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by
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Abstract

Séveral signal detectién experiments are analyzed in terms of a
modei that incorporafes two distinct processes: an activation process and
a decision process. fhe activaticn process specifies.tﬁé relation be-
tween eiternal signai evenfé and hypothetized sensorj sfateé of fhe
-suﬁjecta The decision proéess specifies the relation between fhe
sensory states and the observable responses.of thé Subject. Theracﬁiva_
tioﬁ ﬁrocess ig agsumed to be fixed throughout an expefiment, Wheréas
the deeision process is.viewed ag varying ffom ﬁrial to trial as a
funcﬁion of the particular.sequence of preceding evenfs. The changes in
the decisicn process are governed by a simple stochastic learning mechanism,

and the experimental studies reportied here are designed specifically to

test the adequacy of this and related representations.

lSupport for this research was provided by the National Aerconautics

and Space Administration.



I. Introduction

This papér examines a mcdel for cholce behavior in a two-alternative
forced-choice detection task. The model is restricbed to experimental situa-
tions where the subject is given feedback on every trial regarding the
correctness cof his response, and to situations with a simple outcome struc-
ture. Thue, the model has a restricted range of applicability, but for
appropriately contrived experiments it aﬁpears to provide an accurate account
ol the gross aspects of the data and certaln sequential'effects, The model
represents a speclal case of g more general theory proposed by Luce (1963);
it ig also very similar in most details %o a model of forced-choilce behavior
proposed by Atkinson (1963). The relation of the model considered here to
these other theories will be digcussed later,

The model postulates that the cobgervable reiations between stimulus
events and responses are g product of Ltwo processes: an activation proceés
and a decislon process. The activation process specifies the relation between
the external stimulus event and hypothetical sensory states of The subject.
The decigleon process specifies the subject's response in terms of his current
sengory state aﬁd information that he has acquired during the course of a
given experiment, Roughly speaking, the stimulus is fed into the activation
ﬁrocess which converts the pattern of external energy changés into sensory
information (sensory events); +the decision process then cperates on the
sensory information to determine a response,.

In the literature on signal detection,rsome theories have assumed a
continuum of sensory states (Green, 1960; Swets, 1961; Tanner and Swets,
 1954), whercas others have argued for a finite representation {(Atkinson,
Carterette and Kinchla, 1962; Fechner, 1860; Luce, 1963; Norman, 1964).
Further, scme thecories have agsumed that the activation process is static
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over.trials, whereas_others have proposed that it varies within certain limitg
from trial te trial_as a function of lmmediately preceding events (Atkinson,
1963). VOne pqint of agreement among all theories is that the decision process
;; dypamic, and may undergo change when the experimenter manipulates the
presenﬁation schedule or Qutcome structure. However, for a given experimental
schedule, some theories treat the decision process as fixed {trial-wise inde-
pendent), whereas others represent it as changing from:t?ial to trial as a
function of the particular sequence.of_preceding events, This latter way of

representing the decision process is an important feature of the model con-

sidered in this paper. The subject ig viewed as adopting a characteristic

pattern of decision making in each ©Xperimental situation by means of a simple
stochastic learnimg mechanism, The learning mechanism that will be examined
is similar to learning models proposed by Bush and Mosteller (1955)..

As noted zbove, we shall only consider defection experiments involving

the two-alternative forced-cholce design. Thus, there are two possible stimulus

presentations, one Qf which occurs on each trial: signal plus.noiSe in the
first temporal interval and nolse alcne in the second interval, or noise
alone in the first interval and signal plus noise in the second interwval.
After the stimulus presentation the subject responds "1" or "2" to indicate
which interval_he believes is more likely to have contained the signal.

To make métters concrete'we shall describe the experimental procedure
used in an acoustic experiment involving the two-interval forced-cholce design;
data from this experiment Will_be presented later. Band-limited Gaussian
nelse was presented binaurally in the subject's headphoneg throughout a test
session and the signal was a 1000 cycles per second sinuscidal toﬁe; the
tone was presented for 100 milliseconds, including equal fall and rise times
of 20 milliseconds. The subject was seated before a disblay,board}j On each
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trial three lights flashed on briefly in succession: a red light, an amber
light, and another amber light. Each light was on for 100 milliseconds with =a
500 milligecond delay between each successive on period. The red light was
simply a werning light, while the amber lights defined two obgervation inter=.
vals., The onset of the signal occurred simultaneously with the onset of one
of the amber lights.\ After the second amber light went off, the subject had
2.5 seconds to indicate his response by pressing a push butten located under
the appropriate amber light. At the conélusion of the regponse pefiod, a
green light flashed on for 700 milliseconds above the correct response button.
There was a 1.5 second intertrial period, thus each trial lasted for 6 seconds,
A typical experimental session ran from 300 to 500 trials (thirty to fifty
minutes) .

With this experimental procedure in mind, let us introduce some notation.
The presentation of a s=ignal plus noise in the first interval and nolse along
in the secoﬁd interval on trial n will be denoted. as Sl,n’ and the presenta-
tion of'nqise in the first observatioﬁ interval foilowed by signal plus nocise
in the gecond obsgervation interval as S . Further, the gubject's responses

2,n

will, be denoted Al and A2 n to indicate which interval he reported

k] 2>

contained the signal on trial n. Finally, El n and EQ " will denote the
> 2

occcurrence of an event at the end of trial n IiInforming the subject that

stimulus S1 or 82, regpectively, was presented. Thus
Si,n = the presentation of stimulius Si on trial n,
Aj,m = the occurrence of response Aj on trigl n, .
Ek,n = information event at the end of trial n ipdicating that j
stimulus Sk wag presented, /
Each of the “indices i,. j, end k can take on the values 1 or 2, :

In experiments of the type described above, the following variables can
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be manipulated: (&) physical parameters of the situation; (b) presentation
schedule of signals; (¢) informstion feedback; and (4d) outcome structure.

The presentation schedule refers tc the scheme used to generate the sequence

of stimuli. In generasl, experimenters have adopted a simple probabilisgtic
schedule for presenting stimuli; nemely, to let the events Sl and 82
form a binomial sequence with parameter 7. However, more complex schedules
have been used; e.g., the stimulus on trial -n can depend on the stimulus

on trial n-k, the response on trial n-k', or both (Friedman and Carterette,

1964} . Generally, an analysis of the simpler schedule is sufficient. for mpst

purposes; ‘Manipulation of the physical parameters refers to any change in the
Physicel aspects of the eXperimental situation; in parbticular to changes in
the level of the baékground noise and/or the level of thelsignal. The nature

of the information feedback may. also be manipulated. In the experiment

described above, the subject was always given information regarding the
correctness of his response, but one can omit such information,; or even give

false information. The last variable deals with the outcome structure of

the experiment. In general, the outcome structure of a psychophysical ex-
periment is specified by giving the subject a payoff function; i.e., a list
of rewards and renalties that he receives depending on what he does underrthe
various stimulus conditions. |

In thig paper we ghall refer to experimental manipulations that involve
all four of these variables, but by and large our analyses will be concerned
with & very special case of the two-alternative forced-choice design. The
pregentatlon schedule will be a binomial sequence with a parameter ¥  and .
the outcome structure will involve no explicit payoffs. The subjects will
slmply be instructed tc make a correct response as often as possible., Further,
on each trial the subject will.be given information regarding ithe correcitness

5



of hisg response.
The basic dependent variable. is the probability of an Aj respcnse on
trial n, given that stimulus Si occcurred. The four outcomes are represented

by the matrix

Al,n AE,n
: Fr(A
P o Sl,n e l,nlsl,n) Pr(AE,nlSl,n) (1)
1
' SE,n l-Dr(tt\‘l,:n}82,1’1) Pr(AQ,nISE,n?

