the
amount of risk, with the values of the "sure thing" alternative as
the parameter.
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apparent that r

- is less than ry ‘when the A2 payoif is +1; and

r is greater than r

2

1 when the A2 payoff 1s -1. Assuming that

6i is a monotonically increasing fgnction of Ty £ Wiil Bg greater
when the A2 payoff is +1 than when it is -1. Conseéueﬁtly, the
-1 éurve should lie above the +1 curve, as it does.

We next attempt to account for the convergence depicted in Fig. 3.

Ag w increases, both r ard r

1 5 increase, but the.rat;o Irl/r2

monotonically approaches an asymptote of 1. If Si is a negatively

accelerated function of r; then (a) if the A, payoff is +1, &

2
will decrease to an asymptote of‘.l, and (b) if the A2 paybff is -1,

6 will increase to an asymptote of 1. C(Consequently, the curves

should converge until they asymptote at .5. Although the above quéli—
tative déscription of the risk—taking data ié encouragihg, an adequate
evaluation of the model will require precise quantitafive analyses of

the data. When such analyses are available,.the relaﬁionéhips between
paramefer and regret values may be more coumplicated than we have suggested.
For ekample, a literal interpretation of our discussicn would suggest

that o should be invariant over different payoff matrices. This is

a doubtful premise, considering that such parameter invariance is often
difficult to establish over levels of . However, in view of the

dearth of theories dealing with the differential paypff case, if the

model even provides a reasonable account of data for a single group,

some progress will have been made.
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A Multi-Stage Model

As indicated earlier the "paftern" model of stimulus saﬁpling
theory would be regarded as a one-stage ﬁodein Similarly'the model
discussed in this paper is a two-stage ﬁodel, In this section, we
investigate the cbnsequences of generalizing the model so than aﬁ
elemeﬁt may be in cone of k stages of conditicning to a response.
The generalized model follbws leogically from the ﬁeak-strong model.
The Stimulus Axiom and'the'Response Axiom remain unchénged; the otﬁer

axioms require only the obvious modifications.

Conditioning-State Axiom. On every trial each stimulus element is

conditioned to exactly one response; furthermore, the element is in
cne of k stages of conditioning to that response. (An element in
conditioning state Cim is in stage m of conditioning to response

Ai where m=l,2,...,k and k denotes the strongest stagen)

Conditioning Axioms.

ce', If event Ei QCCUrs, then'(a) if the sampled element is in state

Cix it remaing so and (b) if the sampled element is in state C

(m % k) there is a probability u that it enters state C

im

i,m+l”

c3'. If event Ej occurs (i % j), then (a) if the gsampled element is
in state Cim (m'% 1), there is a proba%ility & that it enters state

o , and (b) if the sampled element is in state C,, there is a
1,m-1 il

probability & that it enters state le.

Figure 4 provides a schematic presentation of the transitions

among states for the two-response case. It may be helpful to compare

this representation with that of Fig. 1 for the weak-strong model.

ho



Figure 4. Possible transitions among conditioning states for the
k-stage model (r =2). '
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Expressions can now be derived for those statistice previously
treated in the X = 2 case. For the noncontingent two-response case,

it can be shown that

(31) P(A) =0 ug
m
where
D,
(32) U =T,
'.2 Dim
LM
cand
C ktm-1n, B k-m
Dy =% H(Lemel
(53
\k-m k+m-1
D, = (7@)" " {1-x)

These expressions can be evaluated to yield the foliowing equation:

where

o = w1 (" + [(1~x)p]") (L-n-7p)
(35)

8 = (1-1)"{(1-1) "+ (n9) ) [x= (1-7)0] .

Note that

lim P(Al) = T

Cp—>oo
(%6)

_ -1
lin P(4) = PRI Sk-1

l—ﬁ) }
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Thus, one consequence of introducing k is to increase the upper -
asymptotic bound on P(Al) and place it as close to 1 as desired
for = > 1/2 .

The form of the conditicnal statistics is also simple; the first-

order statistics are as follows:

A [BA) = (5D (gos) + 5
'o@ﬁ 5(o+p)
Py |Bph) = (59) () * § ““‘;‘L“l‘ar“““}
[ u,, B(aHp)

P(a) [B,,) = (0 (7p) -

We have applied the minimum X? estimation procedure to the first-
order conditional data presented previously for k =2, 3, 4, 5, and 10.
Génerally, the minimum X2 was smallest at k = 2 though there were
a few instances for which it was slightly less at k = 3. In most
instances the goodness of fit showed rapid deterioration as k increased.
For example, when the models were applied to the Friedman et al data?
the minimum X2 wag at a low of 9.37 for k =2, dincreased to 38.51
for k =5, and then increassed to 42,784 for k = 10. The increase
in X? appears to be due to the fact that for large k, the model
predicts more response.perserveration, following a correct response,
than actually occurs. In view of these analyses we are proane to ccnclude
that significant improvements in goodnesg of £it will not follqw as a

result of increases in Kk, and that two-stages generally will best
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describe the data. Assuming that this conclusion holds for future
analyses of data, it, of course, applies only to our particular state-
ment of the model. The guestion of k-stage models involving different

response or sampling axioms remains to be investigated.