This matrix will be called the performance matrix. Note that the rcws of the

matrix sum to cne, for on every trial the subject makesg elither an Al or

A2 response, Thus, if one entry in a row is known, so also ig the other.

 Typically the performance matrix is specified by giving the entries in the

first column; namely Pr(A; | s In the literature

o l,n) and Pr(AlJn|S

2,n)'

the occurrence of an Al response to an S

the occurrence of Al_response to an 82 stimulus is called a false alarm.

1 stimalus is called a hit, and

We shall use this terminclogy, denoting them as Hn and Fn; il.e.,

)
).

Fixing Pr(Hn) and Pr(Fn), then, completely specifies the performance matrix.

pr{A, |8

Pr(Hn)

1,n'"1,n

1

Pr(Fn) Pr(A, |sS

i,n" " 2,n

Other quantities of.interest can be defined in terms of the hits and
.false—alarms. Frequently we want to know the probability of an Al response
on trial n independent of the stimulus event; namely,
I (2)

Alsc of interegt is the probability of a correct response on trial n (which

Pr(Al,n) = Pr(Hn)Pr(Sl,n) + Pr(Fn)Pr(Sg,n

we denote as Cn):

) + [1-Pr(F )iPr(s, ) . (3)

1 1l,n

Pr(Cc_) = Pr(Hn)Pr(S 2,n



II. Assumptions and Ruleg of Identification

Activation and Decision Procegses.

o - The model assumes that orne and only one sensory state can occur on each

trial of the experiment. The sensory states will be denoted as =

l,

Sps 33, »o. o We do not suppose that the same sensory stais necessarily

SO,

results whenever a particular stimulus is presented, but rather that the
state is determined by a random process. The activation process on triai

n  of an experiment can be repregented by the stochastic matrix

SO Sl 52 e SX
oy
e e ed) el
A. = .
A GO GO CY . (0)

o %0 851 oo 0o Boy d s

(n)

where aij denotes the probabllity of eliciting sensory state s. on
trial n given stimulus Si cn that trial. Similarly, the decision process

can be represented by the matrix

] Ay A,

(n) (n)

8 191" Yoo

(n) (n)

S R

_ (n) (n)

Dy =8 |97 - 95

. (n) (n)
Sx ;dxl : dx2 a ?

where déﬁ) ig the probablility of eliciting response Aj cn trial n given
sensory state s; on that trisl. Then, the pérformahce matrix specified by
S ? Eg. 1 ig obtalned by taking the product of the activation matrix and the
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decision matrix; i.e.,
P =AD .
] - - -lles]]
The model that we ghall exsmine postulates three sensory states for the

two-alternative forced-choice task:

SO = no detection
Sl = detection in observation interval 1
8, = detection in observation interval 2.

Further, the activation process and the decision process are defined by the

following matrices:

50 81 5o
B 1-0 g .0
b = 1 . _ (%)
82 1l -0 0 -
Al AE
0|Pn TP
an = 51 | 0 (5)
82 O 1 .

There are several points to note abogt these matrices. First, the entries

in én. are constants independent of the trial number; thug the sensory
process is assumed to be fixed over gll trials of the experiment. In contrast,
the declsion process may vary as a function of the frial number,_and this
dependence is indicated by affixing the trial index n to p. Also, note

that = can ccecur only ift S is presented,-and s can occur only if 82

1 1 2

is presented. Thus, these sensory states have an urambiguous relation to the

stimulus, since the signal event can be inferred with probability 1 when 8

or s, oceur. However, sensory state g is amblgucusly related to the

O

stimulus, for it can occur following either signal event. The parameter o
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characterizeg thig stimulus ambiguity'in the output of the sensory sysﬁem.
Both loss of stimulus informstion due to external-noise and loss due to
limitations on the resolving power of the sensory system are summarized in
the parameter o. Thus o may be interpreted as a measure both of the

phyéical stimuius and of the subject's sensitivity; we shall refer to o

as the sensitivity parameter.

The decisicn matrix En' reflects the relative ambiguity of the sensory
states, If the subject's instructions are fto make an Ai' respdhsé‘given'an'

Si stimulus, then the correct responsé ig completely determined when an- 84

or Sg sengory state occurg. However, the subject faces a dilemma if he must

make a response‘on the basis of s either stimulus could have evoked s

03 OD

" 5o the subject needs some strategy by which he can resolve the ambiguity and
select a response. The quantity pn' ig & meagure of the subject's tendency
to resolve the ambiguity by meking an 'Al response rather than an Aé; pn

will be referred to as the response bias on trial n.

~ As indicated earlier, the parameter o representé the subject's sensi-

tivity to the signal and pn is a response blas more or less under the
coﬁtrol'gf the subject. Of the experimental variables discussed earlier,
we assume that the presentation schedule, information feedback, and the
outeeme structure influence P> but do not affect the value of the sensi-
tivity parameter. Also, we assume that the sensitivity parameter for a given
subject is determined solely by the physical aspects of the experimental
situation. It is, of course, necessary to show experimentally that these
interpretations are correct, and to examine how the parameters o and P,
are related to the physical. characterigtics of a given experimental situation,

In order to see how the sensitivity parameter and the bilas parameter

interact let us examine the relation between hits and false alarms as one or
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the other of these parameters is manipulated, Taking the product of the matrices
in Eqs. 4 and 5 yields the performance matrix En for thig model. The entries
in the first column of En are as follows:

Pr(Hn) = (l-—a)pn + (6a)

(L-a)p. . (6b)

Pr{F ) n

n

If the sensitivity parameter o is held constant and 2, is manipulated,
sn exchange relation is established between ?r(Hn) and Pr(Fn); if one
probability is changed the other is also, and in a predictable way. To find
the equation of this relation, we eliminate P, from Eqg. 6 yielding

Pr(Hn) =0 + Pr(Fn) . (7)
Thus, if o is held constant (fixed-signal and nolse lgvels) and Py is
forced to vary (menipulations in the presentation schedule, Qutcome structure,
etc.), the relation between hits and false alarms should be characterized by
a linear function with slope 1. . Plots of the relation between Pr(Hn) and
Pr(Fn) under experimental conditions where the signal to noige ratio is held
“fixed and other variables are allowed fo vary are often referred to as recelver-
operating-characteristic curves, or more simply. as ROC curves. Generally
Pr(Fn) is. plotted along the abscissa and Pr(Hn) along the ordinate. When
thig is the casge, the theoretical ROC curve intersects the ordinate at a

point whose value is o3 ag p goes from zero to one, a straight line is

1
traced from the point (0, o) to the point (L-o, 1).

Ir p ig held constant and the sensitivity parameter changed, there ig
n

. a well-defined relation between hits and false zlarms. Eliminating ¢ from

. n
Pr(Hn) =1 - Pr(En)L775~—~

I

Eg. 6 yields

(8)
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Plots of the relation between Pr(Hn) and Pr(Fn) when p  is constant

and o is varled are called iso~bias curves, As o goes from one to zero
we trace out an iso-blas curve that goes from the point (O, 1) +to the point
(Pn; Pn)-

Learning Process

Ag indicated earlier, . am important feature of the present analysis is to
represent changes in the bilag probabllity in terms of a learning process of
the type proposed by Bush and Mosteller (1955). We assume that the bias on
f.i trial n+l ig & linear function of its value on trizl n. Specifileally, if

s, occurs and is followed by B (i.e., the experimenter informs the subject

0 1

that the signal was in the filrst interval) then P, will increase. If 8

occurs and is followed by information event K., then 2 willl decrease.

25
For all other contingencies no change will occur in D, These statements

can be summarized as follows:

(l-e)pri +6,. if s, & E

O,n 1.n
= ~-g" i E ‘
pn'l‘l (l 6 )an lf SO,Il &’ 23]-’1 (9)
P otherwise,

n}

where 0 < 8, @' < 1.  Justification for this equation is postponed until later,
We now want to derive 'an expression for the expected value of p, as a

function of the presentation schedule and the senslitivity parameter. Recall

that ¥ 1is the probability of an 8. signal event and 1 - ¢ 1s the probability

1
of activating sensory state By given either Sl or Sg. Hence
P . . . = l—
| sy o & By o) 7(1-0)
Pris, , & B, ) = (1-7)(1-0)
Pr(otherwige) =0 . -

To compute the expected value of the blas probability on trial n+l, we simply
welght each of the posgsible outcomes listed in Eq. 9 by 1ts probability of

11



occurrence given above. That is, the expected value on trial n+l given a

fixed value p on trial n is
n

)

.
(pn+l

If

7(1—0){(l-c)pn + 9] + (1-7)(1-0)(l~9‘)pn + op,

(1 - (1o)ley + ' (1-y)D)p, + o7{1-0) .

Without . going into the mathematical details, it can be shown that D, in the
above equation can bhe replaced by its expected value. Consequently. we have
© a linear first-order difference equation in E(pn) wnoge solution is

T s L

(o]

]

B(p,)
where

Y

Poo = roT (l—yjcp ’ (lO)

G =1- (1-0)[6y + 8'(3-7)1

and 9 = %T' Note that pm,_which is &ggaE(pn),'does not depend on the

absolute values of 9 and &’ bub only on their ratio,

Combining the results in Eqs. 6 and 10 yields

o+ (1-0)lp, - (pm~pl)Gn'l] (118)
n-1,

Pr(Hh)

pr(F ) = (1-o)lp, - (p,-p))C . (11®)
From these equations it is clear that hits and false alarms will depend on

221 at the shtart of an experimental session; however, over triazls the subject's
performance will change at a rate controlled by the guantity G and at
asymptote will be determined by o and P The change in performance pre-
dicted by Eq. 11 is a well-known experimental phencmenon. Generally, however,
most research workers have tended toc lgnore thé changes that occur at the
beginning of an experimental session, and instead have concentréted on an
gnalysis of data sfter performance has settled down to a stable level. For

the experiments znalyzed in this paper we shall adopt this policy; to do so

makes matters simpler because fewer parameters need to be. estimated.
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And, for the asymptotic proportion of A

"Since asymptotic performance will be stressed in subsequent discussions,

the followingz notation will be useful:

ﬂyE%mPr(Hn) = Pr(H)
. . : _ D
H;Ewar(Fn) = Pr(¥) .

That is, asymptotic expressions will be indicated hy simply deleting the

trial subscript. Making the appropriate gubstitutions in Eg. 11 yields

Pr (H) =0+ ;—él%%%%ja (12a)
Pr(F) = —io0)7 (120)

Bimilarly, for the asymptotic proporiion of cerrect responses we obtain

(see Eg. 3)

1-0)y{2y~1)
7 + (1-7)o

Pr(C) = o + (17) (1) + & . (13)

1 respornses (See_quVE)

Pr(Al') = Y0 + 7_+L(j(]-._c-j’27rcﬁ . : _ (14)

Related Models

'The model described in this sectiop ig very similar to one proposed by
Iuce (1963); 'Hig article presents a theory of signal detection that is appli-
ceble to é'wide range of experimental procedures including both yes-no and the
forced~choice designg. When the theory is applied to the'twonalternétiVe
forced-choice experiment a ﬁodel is obtained that has four sensory states.

There are four such states, because it is assumed that in each observation

'interval a hypothetical event D or D will cceur; hence, for a two-interval

problem, the sensory states are the ordered pairs <DD>, <DD>, <DD>, and

<DD>. The D event will occur with prébability g when a signal is pre-

'sented,”and'with probability -q' when the signal is not pregented, Further,

the subject alWays‘mékes the’ A. response when <DD>. oceurs, never when

L
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,<ﬁD> occurs, with probability v when <DD> occecurs, and another probability
v, when <DD> occurs. These assumptions can be represented in matrix form

as folliows:

<DD> <DD> <DD> <DD>
! qq' g(l-q") (1-g)q! (1-g)(1-q"
Ty ja'a q'(2-9) (1-a)a  (3-q')(1-g)
, Ay A,
D> v 1-v |
kel n
<DD> b1 0
D= _
D> o 1
D> W 1w .
—n B

.Luce also postulatés that the blas parameters Vﬁ and L undergo trial-by-
- trial changes of the form specified by Eg. 9.

When g¢g' =0 the event D will never occur in the absence of a signal,'
and then the above mairices reduce to those presented in Eqs. L and 5 with
P, =W, and o = ¢, Under these conditions Luce's model is precisely the
-gsame as the one ﬁresented here. Although we will not present the analyses,
it can be shown that the.fit off the model cannot be gignificantly improved
by letting ¢' ©be nonzero for the data treated in tThis paper.

The model proposed here also 1g very similar to a gpecial cage of a theory
proposed by Atkinson (1963) and Atkinson, Carterette and Kinchla (1962). The
difference ig that thelr bias process was formulated in terms of the mmlti-
element pattern model of stimulus sampling theory (Atkinson and Estes, 1963).
However, the two models make identical predictions for all of the statistics
analyzed in this paper, and differ only on certain predictions such as

i



sequential statistics that depend on previous responses. It should be polnted
out that although both ILuce's theory and.Atkinson‘s reduce to essentially the
same model in the two-alternative forced-choice case, they make markedly
different predictions for yes-no experiments and for forced-choice experiments
with more than twe intervals. |

III. Data Analysis

We now examine data collected from .eight subjects in the forced-choice
acoustic experiment described earlier. In this study the signal and nclse
levels were held consbant throughout the experiment and the subject was always
given information at the end of each trial regarding the correctness of his
regponse. The only experimental manipuletion involved the use of three
different. presentation schedules, The probability, 7, of an Sl event took
on the followlng values:

Bchedule A: ¥ = .25

Schedule B: v .50

Schedule C: ¥ = ,75.