Discussion

Several articles (Bower, 1959; Atkinson, 1961; Estes, 1960, 1962)
have recently demonstrated that a more molecular analysis of the
subject's pre-response behavior may prove fruitful in formulating =z
choice model. It is therefore interesting to note that at least one
such analysis of choice hehavior resulisg in the same equations derived
for the weak-strong model. Specifically, consider a model which
postulates that associated with each response alternative is a tendency
“ %o approach or aviod that alternative. Further assume that the set of
~ approach tendencies, and the order in which response alternatives are
congidered (or observed) determine the subject's choice on any trial,
and are themselves determined by the outcomes of preceding trials.

To formalize these notions let the function v, be the approach
tendency associated with response Akn When the subject observes the
kth alternative, he will make thét regponse if v, =1, or move on

k

+o obzerve gome other alternative if Vk = 0., The values of Vk for

the r-resporise alternatives will bé'represented by.a vector
V=< Vi Vgseess Vo > .. For exampie, 'V = < 001 > indicates that the

subject will approach A_ “when he cbgerves it; all other alternatives

5

will be avoided. We further assume that, in the time périod irmediately

preceding his chcice, the subject orients towards each response
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alternative: 1In some sequence, until he observes an alternative for
which Vk is'one,'or, ifrall vk's are zero, until he has observed
each alternative. 1In either case, the alternative chosen is the one
last observed by the subject. Thus, the subject will-choose the first
observed alternative for which Vi is one, or, if all values are zerq,
the last elfernative observed. The sequence in-which tﬁe‘alternatives
are observed onrany glren trial will be represented by the vector
0 =< ol, Ops=evs of> o The value of o 1nd1cates whlch responseu
will be dbserved at pesition .i in the obeerving eeqeence,.

With these concepts in mlnd we can deflne the condltlcnlng stete
of the subgect on any trial n of an experlment ae the vector
.Cn =<0, V> .‘ For example,.lf C | = << 12 >, < lO >> then the.
subgect 1n1t1ates the trial by observ1ng response Al and then makes
that response. If C =< 12 > , < 00 > the subgect flrst observes'

A

12 then A2 and terminates the trial by ch0051ng AE since both

vy and Vo equal Q.

To compiete the analysis we need some rule for describing changes
in Cn over trials. The following assumption seems reasonable: IF
response Ak occurs on a trial and is reinforced, then with probability

g the function w takes on the value one and that response moves to

k
the top of the observing sequence. If the response is not reinforced,

then with probability & the w

Xk function for that response becomes

zero and the observing sequence is reordered.
Given these assumptions it can be shown that for large n this
model and the weak-strong model are equivalent. For example, in the

two-response noncentingent case, if we let
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wm
il

< 12>, <10 >>

w
Il

21>, <01 >>

(37)

Wy

It

< 21>, <00 >> W

o = <<2L>, <O0L>>,

n

then the transitioﬁs among states is that given_by Bg. 2 and at
.ésymptote the predictions for the weak—strong.model are precigely
those ¢of the model outlined in this section. |

| .The implications of the appfoach thatlwe have Jjust considered are
broader than the facf that ﬁe achieverresulfs identical to those
derivablé from weak-strong axiomé. A number.of models may'bé generated,
starting with the notions Qf approach‘tendencies agd observing vectors,
if cne examinés varicus natﬁral modificatiéné of-the conditiohing and
responding assumptions that were sketchéd above. In view of the
ﬁossibility‘that some of-these ﬁodels will brovide_further insights
into cﬁoice behavior, this frame of reference merits further investiga-

tion.



Appendix A

Listed below are the expressions for the asymptotic joint probabili-

ties of the form P& for the wéak-strong

l,nEj,n-lAk,n—lEﬁ,n~2Am,n;2)
model (J,k,%,m = 1,2). The conditional statistics may be obtained by
noting that in the noncontingent case.

P(AiEjAkEﬂAm)
Pla[EmEA ) = Pr(E, ) 7r (B ) PUA, | B JPA)

where P(E. )} = n and P(EE} = (1-7n).