Test gessions of 350 trials each were run.on consecutive dajs. Fach day a
subject ran on one of the three scheduleé for the entire session. in succeg~
give 3-day blocks a subject ran one day on each of the three schedules; within
each 3-day block the order was randomly defermined. The expériment involved

15 experimental sessionsg and therefore each schedule was run on five separate
days. |

Table 1 presents the proporiion of A responses on both Sl and B

1 2

trials over the last 250 trials of replications two through five of each
presentation schedule; thug each estimate is based on 250 x L = 1000 trials.
The firgt replication of each presentation schedule has been deleted, because
we view the subjéct as adapting to the detection task on early days of the
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. Predicted and Observed Proportions of Pr(H), Pr(F),

Table 1

Pr(C), and Pr(4,)

(The observed proportiocns are in parentheses.)

Schedule A

Schedule B Schedule C
Subject . :

pr(H) Pr(F) Pr(c) P:(Ai) Pr(H) Pr(F) pr(c) Pr(Al) Pr(d)  Pri{F)  Pr(c) Pr{Al)

E 601 L15h 185 L2666 Thh .297 7ok .521 877 4300 .Boo 765

: (.622) (1.63) (.783) (.278) | (vrah) (.260) (7.27)¢ (.487) (.890) (.462) (.802) (.783)

2 .543 125 g92- L2290 L680 .262 709 0 LBTL 832 Lk 7L 79T
(.529) (.136) (.780) (.a3h) | (Lesk)  (.2b9) (.roz) (Lb51) | (W8sk)  (.3g7) (L791) (.7k0)

3 597 .106 .820 229 | .716 .225 STU6 Ao .84 .358 97 e6

: (.626) (.107) (.826) (.237) | (7o7) (.210) (.748) (.h459) | (.8k2) (.384) (.786) (.728)

g S .529 12 787 .ef7 669 267 .701 .Le8 825 heh 763 L725

I (517)  (a2e) (L788) (.221) | (L6h9) (.2h2) (.7o3) (Lhh6) | (.857) (.hsh) (.179) (.756)
® 5 520  .120  .790  .220 658 258 700  .h58 816 .h16. .78 716
(.546)  (.1k2) (.780) {.243) (650} (.2k0) (.7o5) (.4bs) | (799 (.k13)  (.746)  {.703)

6 .5k2 Lkl 780 2h1 LE89 287 Redex} 1188 . .Bhk1 Ao g71 ThL
(.sh7)  (L139  (.783) (.2k1) (.680) (.279) (.701)  (.479) (:8k7)  (4s1)  (L772)  (L748)

7 618 ..125 .810 .249 Jhh L2520 LTh6 408 872 379 809 .7k9
(.627) (.136) (.805) (.259) | (.7%2) (.251) (.746) (.496) (.86h) (.369) (.806) (.7%0)

-8 .570 .125 .799 .236 704 .258 723 481 .8l Ao1 785 735
(.552) (.108) (.807) (.219) (.e87) (.2uk)  (.722) (.465) (.887) (.438) (.806) (.775)

Average .565 .128 795 .237 | 700 263 U719 482 845 Jo8 782 735
- Crow)  (ana) | (Le85)  (.2hr) (r19) (.k66) | (.855) (.ha1) (.786) (.7h6)

i(.571)

(.132)




experiment and prefer to treat his data only after he clearly understands
Jthe experimental routine and ig well experienced. Also,'the first 100 trials
of each ol the subsequent experimental sessions were deleted because, as
noted earlier, we shall confine the analysis to asymptotic performance.

In this experiment the signal and noise levels were constant over all
sessions and only the presentation schedule varied. Therefore, o should
be fixed througﬁout the experiment, but p,_ should vary with changes in 7.
It has slready been shown that in theory hits and false alarms shouwld fall on
the straight line

Pr(H) =g + Pr(F) .

We now wish to £it this eguation to the three data points corresponding to
presentation schedulgs_A, B, and C, Figﬁre 1 presents plots of - Pr(H) and
Pr(F) for individual subjects. In order to fit the above equation to the
three points for & given subject, we use the method of least squares; i.e.,
we select the value of ¢ so that it minimizeé the sum of sguared deviations
between observed.values and those predicted by the above equation. Applying
the least squares method yields the estimates of o that are given in Figure
1l; these estimates were used fo generate the ROC curves'displéyed in the
Tigure. DBy inspecticn of the figures we see that there is good agreement
hetween the cohserved data points and the predicted ROC curves. Recall that the
signal and noise levels were sel at the same values for all subjects and con-
gsequently variations in ¢ represent inter-subject variations in sensitivity
level. The maximum sensitivity level is displayed by Bubject 7, with
o = .492; whercas the minimum sensitivity level is displayed by Subject 5,
with o = ,400.

We now evaluate the blas process with regard to the data presented in

Table 1. First, however, note that if 7y and o are fixed in Fq. 12 and
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¢ is varied from O to «,, then the point [Pr(F), Pr(E)] moves slong an
ROC: curve and approaches the lower-left point (0, ) as ¢ —>«, and the
upper-right point. (l-o, 1) as @ - 0. Stated differently, no matter where
the point may fall on the ROC curve (for fixed values of ¥  and o), there
exists a corresponding value of @. Hence, if the three observed points
[Pr(F), Pr(d)] in our experiment fall on a straight line with slope 1, then’
perfect fits of the data can be obbained by estimating separate values of o
for each presentation schedule.

Performing separate estimates of ¢, however, would violate our original
intentions. In formulating Eq. 9 it was assumed that the parameters 6  and
6' characterize-a subject's trial-to-triai adjustments to stimulus and informa-
tion events, and do mot depend on the overall presentation schedule. The |
values of & and &' may vary from subject to subJect refleeting individual
differences; however, for a given subject 6 and &' are assumed. to be
fixed and invariant with regard to the presentaéion schedule and the signal
intensity. Farlier we requirgd that ¢  Dbe independent of the presentation
schedule, and now the same constraint is placed on ¢. Thus for each subject .
we want & single estimate .of ¢ which then can be used to mgke predictions
for all three presentation schedules.

‘To obtain an estimate of ¢ we use the chserved proportlen of Al
regponses given in Table 1. Eq. 14 gives the theoretical expression for

Pr(A solving for o yields

)
- 7(1-0) o
PR - o) TT-y

For each presentation schedule we have substituted the estimated value of o

and the observed value of Pr(A in the above eguation to obtaln an estimate

1)
of @. For example, for Subject 1, o = .4A7, %%(Al) = .278, and ¥ = .25

.



on schedule A; hence substituting in the above equation yields &A = 777,
Similariy $B and @C can be ccmputed using the appropriate values of ¥

and Pr(A To obtain an overall estimate of ¢ Tor each subject we have

l)°
taken the average of the three estimates; namely

B =318, + 8y 8]
The various estimates of & are presented in Table 2. Note that the value
of % averaged over subjects is somewhat greater than one; indicating that
6' > 8. The interpretation of this result is that the E2 event has a

slightly greater effect on increasing the probablility of an A2 response

than the &

i1 event has on increasing the probability of an Al response.

Using the estimates of o and ¢, predictions can be computed for

_Pr(H),' Pr(F}, Pr(C), and Pr(a from Egs. 12-14. These predicted values

.
and the corresponding observed guantities are presented in Table 1, Also in
Fig. 1 the predicted and observed values of Pr{H) and Pr(F) are plotted
in the ROC space. In this fiéure the predicted point for each presentation
schedule ig at the intersection cf the computed‘iso-bias curve and the ROC
Ccurve,

By and large, the correspondence between predicted and observed values
is very good. Only Subject & shows a systematic discrepancy between predicted
~ and observed guantities. For this subject @ = 1.148 and hence Pr(Al)
should be about .236 for schedule A and about 7.735 for schedule C, However,
what we observe ig that Pr(Al) overshot 1ts predicted value for:schedﬁle C
aﬁd went below its predicted value for schedule A. To a degree, this subject's
performance deviated from the ftheoretical values in the direction of optimiz-
ing the probability of a correct response. Specifically, consider‘the func-
fion ifor the probability of a correct response; namely
Pr(C) = o + (1-clyp + {i-7)(1-p)]. For a fixed o, to maximize this

18



Table 2

Estimates of ¢

Subject o B, Py Py
L .860 LTTT 1.099 705
2 1.219 1.162 1.400 1.096
3 1.265 1.155  1.390  1.251
b 1.238 1.324 1,446 . LO45
5 1.329 1.565 1.4hg  1.472
6 1.083 1.085 1,147 1.018
7 1.016 LO1h 1.028 1.105
8 1.8 1.38%  1.284 75

Average 1.145 1.108 1.280 1.046
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function the subject should set the bias parameter as follows:

, 1if 7>

ASTESTR VTR

w0, 1if y <

When v = % any value of p ylelds a maximum, If a subject adopted the

Strategyrspecified by the above eguation, then the ROC curve would reduce

o three points; one at (O? g) for vy <-%, another at (l-o, Q) for

'y > i, and a third point for the presentation schedule where 7y =

2 . The

T

behavior of Subjeﬁt & tends to move away from the theoretical prédictions

in the direétion of maximization, but of:course to nowhere near the.extent
indiéated.by the. above equation. It is our conﬁention that if monetary
payoffs for cérrecf regponses and penalties for incorrect responses were
introduced into the experimental sitﬁation, then more éubjects would tend

to deviate ffom the theorétical values, the deviation being in.the direction
of optimizatién. Thus; under conditioﬁs cf monetary payoff-the model would
have to 5e generalized To acéoﬁnt for such effects.. We shall return té a

digcussion of this point later,

Time~order Effect

In the forced-choice detection task the terminology time-order effect

is used to refer to the fact that subjects generally are more accurate in
detecting signals embedded in the second observation interval than in the
first interval. For example, on schedule.B (which has Sl and 32 events
oceurring egually often), every subject had a higher probability.of being
correct when the signal was in the second interval than in the first interval;
i.e., Pr(A1|Sl) < Pr(A2|82), In terms of the present analysis there are

two possible explanations for this time-order effect. One is that the bias

‘regponse. Hence.when scnsory state s

parameter tends te favor the A o

2
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is activated, the subject makes the A, response more frequently, which

2
ingures that he will have a higher probability of being correct on 82 than
on 8., Another possibility is that the time-order effect occurs because

1

the sensitivity level changes from one observation interval teo the next;
specifically, that there are two sensitivity parameters 9y and 9y

assocliated with the two intervals and that 9y > aq -
Thus a time-order effect can be accounted for by postulating az bias

process that tends to favor the A

> regponse, or by postulating a sensory

mechanism that is more sensitive to stimuli presented in the second observation
interval, The firgt argument explains the time-order effect in terms of the
deciglon process, whereas the second accounts for the effect in terms of the
activation process. Both of these éxplanatioﬁs are tenablé and one would

like to have some rationale for gelecting between them. Forbunately the model
makes quilte different predictions depeﬁding on ﬁhich process is used to
account for the time-order effect. If the explanation is in terms of the

bias function {as was the case in our anaiysis of these data) then the ROC
curve has slope 1 &nd the time-~order effect is simply due to the fact that

o =1, If, however, the effect is explained in terms of different sensitivity
levels, then

Pr(E) = o) + (l—cl)p

Pr(F) = (l—02)p .
Under these conditions the ROC curve is
Pr{H) = l—;—i% Pr(F) + o
, 1- Cp 1
If 02 > aqs then the slope of the ROC curve is greater than one, Thus to

decide whether the time-order effect is due to the biass process alone, or
whether it also may be due tc differential sensitivity levels, we must ask

20



whether the ROC curve has. slope greaber than.one. Cne can see by insgpection
of Fig. 1 that for our subjects there is no evidence {except possibly for
Subject 2) to suggest that the observed points would be better f£it by a line
with slope. greater than one. Therefore, for this experiment, the conclusion
is that the time-order effect i1s due to the blas process, and cannot be ex~
plained by changes in sensitivity over the two observation intervals.

Iv, Blank Trials and False Information

In this section we consider two modifications cf the typical forced-
choice detection task. One involves the introduction of blank trials, and

the other the use of false-information feedback. By blank trials we mean

that on occasion a trial will occur on which.the signal has been cmitted
entirely; +the subject is not told that blank trials are being introduced

and (because of the forced-choice nature of the task) continues to make Al

and A2 responses. A blank trial will be denoted as SO. By false-informa-

tion feedback we mean that on some trials the subject will be told that a
signal occurred in a particular observation interval when in fact it did not.
The introductiocn of these two modifications in the detection task permits
us to make some very sharp predictions that differentiate this_mddel from
geveral others with similar assumptions.

In the study to be analyzed, the subject was given the same instructions
that were used in the other experimentj i.e., he was led to believe that a
gignal would occur cn eVefy trizl and that- the information events reliably
indicated the interval in which the signal occurred. Actually, however,
the presentation.schedule'involved"slg 3 and S. type trials; on 8

2 0

trials an El ‘always occurred, on 82 trials an E

1

5 always occurred, and

on -SO trials sometimes El occurred and sometimes .EE.' The presentation

schedule used in this study can be characterized by the parameters ¥, =,

o1



and x as follows: (a) with probability Xy é gignal was presented in the

first interval and, after the response, E dccurred, (b) with probability

1
x{1-y) & signal wes presented in the second interval and followed by E,,
and (c¢) with probability 1- x a blank trial was presented and an. El

occurred with probebility = =znd an E2 event with probability 1-m=,
Thus, the probabiltity of presenting a signal in the first interval was xy;
but the probability of tellinglthe subject_that‘the signal occurred in the
first interval was

Pr(E ) = xy + (l~x)ﬁ-.

1l,n
Similarly, the probability of presenting the signal in the second interval
was x(l-y); however, the probability that the subject was told that the

ggnal occurred in the second interval was

Be(Ey ) 7 2(37) ¥ Qo))

250,

The model generalizes directly to this experiment. No new assumptions
are necessary; we need only apply the axioms and carry out the appropriate
derivations. First of all, consider the activation matrix for this experi-

ment. In terms of the assumptions

0 1 2
Sl 1-0 g ¢
¥ - -
% 32 l-0 0 a
SO 1 0 0 .