)

2 L
P(AEAEA) = ég (A+3(n-1)A%+(N-1)(N-2)4°)
PFAlElAlElAE) = &5 [u35+(N-l)A(B+2u5a)+(N;;)(N-e)A B]
P(AlElAlEgAl) = Eiiéfl {c+(N-1)A{A+ec)+(N;1)(N-2)A5]

P(AlElAlEEAE) = Eiiéﬂl {((N-1)AB[1+(N-2)A])

I

2 |
P(AE ASE A ) = 55 {(N-1)A[u+B+(§-2)AB])
. _

2
7 2 2
P(AlElAzElAE) = §§ {u56(l-6)+uu8 +(N-1) [2Bu, B+AD T+ (N-1) (N-2)AB™)

P(A B AT A ) = “(lé“) {u262+(N-1)[Aa(u2+u5)+Bc]+(N;1)(N-é)AEB}
N

P(AlEIAEEEAE) = Eiiéﬂl [u36(l-u5)+(Nwl)B(u36+A)%(N—l)(N-E)ABE]_

ey



PA B A E A ) = n(;;) ful+u2[l~5(l-u)]+(1\T—1)A(2AHIC)+(N-1)(N-2)A_3]
P(AE A E A ) = n(1-x)

1M M 2 {u55(1-5)+(1j-1)(Bc+aAu35)+('N-l)(N,E)AEB] |

'P(AlEQAlEgAl) - (1;2‘ [ul(1_62)+u2(1-5)2+5(1\I-1)Ac+(N-l)(N-E)A5]

P(ATAEA) = (1-0) (N-1)B[C+(N-2)A%]
1eee’ o2 TR

P(A B A B4 ) = “(;“) (N-1)AB[1+(N-2)A]

m(l-1)

P(AlEEAEElAg) = -—Né- (N-l)[3u55+AD+(N-2)AB] |

P(A.E.AE _ 2-x)® 2

P(AE, 2.2A1) = Z .(N—l)[BC+Au26+(N-2)A B] |

P(A.E A F.A ) = (2-m)° (¥-1)AB[1+(N-2)3]
r2aze’ 8 - e

where

17 2
B =z +uy
¢ = uy + u,(1-8)
D= u5(l-6) oy,

18



Appendix B

The values of njk presented in Table 10 are the total numbers
of asymptgtic trisls on which Ej and AE both occurred, pooling
over &1l subjects in each group. These values are the denominators
for the first-order conditional statistics-presenfed in the paper.

Values of n,

Sk in Table 11 are the numbers of pairs of asymptotic

trials contalining Ej and Ak on trial n and Eg and Am on

trial n-l. These values are the denominators of the second-order

conditional statisiics andlyzed for the Friedman et al study.

Table 10

Values of n3k for several studies

Experiment " Group - on ! n

Sl 21 12 - oo
Suppes and Z 1238 595 602 365
Atkinson
F 90C 656 537 307
T 1008 673 428 291
.6-0¢ 590 395 358 2Ly
.T-0¢ S0k b9 %56 133
.8-0¢ 1382 340 197 61
Myers ,
ot al 6-1¢ 771 516 4% 280
BT 1204 517 19k 65
(8- 1463 368 . 115 3k
.6-10¢ 828 582 349 221
. T=104 1202 515 193 TO
.8-10¢ 1489 393 85 13
Friedman et ai 4815 1166 1028 268

ho



Values of n.

Table 11

for the Friedman et al Study

50

Jkfm
Jkbm 'njkﬂm Jkém njkﬁm
1111 3435 2011 868
1112 585 2112 S 126
1121 699 2121 168
1122 82 2122 27
1211 ko7 2211 85
1212 . 259 22312 58
1221 225 2221 Th
1222 109 2222 - 50 -
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Values of njx are tabled in appendix B for all experimental
groups discussed in this section. Thus the data on which our
analyses have been based can be completely reproduced, and the.
interested reader may use the data to analyze alternative models.

If the investigator is only 1nterested in predicting P(Al), egti~
mates of ¢ can be obtained by direct solution of Eg. 7. The
procedure, and the resulting fit (which is better than that

”reported in Table 3) are reported by Myers et al (1963).

It is possible that in the typical experlmental situation the
subject decides on his response prior to the signal to respond.
Under these conditions response time, measured from the onset of
the signal, would reflect the speed of reaction to the trial
signal, and not choice time. A more sensitive test of response
time predictions might be made if subjects were permitted to

pace themselves; latency would be measured from the onset of

the event on trial n to the occurrence of the response on trial
n+ 1.