Using the matrix &* and the decision matrix Eﬂ gpecified by Eq. 5, we can

derive a performance matrix E; whose rows are the events S 82, and SO

lJ
and whose columns are the responses Al and AE' The entries in the first

column of the matrix Eﬁ are

z2e



Pr(Hn) = Pr(Al’n|Sljn) =g + (l-U)pn (15a)
Pr(Fn) . Pr(Al’n\SE,n) = (l-u)pn {(15b)
Pr(ay 15, ) = 7, - | (15¢)

By inspecticn cf Egs. 15a and 15b, it is clear that the ROC curve is the
same as one given in Eq. 7 for the no-blank trial case. Also, from Egs. 15a
and 15c it follows that the function relating Pr(H ) and Pr(A. 8. )

n l,n' 0,n

is a straight line with slope 1-0 and intercept o¢; namely,

) . (16)

Pr(H ) - o+ (l—U)Pr(Al,n!SO,n

Now let us derive an expression for the respense bias. Eg. 9 presents
the axioms describing possible changes in Ppe These axiomg are directly
applicable to the experiment involving blank trials and false-information
feedback. Given Egq. 9, we need only to compute the probability of the events
)

The tree in Fig. 2 describes the possible dvents that can occur in a given

(SO,n & El,n) and (SO,n & E2,n

trial. From the figure we obtain

= xy(1-0) + (1-x)x

Pr( & Egﬁn) = x(1-7)(1-0) + (1-x)(1-nt) .

]
O,n

Given these results we can now derive E(pn). We shall not carry out the
derivetion, for it involves precisely the same arguments that were employed in

developing Eg. 10. Invoking these arguments yields the following equation:

n-1

E(p,) =p, - lp, -p]167" .

Here
G =1 -8lx(1-0) + (I-x)n] - 6" {x(1-y){1-0) + (l—x)(l-ﬁ)] s
and. |

B xy(1-g) + (1-x)xn
Pe " [y (Leo) + (T-xn] + [x(1-7) (1-0) + (1-%)(1-n)]lo ~

(17)
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sp&Ey

sz&Ez'

sO&E'2

SO&EI‘

sO&Ez

Figure 2. A tree describing possible eventes and their
reiated probabilities for the blank-trial

experiment
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where @ = %;q

Empirical Apalysis

We now examine some data from a forced-choice detecticn experiment that was
run using presentation schedules ih&olving blank trials and false-information
feedback. The same experimental procedures were employed in this study as in
the earlier one except for the pretraining phase. Pretraining lasted three
days and involved running_each éubject on the schedule B routine used in the
first experiment (during pretraiﬁing, a gignal always occurred in one of the
two observation intervals, information feedback was reliable, and 7 = .5).

Thé signal intensity was held fixed throughout the experiment, but the experi-
menter manipulated thé noise level during pretraining in an attempt to establish
a signal-to-noise ratio for each subject that yielded a correct response per-
centage of approximately T79; Vthe theoretical rationale for selecting this
particular value wil; be given later, The manipulation of the noise level was
cbne strictly by trial and errof, but the procedure proved to be quité successful
for by the end of pretraining & level had been established for each subject

that ylelded a corfrect response probabllity falrly close to the desired value

of .79, During the remainder of the experiment the noise level was fixed for
each subject at the value determined during pretraining. Also, during pre-
training any subject who tended tec strongly favor cne response over the other
wag eliminated from the experiment. Only subjects whoée overall proportion of
Al responses was between .40 and .60 for the second and third days of pre-
training were included in the main experiment. Four subjects ?rom a group

of 18 were eliminated on this basis. Since 7 = % during'pretraining, this

gselection procedure guaranteed that ¢ would be in the neighborheod of one

for all subjects.
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Pretraining, therefore, involved two special features: (&) noise levels
were determined individually for each subject, and (b) subjects were eliminated
from the experiment who showed a strong preference for one of the response
glternatives. The first reguirement guaranteed that the sensitivity param-
eter ¢ was approximately the same for all subjects. The second insured that
¢ was fairly clese to 1 for all subjects. Thus, in a rough sense, a homo-
geneous group of subjects wag formed by using this pretraining procedure;
hemogeneous in the sense that all gubjects were characterized by approximastely
the same values of o and .

In the experiment proper, four presentation schedules were used. The
probability x of a signal trisl was .50 for all scheduleg, but the schedules
différed in fhe values of ¥y and x as follows:

Schedule A': y = ,25, = = ,25

Schedule B': 7y = .75, =n = .25
Schedule C': 7 = .25, = = .79
Schedule D': 7y = .75, =« = .75 .

Test sessions of 400 trials were run oﬁ consecutive days. Fach day a subject
ran on one of the above presentation schedules for the entire session. In
successive 4-day blocks a subject completed one day on each of the four
schedules; within each 4-day block the order of schedules was randomly
determined., The experiment involved 20 test sessions and therefore each
schedule was repeated on five separate days.

Table 3 presents the observed average proportion of Al responses con-
ditionalized on the various trial types; these averages are based on 1h
subjJects., Proportionsg were computed for each subject based on the last 350
trials of replications two through five of a given presentaticn schedule;
thus the estimates for each subject are based on a sequence of 4 x 350 = 1400
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Table 3
Observed and predicted values

for the blank-trial study

Schedule A' Schedule B! Schedule C' Schedule D'

Obs. Pred. Obs. Pred. Obs., Pred, Obs. | Pred.

CPr(H) G672 755 W73k .820 820 .903 .886
CRe(®) 086 .00 Lk .16 .7 Lok8 L3k .31k
_Pr(AllsO) 213 .23% Lol .378 553 .578 765 733

Pr{a,) 219 .238  .505 k85 .u647 R 76k 738

pea



trisls. The averages of these individual subject proportions are the quanﬁities
pragsented in the table. Although dats were analyred on an individual subject
basig In the first experiment, there are at least two justifications for
pregenting group averages now. One reason is that it greatly simplifies
.the apalysis, and the second is that there is a theoretical rationale for
treating group dats in the present experiment. The rationsdle is based on the
pretraining procedure, which was designed to insure that both o and o
would be approximately the same for all subjects. By inspection of Egs. 15
md 17 we see that the asymptobtic expressions for Pr(H), Pr(F) and Pr(AlISO>
depend on only o and @; IT o and ¢ are identical for all subjects,
then the théory makes the same predictions for the group average as for
individual subjects,

Figure 3 presents plots of the obserféd values of Pr(H) and Pr(F)
as given-in Table 2, The theory predicts that these‘points should fall on a
‘linear curve with slope 1 and intercept o. We estimated o ‘from these four
data points by using the methoé of least squares and obtained

G = .572.

This estimate was used to generate tﬂe straight-iine ROC curve displayed in
Fig. 3. The four observed points (one from each schedule) fall quitg cloge to
the predicted line.

Figure 4 presents a plot of Pr(Al|SO) versus Pr(H): As indicated
in Eq. 16, these points should be related by a linear function with slope 1-¢
and intercept o. Using our estimated o, we generated the straight line in
Fig. 4. Once again the linear relation seems to be reasonably well supported,

In order to make numerical predictions for Pr(AllSi)(i =0, 1, 2) we
need an estimate of ¢. Estimation of this parameter is attained using the

seme method employed earlier, The overall probability of am A, response is

1
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Figure 3. Observed and predicted values for Pr(H) and Pr(F)
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Pr{A S

Rl

l) xyPr(Al|Sl) + x(l-y)Pr(AlL o) (l-x)Pr(Al|SO)

(18)

it

oxy + (l-cx)p@ .
Substituting in the expression for p_ glven in Eq. 1Y yields_aﬂ expressicn
in @, For each presentation schedule we have substituted the estimated value

of ¢ and the observed value of Pr(A in the above equaticn and solved

1)
for ¢. For example, for schedule A' tﬂe observed value of Pr(Al) is .219;
letting ¢ = .572, 7 = .25, =« = .25, and Pr(A.) = .219 in the above
equation yields '@A’ = 1.281. Similarly; for the ofher three schedules we
obtain @y, = .969,. &5, = 1.229, end &, = .897. It is interesting to '

ncte that ,$~ seems to be correlated more with 7y than with #. Schedules

A" and ¢ {y = .25) both yield @ > 1, whereas schedules B' and D' {(y = ,75)

8 '

3 and that. ¥ .1s the probability of a

yvield @ < 1. Recalling that ¢ =
signal in the first interval (if there is a signaDw these estimates suggest
that @' > 6 1if the probabllity of the signal being in the second interval

exceeds Hence the change in.the bias parameter p, seems to be somewhat

L
5
dominated by the interval with the higher probability of bracketing the
signal. Despite this suggestion of a -departure from independence of the
parameters ¢ and ¥, very little damage is done to the accuracy of the
model's predictions, as will be seen shortly.

To obtain an cverall estimate of © we have taken the average of these

four values:

o~ o~

1n n
O =5loy, + I+ o + Ty
. 1.0Gk

1

Using -the estimates of o and ¢, Egs. 15 and 17 can now be used to
generate predictions for Pr{l), Pr(F), Pr(AlISO) and _Pr(Al). These
predictéd guantities are given in Taﬁle 3; they also are graphically displayed
in FPigs, 3 and & as Cross marks on the appropriate line segments. It should
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be pointed out that there are no constraints on the relations among the
quantities -Pr(Al|Sl), Pr(AlISQ) and Pr(Al|Sd), and therefore twelve
independent predictions are being made on the basis of two parameters.  One
need only inspeét the array of observed and predicted quantities to realize
that the correspondence between theoretical and obgerved wvalues ig quite satis~
factory.

Recall that fqr both schedules B' and C' the El and E2 eventg occurred
equally often; 1i.e., on both schedules the subject was being told (via the _
trial-to~trial feedback) that the signal was occurring equally often in the
two obser#ation intervals, However, actually, the signal cccurred more
frequently in the first interval for schedule B' than for schedule C'. These
experimental manipulations are clearly reflected in the dgta, On an Sé
trial the probability of an Al response was greater for schedule C* than for
schedule B' (.553 vs. J01), whereas over all trials the probability of an Al
response was greater for schedule B' than for schedule C' (.505 vs. .464).

Both of these relationsg are predicted by the model,

V. BSequential Effects

So far, our analysis has been restricted to falrly gross aspects of the
data. However, the model provides a deeper analysis of the experiment than the
foregoing results indicate. From the model we can predict not only hit and
false alarm rates but also the sequential properties of response protocols.

In terms of the axioms, seguential effects in the observable response events are
produced by trial—to-trial fluctuations in L Such fluctuations, of course,
can take place on any trial and are ﬁot restricted to gre-asymptotic data. For
example, even at asymptote the likelihood of making a correct response to an

3] gtimuiug depends in a very definite way on whether an B

1 or an E2

1

cccurred on the preceding trial.,
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The seguential effects of particular interest deal with the influence of
stimulus and response events on trial n -as they-affect the response on trial
n+1; specifically.

Pr(A

E ) .

However, we shall not examine the correspondence bebween these particular

Lyn+l i,n+lAj,nSk,n

sequential effects:and theoretical predictions, because there are 18 such
independent quantities for each experimentsal conditions and the analysis would

|E. )} and

involve too much detsil. Rather, we shall consider Pr(A :
1,n+l 1,n

Pr(Al,n+lrE2,n)° Note that for these probabilities the stimulus events on -

triels n and n+1 -are suppressed, and we only ask for the overall like-

lihood of an A, response conditionzlized on the information event of the

1
preceding trial. - The Al could cccur in response to any ©f the stimulus
events SlJ Sgdh or SO on trial n+1; similarly the information event
El on trial 1 could follow an Sl or SO stimulus, and the E2 an 82

or SO stimulus. Asymptotic expressions for these quantities can be readily

obtained {see Atkinson, Bower, and Crothers, 1965) and are as follows:

x{l-x) + xy(l-¢)

nliymPr(Al,n+llEl,n) = Pr(Al) + (l-cx)e(l—pm)- 7 (1-%) + %7
. (19)
nliymPr(Al,n4llE2,n) f Pr(Al) - (lfGX)91pm(l'TiEig?i_;)Xil;zifiac)”o

where D is given by Eq. 17 and IT(Al) by Bgq. 18.

Table 4 presents the observed values for Pr(A and

l,n+l|El,n)

Pr(4 |E Estimates of these quantities were obtained for individual

1,0+l E,n)°
- subjects; the average of these estimates are the quentities presented in the
table. Theze estimates are based on the same get of trials as the data pre-

sented in Table 3 and therefore will be regarded as asymptotic. We can now

use the above equations to yield predictions for these observed values. " By
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inspection of these eguations, we see that values are needed for o, 6, and

6" in order to make pumericael predictions. ESince estimates of o and

1 .
0 = Qg have already been made, it is only necessary to estimate either &°

or 9.

Suppoge we fix on some value of 8'; then € is determined because

1

%; must equal the previous estimate of ¢ = 1,094, For a fixed &' pre-

dictions can be calculated for the elght statistics displayed in Table k;
these calculations are made for each experimental schedule by substltuting the

appropriate values of 7 and s in the above equations, along with o =..572,
G!
1.0094°

for a particular value of 6', an evaluation of the goodness-of-fit can be

® = L.0%, and € = Once numerical predictions have been generated
mede by computing the sum of squared deviations between predicted and ob-

served values; 1.e., for a specific value of 6' define the gquantity
1} . 2
s(e') = . {predicted-obszerved)” ,

where the sum is over the 8 entries in Table 4.
One method for estimating 4*' is to select its wvalue so as to minimize
s(6'). To carry out this minimization analytically yields unwieldy expressions,

and to avoid this complication we have simply calculated S(o') for &’
ranging from .01 to 1.0 in succeesive increments of .0l. Over this range of
values the function 8(6') tﬂmsonitémhﬁmm1ﬂmn ' = .08. This value
of 8' generates the predicted quantities in Table 4.

By and large the correspondence between predicted and observed sequential
statistics is reasonably good. In evaluating the goodness-of-fit 1t should be
kept in mind that 21l of the guantities in Table 4 are independent, and thus
| &

i P A
there are 8 degrees of freedom, The model requires that Pr(Al,n+l 1n Pr( l)

> Pr(A and thig relation is supperted by all four sets of data.

l,nfllEE,n)’
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Table 4
Observed and kredicted sequential quantities

for the blank-trial study

Schedule A Schedule B' Schedule C! Schedule D'

Obg. Pred,. Obs. Pred. Obs. Pred. Obs. Pred.

nli)mmPr(Al’n_i_l[ElI’n) 255 267 529,503 W75 .503  .784 748
nl_i_)mmPr(Al,n+l|E2’n) 207 .229 482 466 453 466 716 .708
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"Also the model requires that

Pr(A > Pr(A S

1,545 n)
)
) .

Although not presented here, a breakdown of the data iﬁto this: form -indicates

1;n+1|
) > pr(a |s

1,n+1+51,n+1E1,n)
Pr lsam+ﬁlm 5, n+152 n
.

ISO,n+lEl,n) Pr(a

Al,ri+l
Pr{A

1,n+1

l,n+i l,n+lrso,n+lE2,n

-that these inegualities hold over all four experimental conditions.

VI, Alternative Models

An alternative model for the bias process that initially appesled to us
involved trial-to-trial changes in P, that were determined solely by the

‘information -events Ei and EZ‘ Formally stated, the idea was that .

'(1-e)ph + 9, if E
Pryy = (16} . .
TC Py - 2,n "
This formulation (which wiil beé called Model II) is to be contrasted with

1,n

Eg. 9 (Mddél'I), where changes in Py can.bccur only'when sensory state 84
is activated. In spite of the marked difference between these two sets of
:aSStmptibns, the models yield identical'predictioﬁs in the first eiperiment
for the asymptotic probabilities of Pr(l), Pr(F), Pr(a)) and Pr(c).
Only by = detailed'analysis of Sequentiél statistics and pre-ééymptotic data
can it be shown that Model I is slightly better than Model II;

However, the two modelsg make strikingly different predictiocns in the
false-information étudy even for asymptotic hit and false alarm proportions?
For éxampie, applying Model II to the false-information study yields

3 Coxy + (1-x)w '
Po = Ty + (I [ + [x(T1-7) + (1-%) (T-0)]9 °

By inspection of this equation, we see that P, is identical for both
scheduies B' and C' of the second experiment; whereas, using Model I, p
is greater for schedule C' than for schedule B'., This relation, of course,
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is reflected in Pr(H) and Pr(F). For Model IL, Pr(H) and Pr(F) will be
the same for both schedules B' and C'; whereas for Model I both Pr(H)
and Pr(F) will be greater for schedule C' than for schedule B', The order-
ing relation predicted%by Model I for schedules B' and C' is borme out by the
group averages presented in Table 3;_ it also 1s the case that the relation
holds individually for all 1k suﬁjects. Therefore Modei I, but.not Medel II,
appears substantiated by the data.

To further illustrate the relations between Models I and II in the false-
information study, we have presented iso-bias curves in Fig. . 5; the curves
were plotted for ¢ = 1. By inspection of the figure we see that the iso-bias
curve for Model IT i1s a straight line for all four presentation schedﬁles,
and the iso-bias curves for schedules ﬁ' and C' are identical. For Model I,
the iso-bias curves for sgchedules A' and D' are the same as for Model I1;
however, under the assumptions of Model I schedules B' and C' generate dif-
ferent, nonlinear curves. o

Adopting quel I, a distance function can be defined between corresponding
points on the iso-bias curves for schedules B' and ¢'. The maximum of this
function can be thained by taking its derivative withrrespect to @ and
setting the result equal to zero. Carrying out these operations yields

g =2-V2= .59 .
Therefore, under the assumptions of Model I, the meximum difference between
corresponding points on the iso-bias functions of schedules B' and C' will be
observed when o 1s approximately .59.

One of the principal reasons for running the false-information study
was to determine whether such a difference would be observed. Therefore; to
meximize the likelihood of discovering an effect 1f it existed, we wanted to
set the nolse level at a value corresponding toa o of .59, Recall that'
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pretraining involved only 8 and .S2 trials, and they were presented with

1
equal likelihood; hence Pr(C) = U'+_(l—d)%. Consequently to fix o ab

approximately .59 required adjusting the nolse level during pretraining to

e

vield & correct-response probability of approximately .79 2 .59 +‘(.hl)%.
. The pretraining procedure was fairly successful, inasmuch as the estimate of ¢
“during the actual experiment was .572.

VII. Concluding Remarks

The applications of the model presented here have been confined to
symmetric cutcome structures involving no payoffs. If we were to generalize
the model to situations involving manipulation of monetary payoffs then it
would be necessary to offer a more complex ﬁheory ﬁf the decision process.
Obvicusly there are outcome structures that will displace the subject's data
point off the linear ROC curve specified by Eq, 7?2 -For example, consider

the following payoff matrix:

Al A2
Sl-_—l +100
82 +100 -1 .

In this case the subject is heavily rewarded for incorrect detection responses
and ﬁenalized forucorrect respoﬁses. Hence over timé the subject Would U=
doubtedly generate a point [Pr(F), Pr(#)] +hat fell in the lower right;
hand sector of the ROC space. That is, the probability of a false alarm would
excéed the probability of a hit for this outcome structure, ;t ié important

to,note that such effects cannot be predicted merely by generalizing the

2In_fact, even for experiments discussed here, 1t is likely that the
observed point [Pr(F), Pr(H)] will fall below the predicted ROC curve when
¥y is close to. zero or one. (Atkinson, 1963).
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assumptions governing D, No matter how P, ls permitted to vary, the
model still requires that performance points fall on a linear curve with. .
intercept o.

Cf course, several modifications of the theory seem able to account for
experimental manipulations that generate perférmance points off the ROC curve.

One approach 1s to develop a more elaborate concepinalization of the decision

procesé. For example, one can replace the Qn metrix of Eq. 5 with the matrix

Al Aa
™ - ]
SO P 1 pn
D =s_. d(l) l-d(l)
] 1 n I
e |1-a®) @
2 | n noj

For this process experimental manipulations of the oubtcome structure might nct
anly affect P, but also the values of déi). Thus, depending on the po;tum
iated relation of dii) to the outcome sgtructure, it would be possible to
generate virtually any ROC curve. Of course, when this fype of modification
is introduced cne obtains a model that is very close in structure to those
‘proposed for discrimination learning (Atkinson and Estes, 1963, p. 238; Bush;
Luce and Rose, 1964). Another possible modification of the detection model
would be to develop a more general formulation of the sensory process. _Pur—
suing this line, we might assumé that the Subject;s sensitivity lgvel could
vary within certain limits as a function of the outcome structure and other
variables.

Both of these alternatives represent potential lines of theoretical 5evelop-
ment for models of this type. They ralse an important guestion: Can changes

in performance induced by manipulation of the cutcome structure be explained by

elaborating the theory of the bias process, or do they also necessitate -
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postulating a more complex sensory mechanism? Developments of this sort

are fairly complex and go beyond the scope of this paper.
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